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PREFACE. 

THE  rapid  growth  in  recent  years  of  all  branches  of  applied 
science  and  the  consequent  increasing  claims  on  the  time  of 
students  have  given  rise  in  various  quarters  to  the  demand 

for  a  change  in  the  character  of  mathematical  text-books. 
To  meet  this  demand  several  works  have  been  published, 
addressed  to  particular  classes  of  students  and  designed  to 

supply  them  with  the  special  kind  and  quantity  of  mathe- 
matics they  are  supposed  to  need. 

With  many  of  the  arguments  urged  in  favour  of  the 
change  I  am  in  hearty  sympathy,  but  it  is  as  true  now 
as  it  was  of  old  that  there  is  no  royal  road  to  mathematics, 
and  that  no  really  useful  knowledge  can  be  gained  except 
by  strenuous  effort. 

It  is  sometimes  alleged  that  a  thorough  knowledge  of 
the  derivatives  and  integrals  of  the  simpler  powers,  of 
the  exponential  and  the  logarithmic  functions,  and  perhaps 
of  the  sine  and  the  cosine,  is  quite  sufficient  preparation 
in  the  Calculus  for  the  engineer.  This  contention  has  a 
solid  substratum  of  truth ;  but  a  knowledge  that  goes 
beyond  the  mere  ability  to  quote  results  is  not  to  be 
obtained  by  the  few  lessons  that  are  too  often  considered 
sufficient  to  expound  these  elementary  rules.  It  may  be 
possible  to  state  and  illustrate  in  a  few  lessons  a  sufficient 
amount  of  the  special  results  of  the  Calculus  to  enable 
a  student  to  follow  with  some  intelligence  the  more 
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elementary  treatment  of  mechanical  and  physical  problems  j 
but,  though  such  a  meagre  course  in  the  Calculus  may 
not  be  without  value,  it  is  quite  inadequate,  both  in  kind 

and  in  quantity,  as  a  preparation  for  the  serious  study 
of  such  practical  subjects  as  Alternate  Current  Theory, 

Thermodynamics,  Hydrodynamics,  and  the  theory  of  Elas- 
ticity, and  to  a  student  so  prepared  much  of  the  recent 

literature  in  Physics  and  Chemistry  would  be  a  sealed 

book.  Besides,  it  should  surely  be  the  aim  of  every  well- 
devised  scheme  of  education  to  place  the  student  in  a 

position  to  undertake  independent  research  in  his  own 
particular  line  of  work,  and  the  very  complexity  of  the 

problems  presented  to  modern  science,  with  the  vast  accum- 
ulation of  detail  so  characteristic  of  it,  enhances  in  no 

small  degree  the  value  of  a  liberal  training  in  mathematics. 
Subsequent  specialisation  makes  it  the  more,  not  the  less, 
necessary  that  the  mathematical  training  in  the  earlier 
stages  should  be  the  same  whether  the  student  afterwards 

devotes  himself  to  pure  mathematics  or  to  the  more 
practical  branches  of  science,  especially  as  the  processes  of 
thought  involved  in  any  serious  study  of  mechanical, 
physical,  or  chemical  phenomena  have  much  in  common 
with  those  developed  in  the  study  of  the  Calculus. 

The  early  text-books  on  the  Calculus,  such  as  Maclaurin's 
or  Simpson's,  were  not  written  for  pure  mathematicians 
alone,  but  drew  their  illustrations  largely  from  Natural 

Philosophy ;  the  later  text-books,  probably  in  consequence 
of  the  ever- widening  range  of  Physics,  gradually  dropped 
physical  applications,  and  even  tended  to  become  treatises 

on  Higher  Geometry.  In  the  present  position  of  mathe- 
matical science,  however,  it  is  just  as  much  out  of  place  to 

make  an  elementary  work  on  the  Calculus  a  text-book 
of  Higher  Geometry  as  it  would  be  to  make  it  a  text- 

book of  Physics  or  of  Engineering  or  of  Chemistry.  What 
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may  be  reasonably  required  of  an  elementary  work  on 
the  Calculus  is  that  it  should  prepare  the  student  for 
immediately  applying  its  principles  and  processes  in  any 
department  of  his  studies  in  which  the  Calculus  is  generally 
used.  With  this  end  in  view,  the  subject  should  be 
illustrated  from  Geometry,  Mechanics,  and  Physics  while 
the  peculiar  difficulties  of  these  branches  are  relegated 

for  detailed  treatment  to  special  text-books,  so  that  the 
illustrations  may  really  serve  their  purpose  of  throwing 
light  on  general  principles,  and  may  not  introduce  rather 
than  remove  intellectual  obscurity.  As  regards  Chemistry, 
a  sound  knowledge  of  the  Calculus  is  of  special  importance, 
since  it  is  the  properties  of  functions  of  more  than  one 
variable  that  are  predominant  in  chemical  investigations ; 
the  lately  published  book  of  Van  Laar,  Lekrbuch  der 
Mathematischen  Chemie,  is  a  sign  of  the  times  that  cannot 
be  mistaken. 

In  this  text-book  an  effort  has  been  made  to  realise 
the  aims  just  indicated.  With  respect  to  mathematical 
attainments,  the  reader  is  supposed  to  be  familiar  with 

Geometry,  as  represented  by  the  parts  of  Euclid's  Elements 
that  are  usually  read,  with  Algebra  up  to  the  Binomial 
Theorem  for  positive  integral  indices,  and  with  Plane 
Trigonometry  as  far  as  the  Addition  Theorem ;  but  no 
use  is  made  of  Complex  (imaginary)  number,  nor  is  a 
knowledge  of  Infinite  Series  presupposed.  The  excessive 
refinements  of  modern  mathematics  have  been  deliberately 
avoided,  as  being  neither  profitable  nor  even  intelligible 
to  the  young  student;  constant  appeal  has  been  made  to 
geometrical  intuitions,  while  at  the  same  time  considerable 
attention  has  been  paid  to  the  logical  development  of  the 
subject. 

The  early  chapters  may  seem  to  contain  a  great  deal 
of  matter  that  is  foreign  to  the  book :  but  the  theory 
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of  graphs  and  of  units  is  of  such  importance,  and  is  as 

yet  so  imperfectly  treated  in  elementary  teaching,  that  some 
account  of  it  appeared  to  be  a  necessity.  After  considerable 
hesitation  I  have  included  in  my  plan  the  elements  of 
Coordinate  Geometry,  so  far  as  these  were  likely  to  be  of  real 
service  in  elucidating  fundamental  principles  or  important 
applications ;  but  for  many  applications  of  the  Calculus  an 
extensive  acquaintance  with  Coordinate  Geometry  is  not 
necessary,  and  I  hope  that  a  sufficiently  clear  account  of 
its  principles  has  been  given  to  meet  the  practical  needs 

of  many  students.  I  have,  however,  excluded  the  discus- 
sion of  the  theory  of  Higher  Plane  Curves  and  of  Surfaces 

as  unsuitable  for  an  elementary  treatise. 
Another  innovation  is  the  chapter  on  the  Theory  of 

Equations  ;  the  innovation  seems  to  be  justified,  not  merely 
as  an  arithmetical  illustration  of  the  Calculus,  but  also  by 
the  practical  importance  of  the  subject,  and  by  the  absence 
of  elementary  works  that  treat  of  transcendental  equations. 

The  general  development  is  that  which  I  have  followed 

in  class-teaching  for  several  years.  The  somewhat  lengthy 
discussion  of  the  conceptions  of  a  rate  and  a  limit  I  have 
found  in  practice  to  be  the  simplest  method  of  enabling  a 
student  to  grapple  with  the  special  difficulties  of  the 
Calculus  in  its  applications  to  mechanical  or  physical 

problems  ;  when  these  notions  have  been  thoroughly 
grasped,  subsequent  progress  is  more  certain  and  rapid. 

No  rigid  line  is  drawn  between  differentiation  and  inte- 
gration, and  several  important  results  requiring  integration 

are  obtained  before  that  branch  is  taken  up  for  detailed 
treatment.  The  discussion  in  Chapter  X.  of  areas  and  of 
derived  and  integral  curves  is  designed,  not  only  to  furnish 
a  fairly  satisfactory  basis  for  the  geometrical  definition 
of  the  definite  integral,  but  also  to  illustrate  a  method 
of  graphical  integration  that  is  of  some  importance  to 
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engineers,  and  that  may  be  of  some  value  even  in  purely 
theoretical  discussions. 

As  in  some  of  the  more  recent  text-books,  the  discussion 

of  Taylor's  Theorem  has  been  postponed ;  the  Mean  Value 
Theorem  is  sufficient  in  the  earlier  stages,  and  the  some- 

what abstract  theorems  on  Convergence  and  Continuity  of 
Series  are  most  profitably  treated  towards  the  end  of  the 
course.  The  treatment,  however,  is  such  that  teachers  who 

prefer  the  usual  order  may  at  once  pass  from  the  Mean 
Value  Theorem  to  Chapters  XVII.  and  XVIII. 

Functions  of  more  than  one  variable  are  treated  in  less 

detail  than  functions  of  one  variable ;  but  I  have  tried  to 
select  such  portions  of  the  theory  as  are  of  most  importance 
in  physical  applications.  The  book  closes  with  a  short 
chapter  on  Ordinary  Differential  Equations,  designed  to 
illustrate  the  types  of  equations  most  frequently  met 
with  in  dynamics,  physics,  and  mechanical  and  electrical 
engineering. 

Simple  exercises  are  attached  to  many  of  the  sections; 
in  the  formal  sets  will  be  found  several  theorems  and 

results  for  which  room  could  not  be  made  in  the  text,  and 
which  are  yet  of  sufficient  importance  to  be  explicitly 
stated.  I  have  tried  to  exclude  all  examples  that  have 
nothing  but  their  difficulty  to  recommend  them ;  and 
with  the  object  of  encouraging  the  student  to  put  himself 
through  the  drill  that  is  absolutely  necessary  for  the 
acquisition  of  facility  and  confidence  in  applying  the 
Calculus,  I  have  freely  given  hints  towards  the  solution 
of  the  more  important  examples. 

In  the  preparation  of  the  book,  I  have  consulted  many 
treatises,  and  where  I  am  conscious  of  having  adopted  a 
method  of  exposition  that  is  peculiar  to  any  writer,  I  have 
been  careful  to  make  due  acknowledgment.  It  is  difficult, 
however,  when  one  has  been  teaching  a  subject  for  years  to 



x          AN  ELEMENTARY  TREATISE  ON  THE  CALCULUS. 

recognise  the  sources  of  his  knowledge,  and  it  may  well  be 
that  I  have  borrowed  more  largely  than  I  am  aware. 

I  am  greatly  indebted  to  my  friends  Professor  Andrew 
Gray,  F.R.S.;  Mr.  John  S.  Mackay,LL.D.;  Mr.  Peter  Bennett ; 
Mr.  John  Dougall,  M.A.;  and  Mr.  Peter  Pinkerton,  M.A.,  for 

help  in  the  tedious  task  of  the  revision  of  proof-sheets  and 
for  useful  criticism.  In  all  matters  bearing  on  Physics, 

Professor  Gray's  advice  has  been  of  the  greatest  service. 
To  Mr.  Dougall  my  obligations  are  specially  great ;  he  has 
taken  a  lively  interest  in  the  work  from  its  inception,  and 

has  read  the  whole  of  it  in  manuscript,  placing  at  my  dis- 
posal, in  the  most  generous  way,  his  great  knowledge  of 

the  subject  and  the  fruits  of  his  experience  as  a  teacher ;  to 
him,  too,  I  owe  the  verification  of  the  examples. 

I  desire  to  thank  Professor  R  A.  Gregory  for  his  constant 
and  kindly  advice  on  matters  relating  to  the  passage  of  the 
book  through  the  press.  I  am  also  grateful  to  the  printers 
for  the  excellence  of  their  share  of  the  work. 

GEOKGE  A.  GIBSON. 

GLASGOW,  September,  1901. 
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AN  ELEMENTARY 

TREATISE  ON  THE  CALCULUS. 

CHAPTEK   I. 

COORDINATES.     FUNCTIONS. 

§  1.  Directed  Segments  or  Steps.  Let  A, B  (Fig.  1)  be  any 
two  points  on  a  straight  line.  In  Elementary  Geometry  it 
is  customary  to  denote  the  segment  of  the  line  between 
A  and  B  by  AB  or  by  BA  indifferently,  the  order  of  the 
letters  being  of  no  consequence.  It  is  useful,  however,  for 
many  purposes  to  distinguish  the  segment  traced  out 
by  a  point  which  moves  along  the  line  from  A  to  B  from 
that  traced  out  by  a  point  which  moves  from  B  to  A. 
When  this  distinction  is  made,  the  segment  is  called  a 
directed  segment  or  vector  or  step,  and  the  distinction  is 
represented  in  the  symbol  for  the  segment  by  the  order  of 
the  letters ;  thus,  AB  denotes  the  segment  traced  out  by  a 
point  which  moves  from  A  to  B,  while  BA  denotes  the 

•;ment  traced  out  by  a  point  which  moves  from  B  to  A. 

"he  length  of  the  step  AB  is  the  same  as  that  of  the  step 
but  the  steps  have  opposite  directions. 

~~A~  ~~B      D7"  ~C~  T~ 

FIG.  1. 

wo  steps  AB,  CD  are  defined  to  be  equal  if  (1)  they  are 

'  3  same  straight  line  or  on  parallel  straight  lines,  (2) 
igths  of  AB  and  CD  are  equal,  and  (3)  D  is  on  the 
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same  side  of  G  as  B  is  of  A.  Thus,  if  D'  be  at  the  same 
distance  from  C  as  D  is,  but  on  the  opposite  side,  AB  is  not 

equal  to  CD'  but  to  DC.  The  step  AB  has  the  same  length 
and  the  same  direction  as  CD  or  DC,  but  though  it  has  the 

same  length  as  CD',  it  has  not  the  same  direction  and  is 
therefore  not  equal  to  CD'  in  the  sense  in  which  "  equal " 
has  been  defined  for  steps. 

§  2.  Addition  of  Steps.  Let  A,  B,  C  be  any  three  points 
on  a  straight  line.  Whatever  be  the  relative  position  of 
the  points  A,  B,  (7,  a  point  which  moves  along  the  line 
from  A  to  B,  and  then  from  B  to  C,  will  be  at  the  same 
distance  from  A  and  on  the  same  side  of  A  as  if  it  had 
moved  directly  from  A  to  C.  AC  is  therefore  taken  as  the 
sum  of  the  steps  AB  and  BC,  and  the  operation  of  addition 
of  steps  is  defined  by  the  equation 

AB+BC=AC. 

When  B  liea  between  A  and  G,  the  sum  of  the  lengths  of 
the  steps  AB  and  BC  is  equal  to  the  length  of  the  step  AC, 
and  therefore  in  this  case  addition  of  steps  agrees  with  the 
usual  geometrical  meaning  of  addition  of  segments  in 
which  length  alone  is  considered.  But  when  B  does  not 
lie  between  A  and  O,  the  sum  of  the  lengths  of  the  steps 
AB  and  BG  is  not  equal  to  the  length  of  the  step  AC.  It 
will  be  seen  immediately  that  steps  can  be  represented  as 
positive  or  negative,  and  that  addition  of  steps  corresponds 
to  algebraical  addition. 

If  D  be  any  fourth  point  on  the'  line 
AB+BG+GD=AC+GD  =  AD, 

and  in  the  same  way  the  sum  of  any  number  of  steps  may 
be  defined. 

To  find  the  sum  of  AB  and  CD  when  B  and  C  are  not 
coincident,  take  the  step  BE  equal  to  the  step  CD ;  then 

AB+CD  =  AB+BE=AE. 

If  x  be  any  positive  number,  xAB  is  a  step  in  the  same 
direction  as  the  step  AB,  and  of  a  length  which  is  to  the 
length  of  AB  in  the  ratio  of  x  to  1 ;  thus,  SAB  is  a  step 

thrice  as  long,  and  in  the  same  direction  as  the  step  AB', 
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f  AS  is  a  step  five-thirds  of  the  length  of  AB  and  in  the same  direction. 

The  student  will  have  no  difficulty  in  showing  that  the 
commutative  and  associative  laws  for  the  addition  of 
numbers  hold  for  the  addition  of  steps. 

§  3.  Symmetric  Steps  and  Subtraction  of  Steps.  If  in  the 
first  case  of  the  preceding  Article  the  point  C  be  supposed 
to  coincide  with  A,  the  step  AC  becomes  the  zero-step  AA, 
which  is  denoted  by  0.  Hence,  in  symbols, 

AB  +  BA  =  AA  =  Q. 

Similarly,         AB  +  BC+CA  =AC+  CA  =  0. 

In  Algebra  the  negative  number  —a  is  defined  by  the 
equation 

a+(-a)  =  0. 

In  the  same  way  the  negative  step  —AB  may  be  defined 
by  the  equation 

AB+BA=0 

as  being  the  step  BA  ;  that  is,  the  step  —  AB  is  the  step 
BA  of  the  same  length  in  the  opposite  direction.  The 
symbol  +  may  now  be  attached  to  a  step  AB,  and  -f  AB 
may  be  called  a  positive  step.  The  two  steps  -\-AB  and 
—  AB  (or  BA)  are  called  symmetric  steps.  Obviously,  if 
two  steps  are  equal,  so  also  are  their  symmetric  steps. 

The  operation  of  subtraction  of  a  step  is  defined  as  the 
addition  of  the  symmetric  step ;  in  symbols, . 

AC-BC=AC+CB=AB', 

or,  AB-CD  =  AB+DC=AC',  if  BC'  =  DC. 
Precisely  as  in  Algebra,  the  commutative  and  associative 

laws  may  be  shown  to  hold  for  subtraction  of  steps,  and 
there  will  be  no  confusion  caused  by  the  use  of  the  symbols 
-f  and  —  to  indicate  symmetric  steps  as  well  as  the 
operations  of  addition  and  subtraction. 

By  the  definition  of  subtraction,  if  A,  B  be  any  two 
points  on  a  line  and  0  any  third  point, 

AB=AO  +  OB  =  OB+AO  =  OB-OA. 
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§  4.  Abscissa  of  a  Point.  Let  0  be  a  fixed  point  on  a 

line  X'OX  and  P,  Pf  two  points  on  opposite  sides  of  0  but 
at  the  same  distance  from  it  (Fig.  2);  let  U  be  another 
point  on  the  line  on  the  same  side  of  0  as  P  is,  say  to  the 
right  of  0. 

The  steps  0  U,  OP  have  the  same  sign ;  the  steps  0  U, 

OP'  have  opposite  signs. 
Let  OU\)Q  taken  as  a  standard  of  length,  say  1  inch,  and 

as  a  standard  of  direction ;  it  may  therefore  be  called  the 
unit  step.  Steps  measured  like  OU  to  the  right  will  be 
called  positive  steps,  while  those  measured  to  the  left  will 

be  called  negative.  Thus  OP,  P'P  are  positive,  OP',  PP' negative  steps. 

X'      P7"""^  U7 O  U  A      P  R 
FIG.  2. 

If  OP  is  equal  to  xO  U,  then 
OP'=-P'0=-OP=-xOU. 

The  positive  number  x  is  called  the  abscissa  of  P  with 
respect  to  the  origin  0 ;  the  negative  number  —  x  is  called 
the  abscissa  of  P'  with  respect  to  the  same  origin,  and  the 
line  X'OX  is  called  the  axis  of  abscissae.  Every  point  of 
the  line  to  the  right  of  0  will  have  a  positive  number  for 
abscissa,  and  every  point  to  the  left  of  0  a  negative 
number ;  the  abscissa  of  0  itself  is  zero.  Thus  if  OA  =  2017, 
the  abscissa  of  A  is  2  ;  the  abscissa  of  U  is  1 ;  the  abscissae 

of  U'  and  A',  the  points  symmetric  to  U  and  A,  are  —1 
and  —  2  respectively. 

As  thus  defined,  the  abscissa  of  a  point  P  is  the  ratio  of 
OP  to  the  unit  step  0  U,  taken  with  the  positive  or  negative 
sign  according  as  P  is  to  the  right  or  to  the  left  of  0, 
U  being  supposed  to  be  to  the  right  of  0.  When  a  point  P 
has  the  abscissa  x,  it  is  convenient  to  say  that  the  point  P 
and  the  number  x  correspond  to  each  other.  Thus  the 

point  A  and  the  number  2,  the  point  U'  and  the  number 
—  1,  the  point  0  and  the  number  0  correspond  to  each 
other. 

AXIOM. — The  fundamental  axiom  on  which  the  application 
of  Algebra  to  Geometry  rests  is  that,  when  the  origin  0  and 
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the  unit  step  OU  have  been  fixed,  there  is  a  one-to-one 
correspondence  between  the  points  of  the  axis  and  the 
system  of  real  numbers  ;  that  is,  to  every  point  on  the  axis 
corresponds  a  definite  number,  namely  the  abscissa  of  the 
point,  and  to  every  number  corresponds  a  point  on  the  axis, 
namely  the  point  which  has  the  number  for  abscissa. 

When  the  ratio  of  OP  to  OU  is  a,  rational  number,  that 
is,  a  positive  or  negative  integer  or  fraction,  P  is  determined 
by  laying  off  OU,  or  a,  submultiple  of  0  U,  a  certain  number 
of  times  along  the  axis,  to  the  right  or  to  the  left,  according 
as  the  number  is  positive  or  negative.  Thus  if  the  number 
be  —  -J-,  we  lay  off  to  the  left  a  line  equal  to  7  times  the 
third  part  of  OU.  When,  however,  the  ratio  of  OP  to  OU 
is  an  irrational  number,  such  as  ̂ /2  or  TT,  the  position  of 
P  may  be  determined  in  practice  by  taking  a  rational 
approximation  to  the  irrational  number.  Thus  for  TT  we 

may  take  31  or  3*14  or  3142,  etc.,  according  to  the  size  of 
the  unit  line.  Of  course,  whatever  size  the  unit  line  may 
be,  a  stage  is  soon  reached  when  the  closer  approximations 
become  indistinguishable  in  the  diagram  ;  if  the  unit  be 
1  inch  it  would  be  difficult  to  distinguish  the  points  whose 
abscissae  are  314  and  3142  from  each  other.  Irrational 

numbers  are,  however,  subject  to  the  same  laws  of  operation 
as  rational  numbers,  and  though  in  a  diagram  it  may  be 
impossible  to  distinguish  the  points  corresponding  say  to 
TT  and  3142  from  each  other,  yet  in  our  reasoning  they 
are  to  be  considered  distinct,  just  as  in  reasoning  about  a 
straight  line  we  consider  it  to  have  no  breadth,  although 
we  cannot  represent  such  a  line  in  a  diagram. 

Ex.  1.     Mark  the  points  whose  abscissae  are  : 

21;    --;    ̂ 2;    ~x/3;    -^  ;   TT;    -|;    -V/TT. 

Ex.  2.  If  x  be  the  abscissa  of  a  point,  mark  the  points  which  are 
determined  by  the  equations  : 

§  5.  Measure  of  a  Step.     If  the  abscissae  of  A,  B  are  a,  b 
respectively,  then 

=  OB-OA  =  bOU-aOU=(b-a)OU. 
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The  number  6  —  a  may  be  taken  as  the  measure  of  AB] 
the  numerical  value  of  6  —  a  gives  the  ratio  of  the  length 
of  AB  to  the  length  of  the  unit  step  OZ7,  and  the  sign  of 
6  —  a  gives  the  direction  of  AB.  Thus  if  OU  be  1  inch, 
6  =  5,  a  =  2,  .45  will  be  3  inches  and  B  will  be  to  the  right 
of  A ;  if  b  =  —5,  a  =  —2,  J.5  will  be  3  inches  long,  and 
since  —5  +  2  is  negative  B  will  be  to  the  left  of  A.  The 
unit  step  OU  is  generally  omitted,  and  AB  is  said  to  be 
equal  to  b  —  a. 

By  the  definition  of  the  expression  "  algebraically  greater," 
b  is  algebraically  greater  than  a  when  b  —  a  is  positive; 
therefore  when  b  is  algebraically  greater  than  a,  B  lies  to 
the  right  of  A.  Similarly  when  b  is  algebraically  less  than 
a,  B  lies  to  the  left  of  A.  We  have,  therefore,  the  con- 

venient relation  that  the  number  b  is  algebraically  greater 
or  less  than  the  number  a,  according  as  the  point  whose 
abscissa  is  b  lies  to  the  right  or  to  the  left  of  the  point 

whose  abscissa  is  a.  Instead  of  the  expression  "  the  point 
whose  abscissa  is  a,"  it  will  be  more  compact  and  equally 
clear  to  use  the  phrase  "  the  point  a." 

Ex.  1.  Determine  in  sign  and  magnitude  the  step  AB  for  the  cases  : 

a~\->  b  =  £  ;  a=  —  1,  b  =  l  ;  a=  -2,  6=  —  5  ;  a=  —  */2,  6  =  ?r. 
Ex.  2.  Show  that  the  abscissa  of  the  middle  point  of  A  B  is  £(«  +  &). 

Ex.  3.  If  AP  :  PB  =  k  :  1  show  that  the  abscissa  of  P  is  (a  +  JcV)l(k+ 1). 
For  if  x  is  the  abscissa  of  P 

AP=x-a,   PB=b—x  and  x  —  a=lc(b  —  x). 
What  is  the  sign  of  k  (i)  when  P  lies  between  A  and  J5,  (ii)  when 

P  does  not  lie  between  A  and  B 1 

§6.  Axes  of  Coordinates.  Let  X'OX,  TOY  (Fig.  3)  be two  unlimited  straight  lines  at  right  angles  to  each  other, 
and  P  any  point  in  the  plane  of  the  diagram ;  draw  PM, 

PN  perpendicular  to  X'X,  Y'  Y  respectively. 
When  P  is  given,  the  steps  OM,  ON  are  definitely  deter- 

mined ;  and  conversely  when  the  steps  OM,  ON  are  given, 
P  is  definitely  determined  as  the  point  of  intersection  of 
the  perpendiculars  MP,  NP. 

Let  OU  be  the  unit  step  for  the  direction  X'X,  0V  the 
unit  step  for  the  direction  F'F,  and  for  the  present  suppose 
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these  two  steps  to  be  of  the  same  length,  say  an  inch.  The 
step  OM  or  its  equal,  the  step  NP,  will  be  considered 

positive  when  P  lies  to  the  right  of  F'F,  but  negative 
when  P  lies  to  the  left  of  F'F;  the  step  ON  or  its  equal, 
the  step  MP,  will  be  considered  positive  when  P  lies  above 

XX,  but  negative  when  P  lies  below  X'X. 

II   (-,+) 
N 

V 

X'
 

HI  (-,  -) 

,  +) 

u M        X 

Y'
 

FIG.  3. 

Of  course,  the  direction  which  is  to  be  considered  positive  may  be 
chosen  at  pleasure,  but  unless  the  contrary  is  stated,  the  positive 
directions  will  be  assumed  to  be  from  left  to  right  and  from  below 
upwards  respectively.  Again  OM  and  MP  will  only  be  compared  as 
to  their  lengths  ;  we  only  compare  steps  with  each  other  when  they 
are  on  the  same  straight  line  or  on  parallel  straight  lines.  Obviously 
the  theorems  that  hold  for  the  comparison  of  steps  with  each  other  are 
true,  whatever  be  the  particular  line  on  which  the  steps  are  taken,  but 
we  have  given  no  definition  of  equality  or  of  sum  or  of  difference, 
except  when  the  steps  compared  are  on  the  same  straight  line  or  on 
parallel  straight  lines. 

Suppose  now  that 

the  numbers  a,  b  are  called  the  coordinates  of  P  with 

respect  to  the  axes  X'X,  F'F;  a  is  the  abscissa,  b  the 
ordinate,  and  P  is  described  shortly  as  "  the  point  (a,  &)." 
In  thus  describing  the  point  the  first  coordinate  is  under- 

stood to  be  the  abscissa,  the  second  the  ordinate.  The  axes 
are  at  right  angles  to  each  other,  and  it  will  be  assumed, 
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unless  the  contrary  is  stated,  that  the  axes  are  always 
rectangular.  0  is  called  the  origin  of  coordinates,  and  its 
coordinates  are  0,  0. 

The  axes  divide  the  plane  into  four  quadrants;  the  first 
quadrant  is  that  bounded  by  OX,  OF,  the  second  by  OF, 

OX',  the  third  by  OX',  OF,  and  the  fourth  by  OF,  OX. 
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FIG.  4. 

The  sigws  of  the  coordinates  show  at  once  the  quadrant  in 
which  a  point  lies :  in  the  first  quadrant  XOY  the  signs 
(the  first  being  that  of  the  abscissa)  are  +,  +  ;  in  the 

second,  YOX',  -,  +  ;  in  the  third,  X'OY'>  -,  -  ;  in  the 
fourth,  FOX,  +,  -. 
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Paper  called  "  squared  paper,"  ruled  twice  over  with  two 
sets  of  equidistant  parallel  lines,  can  be  readily  purchased, 
and  its  use  greatly  facilitates  the  plotting  of  points. 

Fig,  4  shows  several  points  referred  to  the  axes  X'X, 
Y'Y.  The  four  points  A,  B,  C,  D  are  each  at  unit  distance from  both  axes,  but  no  two  of  them  are  in  the  same 
quadrant,  since  no  two  pairs  of  coordinates  agree  both  in 
sign  and  in  magnitude. 

E  lies  on  X'X,  and  its  ordinate  is  therefore  zero;  the 
abscissa  of  K  is  zero,  since  K  lies  on  Y'Y. 

Since  OU  is  divided  by  the  faintly  ruled  lines  into 

10  equal  parts,  each  of  these  parts  will  represent  '1  ;  it  is 
easy,  therefore,  to  mark  off  a  length  such  as  1*3  or  —7. 
In  the  same  way  —  ̂ /2;  —  Jv^S  are  represented  by  —  1*41, 
-'87,  though  the  second  decimal  can  only  be  roughly indicated. 

Ex.  1.  Plot  the  points  (1,  -2)  ;  (-f,  0)  ;  (-3,  -2)  ;  (0,  f)  ;  (1,  0)  ; 
(-1,  0)  ;  (0,  1)  ;  (0,  -1)  ;  (TT,  JTT)  ;  (N/2, 

.  Ex.  2.  What  is  the  locus  of  a  point  whose  abscissa  is  (i)  2,  (ii)  -  2, 

(iii)  0,  (iv)  a  ?  "What  is  the  locus  of  a  point  whose  ordinate  has  these values  ? 

Ex.  3.  Two  points  P,  Q  are  said  to  be  symmetric  with  respect  to  a  line 
when  the  line  bisects  PQ,  and  is  perpendicular  to  PQ  ;  two  points 
P,  Q  are  said  to  be  symmetric  with  respect  to  a  point  0,  when  0  is  the 
middle  point  of  the  line  PQ.  If  P  is  the  point  (a,  6)  show 

(i)  that  the  point  (a,  —  6)      is  symmetric  to  P  with  respect  to  X'X. 
(ii)  that  the  point  (  —  a,  b)      is  symmetric  to  P  with  respect  to  T'  Y. 

(iii)  that  the  point  (  —  a,  —  b)  is  symmetric  to  P  with  respect  to  0. 
For  simplicity  take  first  the  case  a  =  l,  6  =  2. 

Ex.  4.  If  A  is  the  point  (#],,  yj),  B  the  point  (%2,  y2),  and  P  the  point 
dividing  AB  in  the  ratio  of  k  to  1,  show,  as  in  §  5,  Ex.  3,  that  the 
coordinates  of  P  are 

I+k  \+k  ' 
What  is  the  sign  of  k  (i)  when  P  lies  between  A  and  S,  (ii)  when  P 

does  not  lie  between  A  and  B  ? 

§  7.  Distance  between  two  points.  Let  P  (Fig.  5)  be  the 

point  (xv  2/j),  Q  the  point  (x2,  y2)  ;  draw  PM,  QN  perpendi- 
cular to  X'X,  and  let  PR  be  drawn  parallel  to  X'X  to  meet 

NQ  (or  NQ  produced)  at  R. 
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Whatever  be  the  relative  position  of  P  and  Q,  we  have 
for  the  measures  of  PR,  RQ 

As  regards  magnitude  we  have,  by  Euclid  I.  47, 

and  whether  the  signs  of  x2  —  x1 
R  and  y2  —  yl  be  positive  or  nega- 

tive the  squares  of  these  numbers 
will  give  the  number  of  square 
units  in  the  squares  described  on 

*     PRsiudRQ.     Hence 
FIG.  5. 

and  therefore  the  length  of  PQ  is 

where  the  positive  sign  must  be  given  to  the  root. 
If  Q  coincide  with  0,  x2  and  y2  are  both  zero,  and  the 

length  of  OP  is  ̂ (x^  +  y,2). 
The  student  should  verify  the  result  for  different  positions 

of  P  and  Q. 

Ex.  1.  Find  the  distance  between  the  points  (3,  7),  (9,  6),  the 
length  of  the  unit  being  1  inch. 

Let  the  distance  be  r  inches  ;  then 

-6)2  =  37  .   r  =  x/37  =  6- 

so  that  the  distance  is  6  '083  inches. 

Ex.  2.     Find  the  distances  between  the  following  pairs  of  points  : 
plot  the  points  in  each  case. 

i.  (1,  1),  (3,  2).  ii.  (  -  1,  1),  (3,  2).          iii.  (  -  1,  0),  (0,  2). 

iv.  (-2,  -3),  (2,3).      v.  (,r,  -TT),   (-|,   f). 
Ex.  3.     Show  that  if  the  point  (#,  y)  be  any  point  on  the  circle 

whose  radius  is  3,  and  whose  centre  is  the  point  (2,  1), 

-  4#  -  2    -  4  =0. 

§  8.  Polar  Coordinates.  The  position  of  the  point  P 
(Fig.  6)  would  clearly  be  determined  by  the  angle  which 
OP  makes  with  the  fixed  line  OX,  and  by  the  length  of  the 
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radius  OP.     We  must  be  clear,  however,  as  to  the  meaning 

of  the  word  "angle."     Following  the  usual  convention  in 
Trigonometry,  we  consider  the  radius   OP  to  be  always 
positive,  and  define  the  angle  that   OP  makes  with  the 
positive    direction    of    OX    as 
the  angle  through  which  a  line 
coinciding  with  OX  (not  with 

OX')  has  to  be  turned  till  it 
passes    through    the    point   P. 
The  angle  will   be   considered 
positive  when  the  rotation   is 
counter-clockwise. 

If  OP  be  r  units  of  length 
and  the  angle  XOP  0  degrees   -j 
or    radians    according    to    the 
unit  of  angle  adopted,  the  two 
numbers   r,    0   are    called   the     l  FlG  6 
polar  coordinates  of  P,  and  P 

is  described  as  the  point  (r,  6).     Similarly,  P'  is  the  point 
(r',  0') ;  6f  is  negative. 

With  the  usual  system  of  rectangular  axes  in  which  OX 

has  to  be  rotated  counter-clockwise  through  90°  till  it 
coincides  with  OF,  the  positive  direction  of  the  axis  F'F, 
we  see  that  the  polar  coordinates  (r,  0)  of  P  are  connected 
with  the  rectangular  coordinates  (x,  y)  by  the  equations 

x  =  r  cos  0,   y  =  r  sin  0. 

These  equations,  when  solved  for  r  and  0  in  terms  of 
x  and  y,  give 

r=+J(a?+y*),   tan  0  =  | 
It  must  be  noted,  however,  that  tan  0  does  not  definitely 

determine  the  angle  0.  For  if  tan  0  be  positive  we  can 
only  infer  that  P  lies  in  the  first  or  third  quadrant,  while 
if  tan$  be  negative  that  P  lies  in  the  second  or  fourth 
quadrant.  We  must  consider  also  the  signs  of  x  and  y  or 
of  cos  0  and  sin  0. 

It  is  usually  most  convenient  to  suppose  6  to  vary  from 

—  180°  to  4-180°  so  that  a  point  above  the  axis  X'X  has  a 
positive  angle,  and  a  point  below  that  axis  a  negative  angle. 
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Ex.  1.     If  P  is  the  point  (  -  3,  4),  find  its  polar  coordinates  (r, 

=  5  ;   tan  0  =-^=  -1'3333  ;    0=126°  52'. 

Since  tan  0  is  negative,  0  is  in  the  second  or  fourth  quadrant  ;  but 
x  or  cos  0  is  negative,  and  therefore  0  is  in  the  second. 

Ex.  2.  If  P  is  the  point  (3,  —4),  show  that  its  polar  coordinates 
are  (5,  -  53°  8'). 

§  9.  Variable.  Continuity.  Let  A  be  a  fixed  point  on  a 

line,  say,  on  the  #-axis  X'X,  and  let  a  point  P  start  from 
the  position  A  and  move  steadily  along  the  axis,  say  to  the 
right,  till  it  reaches  another  position  B.  The  segment  AB 
described  by  the  point  P  is  the  most  perfect  type  of  a 
continuous  magnitude  ;  there  is  no  gap  or  break  in  it.  As 
P  moves  from  A  to  B,  the  step  AP  steadily  increases  ;  AP 
is  a  continuously  varying  magnitude  during  the  motion 
of  P. 

If  a,  b  are  the  abscissae  of  A,  B,  and  x  the  abscissa  of  P 
at  any  stage  of  the  motion,  then,  as  P  moves  from  A.  to  B, 

since  A  P  =  x  —  a*  x  steadily  increases  (algebraically)  from 
a  to  b  ;  x  is  a  continuously  varying  number  or,  more 
briefly  stated,  a:  is  a  continuous  variable. 

Again,  since  P  coincides  in  succession  with  every  point 
lying  between  A  and  B,  so  x  assumes  in  succession  every 
value  lying  between  a  and  b.  If  a  be  negative  and  b 
positive,  A  will  be  to  the  left  and  B  to  the  right  of  the 
origin  0,  and  when  P  passes  through  0,  x  will  be  zero  so 
that  as  x  passes  from  negative  to  positive  values  it  passes 
through  the  value  zero.  Had  P  instead  of  moving  always 
to  the  right  moved  sometimes  forward,  sometimes  back- 

ward, then  every  time  it  passed  through  0  the  value  of  x 
would  have  been  zero,  so  that  x  would  only  change  from 
negative  to  positive  or  from  positive  to  negative  by  passing 
through  zero. 

We  will  assume  then,  as  characteristic  of  a  continuous 
variable,  that  as  it  varies  continuously  from  a  value  a 
to  a  value  b  it  assumes  once  at  least  every  value  inter- 

*  Here,  and  in  similar  cases,  it  is  the  measure  of  the  step  A  P  that 
is  of  importance  ;  it  will  cause  no  confusion  to  let  AP  stand  for  the 
step,  and  also  for  the  measure  of  the  step  as  is  usually  done  in  all 
applications  of  geometrical  theorems. 
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mediate  to  a  and  b ;  if  one  of  these  values,  say  a,  be 
negative  and  the  other  positive,  one  of  the  values  the 
variable  takes  will  be  zero. 

§  10.  Geometrical  Representation  of  Magnitudes.  The 
measure  x  of  any  magnitude  A  is  the  ratio  of  A  to  another 
magnitude  U  of  the  same  kind  that  is  chosen  as  the  unit. 
If  then  on  any  axis  a  unit  step  0  U  is  taken  as  representing 
the  unit  magnitude  U,  the  step  OM  where  OM  is  equal  to 
xOU  will  represent  the  magnitude  A.  There  is  thus 
established  a  correspondence  between  the  magnitudes  of 
the  particular  kind  considered  and  the  points  of  the  axis ; 
the  point  1  corresponds  to  the  unit  magnitude  U,  the 
point  2  to  the  magnitude  2  U,  and  so  on. 
Many  of  the  magnitudes  considered  in  Geometry  and 

Physics,  for  example,  lines,  angles,  velocities,  forces,  are 
often  treated  as  directed  magnitudes,  and  their  measures 
may  then  be  either  positive  or  negative ;  when  the  meas- 

.  ures  are  negative,  the  points  that  correspond  to  the  magni- 
tudes will  lie  on  the  opposite  side  of  0  from  that  on  which 

U  lies. 
A  variable  magnitude  P  will  be  represented  by  a  variable 

segment  OP,  and  when  the  magnitude  varies  continuously 
the  point  P  will  trace  out  a  continuous  segment  of  the  axis. 

For  purposes  of  calculation  it  is  the  measure  of  the 
magnitude  that  is  of  importance,  and,  to  avoid  a  tedious 

prolixity  of  statement,  such  an  expression  as  "  a  velocity  v  " 
will  often  be  used  in  the  sense  "  a  velocity  whose  measure 
is  v  units  of  velocity."  Of  course  in  all  cases  care  should 
be  taken  to  prevent  ambiguity  as  to  the  units  employed. 

§  11.  Function.  Dependent  and  Independent  Variables.  In 
any  problem  the  magnitudes  dealt  with  will  usually  be  of 
two  classes,  namely,  those  that  retain  the  same  value  all 
through  the  investigation  and  those  that  are  supposed  to 
take  different  values :  the  former  are  called  constants,  the 
latter  variables.  It  has  become  customary  to  denote  con- 

stants by  the  earlier  letters  of  the  alphabet,  a,  b,  c,  ...,  and 
variables  by  the  later  letters,  z,  y,x,  —  Of  course  when 
there  is  any  advantage  in  denoting  a  variable  by  a  or  a 
constant  by  z  there  is  no  reason  against  doing  so. 
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Again,  taking  first  the  case  of  only  two  variables,  it  will 
usually  happen  that  when  one  of  the  variables  is  given  a 
series  of  values  the  other  variable  will  take  a  series  of 
definite  values,  one  for  each  that  the  first  is  supposed  to 
have  been  given.  The  second  variable  is  then  said  to  be 
a  function  of  the  first,  or  to  be  a  variable  dependent  on  the 
first,  which  is  distinguished  as  the  independent  variable. 

Instead  of  the  phrase  "  independent  variable,"  the  word 
argument  is  often  used,  and  the  dependent  variable  is  then 
called  a  function  of  its  argument. 

Thus,  if  we  consider  a  series  of  triangles,  all  of  the  same 
altitude,  the  area  of  any  triangle  is  a  function  of  its  base. 
The  distance  travelled  by  a  train  which  moves  at  a  constant 
speed  is  a  function  of  the  time  during  which  it  has  moved 
at  that  speed.  The  pressure  of  a  given  quantity  of  gas 
which  is  maintained  at  a  constant  temperature  is  a  function 
of  its  volume.  In  these  examples  the  independent  variable 
or  argument  is  the  base,  the  time,  the  volume ;  and  the 
dependent  variable  or  function  is  the  area,  the  distance,  the 
pressure  respectively. 

It  is  usually  a  mere  matter  of  convenience  which  of  the 
two  variables  is  considered  as  independent.  Thus  if  the 
time  at  which  the  train  passed  certain  stations  on  the 
railroad  were  the  subject  of  inquiry,  the  distance  would  be 
taken  as  the  independent  variable  and  the  time  as  the 
dependent. 

When  there  are  more  than  two  variables  it  may  happen 
that  when  definite  values  are  assigned  to  all  but  one  of 
them  the  value  of  that  one  becomes  determinate ;  this  one 
variable  is  then  said  to  be  a  function  of  or  to  be  dependent 
on  the  other  variables  which  are  called  the  independent 
variables  of  the  problem. 

Thus  the  area  of  a  triangle  is  a  function  of  the  base  and 
of  the  altitude  when  both  base  and  altitude  vary.  The 
pressure  of  a  given  quantity  of  gas  is  a  function  of  the 
volume  and  of  the  temperature  when  both  volume  and 
temperature  vary. 

Generally,  a  variable  y  is  said  to  be  a  function  of  another 
variable  x  when  to  every  value  of  x  there  corresponds  a  definite 
value  of  y  ;  a  variable  y  is  said  to  be  a  function  of  two  or  more 
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variables,  x,  u,  . . . ,  when  to  each  set  of  values  of  the  variables 
x,  u,  ...  there  corresponds  a  definite  value  of  y. 

While  it  is  important  to  keep  this  general  notion  of 
functional  dependence  in  mind,  it  will,  however,  be  usually 
assumed  that  a  function  is  denned  by  an  equation  (see 
§§  13,  26,  27,  28),  and  that  it  can  be  represented  by  a 
graph  (§  16).  This  assumption  implies  (i)  that  as  the 
argument  varies  continuously,  in  the  sense  explained  in 
§  9,  from  a  value  a  to  a  value  6,  the  function  also  varies 
continuously  from  a  value,  A  say,  to  a  value  B\  (ii)  that 
to  a  small  change  in  the  argument  corresponds  also  a  small 
change  in  the  function.  The  assumption  implies  a  good 
deal  more  than  what  is  here  stated,  but  at  this  stage  the 
student  is  earnestly  urged  to  pass  lightly  over  the  purely 
theoretical  difficulties  and  to  try  to  get  a  thorough  grasp 
of  the  fundamental  conceptions  of  variation  and  functional 
dependence  by  working  out  for  himself  the  graphical 
exercises  in  the  next  chapter.  He  will  find  by  trial  that, 
except  for  special  values  of  the  argument,  the  property  (ii) 
is  actually  found  in  all  the  ordinary  functions ;  the  pro- 

perty (i),  though  apparently  simpler,  is  really  much  harder 
to  demonstrate  mathematically.  A  mathematical  definition 
of  the  continuity  of  a  dependent  variable  will  be  given  in 
Chapter  V.,  §  44. 

The  student  should  notice  the  phrase  "  definite  value " 
or  "  determinate  value."  It  may  happen  that  the  analytical 
expression  for  a  function  ceases  to  have  meaning  for  certain 
values  of  the  argument ;  for  these  values,  therefore,  the 
function  is  not  defined.  Thus  the  function  (x2  —  !)/(#  —  1) 
is  defined  for  all  values  of  x,  except  the  value  1 ;  because 
when  x  =  l  the  expression  takes  the  form  0/0,  which  is 
absolutely  meaningless.  We  should  not  get  out  of  the 
difficulty  by  first  dividing  numerator  and  denominator  by 
x  —  l  and  then  putting  1  for  x  ;  because  in  dividing  by  x  —  1 
we  assume  that  a?  — 1  is  not  zero,  division  by  zero  being 
excluded  by  the  fundamental  laws  of  algebra. 

Again,  such  a  function  as  *J(l—x2)  is  only  defined  for 
values  of  x  that  are  numerically  less  than  or  equal  to  1 ;  in 
this  case  we  may  say  that  the  function  is  defined  for  values 
of  the  argument  in  the  range  from  —  1  to  +1  inclusive. 
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It  has  always  to  be  understood  in  reasoning  about  a 
function  that  only  those  values  of  the  argument  are  to  be 
considered  for  which  the  function  has  a  definite  value,  or, 
in  other  words,  for  which  the  function  is  well-defined. 

§  12.  Notation  for  Functions.  A  function  of  a  variable  is 
often  denoted  by  enclosing  the  variable  in  a  bracket  and 
prefixing  a  letter  ;  thus,  f(x),  F(x),  <j>(x)  denote  functions 
of  x.  The  letters  /,  F,  $  are  functional  symbols,  not 
multipliers;  the  symbol  f(x)  must  be  taken  as  a  whole, 

and  means  simply  "  some  function  of  x"  the  context  or 
some  explicit  statement  determining  which  particular 
function  is  meant.  For  different  functions  occurring  in 
the  same  investigation  different  functional  symbols  must 
of  course  be  used. 

f(a)  means  "  the  value  of  the  function  f(x)  when  x  has 
the  value  a,"  or  "  the  value  of  the  function  f(x)  when  x  is 
replaced  by  a."  Thus,  if  f(x)  denote  the  function 

then    /(0)=  -1;  /(!)=  -3; 

f(x2)  =  (z2)2  -  3x2 
A  similar  notation  is  used  for  functions  of  two  or  more 

variables  ;  thus,  f(x,  y),  F(p,  v),  0(#,  y,  z)  denote  functions 
of  x  and  y,  of  p  and  v,  of  x,  y,  and  z  respectively. 

If  /(^,2/) 

then  /(I,  -l)  = 

/(a,  6)  =  3a2-2a6- 

The  letters  should  be  separated  by  a  comma  to  indicate  that  there 
are  two  or  more  variables,  and  thus  distinguish  the  function  from  one 
in  which  the  argument  is  the  product  of  two  or  more  variables.  Thus, 
f(xy)  is  a  function  whose  argument  is  the  product  xy,  and  if  f(x)  be 

is 

§  13.  Explicit  and  Implicit  Functions.  One  variable  is 
usually  defined  as  a  function  of  another  by  an  equation. 
The  dependent  variable  is  called  an  explicit  function  of  its 
argument,  or  is  said  to  be  given  explicitly  when  the 
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equation  is  solved  for  the  dependent  variable  in  terms  of 
the  argument.     Thus 

y=f(x)-  s  =  0(0;  p 
are  equations  which  give  y,  s,  p  explicitly  as  functions  of 
x,  t,  v  respectively. 

When  the  equation  is  not  solved,  the  dependent  variable 
is  called  an  implicit  function  of  its  argument,  or  is  said 
to  be  given  implicitly.  Thus  y  is  given  as  an  implicit 
function  of  x  by  the  equation 

axy  -f-  bx  +  cy  +  d  =  0. 
This  equation  when  solved  for  y  in  terms  of  x  gives 

bx-\-d ax+c 

and  y  is  now  an  explicit  function  of  x. 

§  14.  Multiple-valued  and  Inverse  Functions.  When  a 
function  is  given  implicitly  by  an  equation,  it  may  happen 
that  to  one  value  of  the  one  variable  there  correspond  two 
or  more  values  of  the  other.  The  definition  of  a  function 
given  in  §  11  assumes  that  to  each  value  of  the  argument 
there  corresponds  but  one  value  of  the  function,  and  in 
reasoning  about  a  function  we  must  always  suppose  that  it 
has  but  one  value  for  each  value  of  its  argument;  in  other 
words,  that  the  function  is  single-valued.  When  the 
defining  equation  gives  more  than  one  value  of  the  one 
variable  for  one  value  of  the  other,  we  can  usually  consider 
the  equation  as  defining  a  function  that  is  made  up  of 
two  or  more  functions  each  of  which  is  single-valued; 
such  a  function  is  called  a  multiple-valued  function. 

Thus,  if  y  is  given  as  a  function  of  x  by  the  equation 

then 

and  to  each  value  of  x  there  correspond  two  values  of  y  ;  y  is  a  two- 
valued  function  of  x.     The  equation  really  gives  two  functions  of  #, 
namely, 

G.Cr 
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each  of  which  is  single-  valued,  and  defined  for  those  values  of  x  for 
which  2^2  is  greater  than  or  equal  to  1. 

Again,  the  equation 

defines  y  as  a  single-valued  function  of  x,  but  x  as  a  two-  valued  function 
of  y,  namely  x  is  either  »J(y—  1)  or  —  *J(y  —  1). 
When  the  graphical  representation  of  functions  is  considered,  it  will 

be  seen  that  the  separate  functions  represent  different  parts  of  the  one 
curve  (e.g.  §  20). 

The  equation  #2  —  y-\-  1  =0,  as  we  have  just  seen,  not  only 
defines  y  as  a  function  of  x  but  also  defines  #  as  a  function 
of  y.  More  generally,  the  equation  y—f(x),  which  defines 
y  explicitly  as  a  function  of  x,  also  defines  x  implicitly  as  a 
function  of  y\  the  two  functions  thus  defined  by  the  one 
equation  are  said  to  be  inverse  to  each  other. 

For  example  the  equation  y  =  xs  when  solved  for  x  gives 
x  =  £/y  and  thus  defines  two  functions  which  are  inverse  to 
each  other,  namely  the  cube  and  the  cube  root. 

It  is  usual  in  English  books  to  employ  /~  1  as  the  symbol 
of  the  function  inverse  to  that  denoted  by  the  symbol  /  so 
that 

when    = 
The  student  will  be  already  familiar  with  this  notation 

in  the  case  of  angles.  Thus  sm-1y  means,  not  I/sin?/  but, 
the  angle  (within  a  certain  range)  whose  sine  is  y  ;  and  just 

as  we  have  the  identity,  sm(sm~1y)  =  y,  so  we  have 

f(f-\y)}=y 
or,  as  the  identity  is  usually  written, 

//-"(»)=»• 
Again  it  may  well  happen  that  the  inverse  function  is 

not  single-  valued.  Thus,  sin^o;  may,  unless  some  restric- 
tion be  imposed,  be  any  one  of  an  infinite  number  of 

angles.  To  secure  definiteness  some  restriction  has  in 
such  cases  to  be  placed  on  the  range  of  the  variable  ; 
for  example,  sin^se  may  be  restricted  to  angles  lying 
between  —  -rr/2  and  +  7T/2  (inclusive  of  —  Tr/2  and  +  7T/2), 
and  then  sin"1^  is  single-  valued.  For  further  information, 
see  §§  25,  27,  28, 
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EXERCISES  I. 

1.  If  fa)  =  x*  -  x  +  1,  find  XO),  /(l),  /(  _  1),  and  show  that 

fa  +  h)  =fa)  +  (a*1  -  1)  h  +  3#A2  +  A3. 

2.  If  fa)  =  #2  —  #  -  2,  write  down  f(ax+  b). 

3.  If  f(x)  =  x?  —  5x  +  1  ,  write  down  /(#2),  f(x?),  /(sin  #)• 

What  is  the  value  of  /(  sin-  j  ? 

4.  If  fa)  =  logx,  show  that 

5.  If  </(^)=o^6+fe^4  +  c^2  +  o?,  show  thaty(  —  #)  is  equal 
When  f(—x)=f(x\  the  function  /(#)  is  called  an  even  function  of 

its  argument. 

6.  If  fa)  =  ax1  +  bx?  +  ex3  +  ofo,  show  that  f(  —  x}  is  equal  to  —fa"). 
When  f(—x}=  —f(x\  the  function  y^e)  is  called  an  odd  function 

of  its  argument. 

7.  Show  that  sin  x,  cosec  x,  tan  #,  cot  x  are  odd  functions  of  #,  and 
that  cos  x,  sec  #  are  even  functions  of  x. 

8.  Show  that  (e*  —  e~x)fx  is  an  even  function  of  x. 

9.  If  fa,  y)  =  a#2  +  fc.ry  +  c,  write  down  /(y,  a;),  /^,  x\  an 
,y       .  ,  «,       V 

10.  M  y.  /«).--_,  show  that  /(y) 

11.  Ify=/(^)=^  -,  show  that  tf=yfy). CtX/  ̂   Ct 

12.  If  f(x,y}=xz-y2,   show   that  f(cos6,  sin#)  =  cos20,   and  that 



CHAPTER  II. 

GRAPHS.    RATIONAL  FUNCTIONS. 
« 

§  15.  Object  of  the  Calculus.  Graphs.  Stated  in  the  most 
general  terms  the  object  of  the  Calculus  may  be  said  to  be  the 
study  of  the  changes  of  a  continuously  varying  function. 
The  investigation  of  the  rate  at  which  a  given  function  is 
changing  for  any  specified  value  of  its  argument  belongs  to 
the  Differential  Calculus ;  the  converse  problem  of  deter- 

mining the  amount  by  which  a  function  changes  for  a 
specified  change  in  its  argument,  when  the  rate  of  change 
of  the  function  is  known,  belongs  to  the  Integral  Calculus. 

An  almost  indispensable  aid  to  this  study  is  furnished  by 
the  graphical  representation  of  a  function,  and  for  the  sake 
of  those  students  who  may  have  had  little  or  no  experience 
in  graphical  work  a  few  hints  will  now  be  given  that  may 
be  of  service  to  them.  At  times  the  tracing  of  a  graph 
involves  a  good  deal  of  tedious  calculation,  but  the  student 
will  be  well  repaid  for  his  labour  by  the  insight  he  will 
obtain  into  the  fundamental  conceptions  of  variation  and 
continuity  of  a  function.  When  he  has  made  but  a  little 
progress  in  the  differential  calculus  he  will  find  several 
methods  of  reducing  the  necessary  calculations.  An  ex- 

tremely good  discussion  of  graphs  from  an  elementary 

standpoint  will  be  found  in  Professor  Chrystal's  Introduc- tion to  Algebra.  (London :  A.  &  C.  Black.) 

§  16.  Graph  of  x*2.  In  geometry  and  physics  we  frequently 
find  a  function  defined  by  an  equation  of  the  form  y  =  ex2 where  c  is  a  constant.  Thus  the  area  of  a  circle  varies  as 
the  square  on  the  radius;  the  distance  that  a  body  falls 
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from  rest,  the  resistance  of  the  air  being  neglected,  varies 
as  the  square  of  the  time  of  fall ;  the  heat  generated  by  an 
electric  current  in  a  given  time  varies  as  the  square  of  the 
current  in  the  circuit  and  so  on.  These  statements  when 
expressed  in  the  usual  algebraical  way  all  lead  to  an 
equation  of  the  above  form ;  x  denotes  the  number  of  units 
of  the  one  kind  of  quantity,  for  example  the  number  of  feet, 
or  the  number  of  seconds,  or  the  number  of  amperes;  y 
denotes  the  number  of  units  of  the  second  kind,  for  example 
the  number  of  square  feet,  or  the  number  of  linear  feet,  or 
the  number  of  ergs  (or  other  heat  units).  The  number  c  is  a 
constant,  that  is,  does  not  change  when  x  changes ;  it  is  not, 
however,  the  same  constant  in  the  different  problems ;  thus 
for  the  area  of  the  circle  C  =  TT,  for  the  falling  body  c  =  \g> 
for  the  electric  circuit  c  depends  on  the  resistance  and  on 
the  heat  unit. 

Suppose  for  simplicity  that  c  =  1  ;  the  more  general  case 
can  be  deduced  from  this  one.  Let  X'X,  Y'Y  be  two 
rectangular  axes  (Fig.  7),  OU,  OF  unit  segments  on  these 
axes.  Give  to  x  a  series  of  values,  and  from  the  equation 
y  =  x2  deduce  the  corresponding  values  of  y.  Associating 
each  value  of  x  with  the  corresponding  value  of  y,  we 
obtain  a  series  of  pairs  of  numbers,  and  each  pair  may 
be  taken  as  the  coordinates  of  a  point  in  the  plane  of  the 

diagram,  the  value  of  x  being  the  abscissa  and  the' 
corresponding  value  of  y  the  ordinate  of  the  point.  If  the 
values  given  to  x  form  an  increasing  or  a  decreasing  series 
of  numbers,  and  if  the  difference  between  any  two  con- 

secutive values  be  small  it  will  be  found  that  the  consecu- 
tive points  determined  on  the  diagram  lie  pretty  close  to 

each  other ;  the  curve  drawn  through  these  points  with  a 
free  hand  is  called  the  graph  of  the  function  x2. 

Tabulating  values,  we  have 
x 

'.',     1  ,       Ziy       o,      ...    JL ,   1  J.     ... 

y  |  0, -01,  -04,  -09,  ...  1,  1-21... 

x  |  -I,  --2,  --3,    ...  -1,  -11  .  ... 

y  I      -01,    -04,    -09,  ...       1,      1-21  ...' 
Take    OU,    0V  each,  say,   1   inch  and   plot  the  points 
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(0,  0),  (1,  -01)  ...  (-•!,  -01),  (--2,  -04)  ... ;   by  drawing  a 
curve  through  the  points  we  get  the  graph  of  x2  (Fig.  7). 

FIG.  7. 

Of  course  only  a  comparatively  small  number  of  points  can 
be  plotted,  but  by  actual  calculation  we  find  that  a  small 
change  in  x  produces  but  a  small  change  in  y;  we  are  there- 

fore warranted  in  concluding  that  an  ordinate  corresponding 
to  a  value  of  x  that  has  not  been  used  in  plotting  the  points 
but  that  lies  between  two  values  that  have  been  used  can 

differ  but  little  from  the  ordinate  of  the  graph  correspond- 
ing to  that  value  of  x.  When  there  is  any  room  for  doubt, 

a  few  more  values  of  y  at  closer  intervals  may  be  calculated. 
When  x  is  at  all  large,  y  will  be  much  larger  and  it 

becomes  impossible  to  plot  the  points  in  the  diagram ;  we 
must  then  try  to  follow  in  imagination  the  course  of  the 
graph  or  if  it  be  of  importance  to  know  the  form  of  the 
graph  for  such  values  we  may  take  the  unit  lines  OU,  0V 
smaller.  See  further  §  19. 
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§  17.  Equation  of  a  Curve.  Symmetry.  Turning  Values. 
Let  us  now  consider  the  graph  of  x2  from  the  purely  geo- 

metrical point  of  view. 
(i)  Equation  of  the  Curve.  A  point  in  the  plane  will  or 

will  not  be  on  the  graph  of  x2  according  as  the  ordinate  of 
the  point  is  or  is  not  equal  to  the  square  of  its  abscissa ;  in 
other  words,  the  condition  that  a  point  should  lie  on  the 
graph  is  that  the  coordinates  of  the  point  should  satisfy  the 
equation  y  =  x2  which  states  the  law  according  to  which  the 
curve  was  constructed.  This  equation  is  generally  called 
the  equation  of  the  curve,  and  the  curve  is  said  to  be  repre- 

sented by  the  equation ;  the  two  expressions  "  the  graph  of 
the  function  x2 "  and  "  the  curve  whose  equation  is  y  =  x2 '' 
(or  "  the  curve  represented  by  the  equation  y  =  x2  )  mean 
the  same  thing. 

More  generally,  "  the  graph  of  the  function  f(x) "'  and 
"the  curve  whose  equation  is  y=f(x)"  mean  the  same  thing, 
and  the  condition  that  a  point  should  lie  on  the  curve  or 
graph  is  that  its  coordinates  should  satisfy  the  equation 
y—f(x).  Thus  the  point  (  —  J,  J)  does,  and  the  point 
(~ii  v)  d°es  n°t>  tie  °n  the  graph  of  x2',  the  origin  lies  on 
the  graph  of  x2  but  not  on  that  of  x2-\-\. 

(ii)  Symmetry.  The  ordinate  of  the  point  on  the  graph 
of  x2  which  has  —  a  for  its  abscissa  is  equal  to  the  ordinate 
of  the  point  which  has  a  for  its  abscissa,  since  each  ordinate 
is  a2.  If  A  is  the  point  (a,  a2)  and  B  the  point  (  —  a,  a2) 
AB  will  be  perpendicular  to  OF  and  will  be  bisected  by 
OF;  that  is,  since  a  may  be  any  number  whatever,  the 
graph  is  symmetrical  about  0  F,  or  0  F  is  an  axis  of  sym- 

metry (cp.  §  6,  ex.  3).  In  plotting  the  graph  by  points 
therefore,  it  would  be  sufficient  to  calculate  y  from  positive 
values  of  x  alone ;  the  part  of  the  curve  to  the  left  of  0  F 
is  simply  the  reflection  in  0  F  of  the  part  to  the  right.  We 
might  imagine  the  plane  of  the  diagram  turned  through 
two  right  angles  about  OF  and  the  part  of  the  curve  origin- 

ally to  the  right  of  0  F  would  after  rotation  form  the  part 
to  the  left  of  0  F. 

The  graph  of  a  function  f(x)  is  not,  as  a  rule,  sym- 
metrical about  the  3; -axis  or  about  any  other  line ;  but  tne 

function  should  always  be  examined  for  symmetry  since 
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the  presence  of  symmetry  saves  labour.  The  graph  of  f(x) 
will  be  symmetrical  about  OF  if  f(x)  is  an  even  function 
(Exer.  I,  ex.  5),  for  in  that  case  the  ordinate/(  —  a)  of  the 
point  whose  abscissa  is  —a  is  equal  in  sign  and  in  magni- 

tude to  the  ordinate  f(a)  of  the  point  whose  abscissa  is  a. 
(iii)  Variation  of  the  Function.  Suppose  a  point  to  start 

from  0  and  move  along  the  graph.  At  first  the  ordinate  of 
the  point  increases  very  slowly ;  as  the  point  gets  nearer  to 
the  point  (1,  1)  its  ordinate  grows  more  rapidly;  when  it 
has  passed  (1,  1)  its  ordinate  grows  still  more  rapidly.  As 
x  increases  from  0  to  \  the  ordinate  increases  from  0  to  \ ; 
as  x  increases  from  J  to  1  the  ordinate  increases  from  \  to  1 ; 
as  x  increases  from  1  to  f  the  ordinate  increases  from  1  to  f- . 
Thus  for  the  same  increase  of  ̂   in  x  the  ordinate  increases 

40 

by  the  amounts  J,  f ,  -f-  respectively.  The  course  of  the 
graph  shows  very  clearly  that  after  a  certain  point  has 
been  reached  the  ordinate  grows  more  rapidly  than  the 
abscissa  while  near  the  origin  it  grows  less  rapidly;  the 
graph  thus  gives  a  vivid  picture  of  the  variation  of  the 
function  x2  represented  by  the  ordinate. 

(iv)  Turning  Values.  If  a  point  move  along  the  graph 
from  any  position  on  the  left  of  0  Y  to  any  position  on  the 
right  the  ordinate  of  the  point  decreases  till  the  point 
reaches  0  and  then  increases.  The  point  0  where  the  ordi- 

nate ceases  to  decrease  and  begins  to  increase  is  called  a 
turning  point  of  the  graph,  and  by  analogy  the  value 
of  the  function  x2  at  0,  namely  zero,  is  called  a  turning 
value  of  the  function.  The  turning  value  is  in  this  case  a 
minimum  value  of  the  function  or  ordinate. 

In  general  those  points  on  a  graph  at  which  the  ordinate 
ceases  to  decrease  and  begins  to  increase,  or  else  ceases  to 
increase  and  begins  to  decrease  are  called  turning  points  of 
the  graph,  and  the  corresponding  values  of  the  function  turn- 

ing values ;  the  turning  values  are  respectively  minima  and 
maxima  values  of  the  function,  that  is  values  respectively 
less  and  greater  than  any  other  values  of  the  function 
in  their  neighbourhood. 

§  18.  Graph  of  ex2.  We  might  by  assigning  values  to  x, 
and  calculating  the  corresponding  values  of  y  from  the 
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equation  y  =  cx2  construct  the  graph  of  ex2]  it  will  be 
instructive  to  consider  another  method  of  deriving  the 

graph. 
First  let  c  be  positive.  Let  any  ordinate  of  the  graph  of 

x2  be  denoted  by  y1  and  the  ordinate  of  the  graph  of  cxz  for 
the  same  value  of  a?  by  yz  ;  then  y2  =  cyv  because  yl  =  x2, 
y2  =  cx2  and  x  is  the  same  number  in  both  equations.  The 
two  ordinates  may  be  called  "  corresponding  ordinates. 

" 

Hence  to  obtain  any  ordinate  of  the  graph  of  ex2  we 
have  only  to  multiply  the  corresponding  ordinate  of  that 
of  x2  by  c;  in  other  words,  if  MP  is  any  ordinate  of  the 
graph  of  x2  divide  MP  or  MP  produced  at  F  so  that  MP' 
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is  to  MP  as  c  to  1  and  P'  will  be  a  point  on  the  graph  of 

ex2 The  upper  dotted  curve  (Fig.  8)  is  the  graph  of  2x2,  and 
is  obtained  by  doubling  each  ordinate  of  the  graph  of  x2 
(full  curve).  It  will  be  noticed  that  the  general  character 
of  the  two  graphs  is  the  same ;  the  graph  of  2o;2  however 
recedes  more  rapidly  from  X'X  than  does  that  of  x2  and  is 
steeper.  In  general,  the  graph  of  ex2  lies  above  or  below 
that  of  x2  according  as  c  is  greater  or  less  than  1 . 

Next  let  c  be  negative,  say  —  2.  The  graph  of  —  2x2  may 
be  got  from  that  of  2x2  by  reflection  in  X'X,  or  by  rotating 
the  graph  of  2x2  through  two  right  angles  about  X'X ;  for 
the  ordinates  of  the  graph  of  —  2x2  are  simply  those  of  the 
graph  of  2x2  with  signs  changed.  The  lower  dotted  curve 
is  the  graph  of  —  2#2;  0  is  a  turning  point  of  the  graph 
and  zero  a  maximum  value  of  the  function  —  2x2,  the  value 
being  taken  algebraically. 

§  19.  Scale  Units.  Let  us  now  consider  the  graph  of  ex2  as 
the  geometrical  representation  of  the  law  of  falling  bodies ; 
c  may  be  taken  as  16  when  the  foot  and  the  second  are  the 
units  of  space  and  time.  The  graph  shows  clearly  how 
rapidly  the  distance  fallen  increases  with  the  time,  for  the 
curve  moves  rapidly  away  from  the  axis  OX ;  in  this  case 
the  part  of  the  curve  to  the  left  of  OF  does  not  belong 
to  the  representation  since  negative  values  of  x  are  not 
considered. 

But  if  OU  and  0V  are,  as  has  been  supposed,  of  the 
same  length  it  will  be  impossible  to  represent  the  connection 
between  the  distance  fallen  and  the  time  of  fall,  even  for 
values  of  #  up  to  1,  within  the  limits  of  an  ordinary  sheet 
unless  0  U  and  0  V  are  both  very  small.  The  remedy  is  to 
choose  these  segments  of  different  lengths.  The  foot  and 
the  second  are  magnitudes  of  different  kinds  and  there  is  no 
necessity  therefore  that  the  segment  which  represents 
1  second  should  be  of  the  same  length  as  that  which  repre- 

sents 1  foot,  nor  is  it  implied  in  the  definition  of  the  coordi- 
nates of  a  point  that  0  U  and  0  V  should  be  of  the  same 

length.  M  being  the  foot  of  the  perpendicular  from  P  on 

X'X,  the  coordinates  of  P  are  x,  y  if  OM  =  xOU,  MP^yOV 
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and  P  is  definitely  determined  whether  0  If,  0  V  are  of  the 
same  length  or  not. 

In  the  case  of  y  =  16#2  we  might  therefore  take  OU  equal 
to  1  inch  and  0  V  equal,  say  to  TVth  of  an  inch  ;  an  abscissa 
1  inch  long  would  therefore  represent  1  second  while  an 
ordinate  1  inch  long  would  represent  1  6  feet  ;  an  abscissa 
2  inches  long  would  represent  2  seconds,  an  ordinate  2  inches 
long  would  represent  32  feet  and  so  on.    A  similar  choice 
would   in   other   cases    bring   the   graph  within   manage- 

able size. 
But  even  when  the  two  magnitudes  whose  connection  is 

represented  by  a  graph  are  of  the  same  kind  it  is  often 
advisable  to  have  units  of  different  lengths.  The  value  of 
the  graph  will  not  be  thereby  impaired  ;  the  purpose  of  the 
graph  is  to  show  to  the  eye  how  one  magnitude  changes  as 
another  with  which  it  is  connected  changes,  and  the  ratio 
of  the  two  lines,  say  MP  and  NQ,  which  represent  any  two 
values  of  the  first  magnitude  is  independent  of  the  size 
of  the  line  which  represents  the  unit  magnitude.  For 

where  0  V  represents  the  unit  magnitude  and  y-fiV,  y^ 
the  two  values  considered. 

Thus,  in  a  contour  road  map,  if  the  heights  were  represented  on  the 
same  scale  as  the  horizontal  distances,  it  would  be  difficult  to  trace  the 
character  of  the  road  ;  hence  the  heights  are  exaggerated  by  using  a 
much  larger  unit  for  the  vertical  than  for  the  horizontal  distances.  If 
the  graph  is  to  be  used  to  determine  actual  heights,  the  scale  of  the 
drawing  must  of  course  be  given. 

§  20.  Coordinate  Geometry.  Many  of  the  properties  -of  a 
curve  can  be  most  simply  investigated  by  using  the 
equation  of  the  curve  ;  the  study  of  curves  from  this  point 
of  view  is  the  subject  of  coordinate  geometry. 

On  the  one  hand  the  curve  may  be  defined  by  some 
geometrical  property;  the  law  of  the  curve  is  then 
expressed  in  the  equation  of  the  curve.  Thus  the  law  of 
the  circle  is  that  every  point  on  it  is  at  the  same  distance 
from  the  centre.  Now,  taking  rectangular  axes,  let  0  be 
the  centre  of  the  circle,  c  its  radius  and  P  (x,  y)  any  point 
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on  it.      Then  (§  7)  OP2  is  equal  to  x2  +  y2  ;  also  OP  is  equal to  c.     Hence  „ 
—  c2>  .............................  .(1) 

and  this  equation  is  true  for  the  abscissa  and  the  ordinate 
of  every  point  on  the  circle  but  of  no  other  point.  As  P 
moves  round  the  circle,  x  and  y  change  in  value,  but  always 
the  sum  of  their  squares  is  equal  to  c2.  Equation  (1)  is 
therefore  called  the  equation  of  the  circle  with  radius  c. 

On  the  other  hand  an  equation  between  x  and  y  defines 
y  as  a  function  of  x,  and  the  graph  of  this  function  may  be 
plotted  point  by  point  ;  numerous  examples  will  be  found 
in  later  articles.  As  a  simple  case  we  might  consider  the 

equation  y  =  x2  which  gives  the  graph  of  §  16  ;  or  we  might 
take  equation  (1).  In  that  case  y  is  defined  as  a  two- 
valued  function  of  x,y  =  ±*J(c2  —  x2),  for  values  of  x  from 
x=  —  c  to  #  =  +  c  ;  clearly  if  x  is  numerically  greater  than  c 
y  is  imaginary.  The  graph  will  be  symmetric  about 

the  axis  X'X,  and  by  considering  the  inverse  function 
x  =  ±  ̂ /(c2  —  y2),  we  see  that  the  graph  is  also  symmetric 
about  YY.  We  might  then  plot  points  for  which  x  and  y 
are  both  positive  and  thus  arrive  at  the  form  of  the  graph. 
The  two  functions  +x/(c2  —  a;2)  and  —  ̂ /(c2  —  x2)  are  repre- 

sented respectively  by  the  semicircles  above  and  below  the 

In  later  sections  it  will  be  seen  how  the  geometrical 
properties  of  the  graphs  of  the  simpler  functions  can  be 
deduced  from  the  equations  (see  §  26). 

If  in  plotting  the  graph  of  the  function  defined  by 
equation  (1)  the  units  OU,  OF  are  of  different  lengths  the 
graph  will  seem  to  be  not  a  circle,  but  an  ellipse  (Exer.  V.  4)  ; 
if  OF  be,  say,  half  of  OU,  each  ordinate  will  be  only  half 
the  actual  length  of  the  ordinate  of  the  circle.  So  long  as 
OU,  OF  are  of  the  same  length  the  shape  will  not  be 
altered;  a  change  in  the  size  of  the  units,  so  long  as  the 
units  remain  of  equal  length,  only  enlarges  or  reduces  the 
figure  since  all  lines  are  altered  in  the  same  proportion. 

Even  in  studying  the  geometrical  properties  of  curves, 
however,  it  is  often  necessary  to  choose  units  of  different 
lengths  in  order  to  get  the  curve  represented  on  a  sheet  of 
reasonable  size;  it  must  then  be  borne  in  mind  that  the 
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graph  will  only  show  the  ratios  and  not  the  actual  lengths 
of  the  lines  whose  measures  are  the  numbers  taken  as  the 
ordinates. 

In  all  cases  the  units  should  be  chosen  so  as  to  make  the 
graph  as  large  as  possible;  a  diminutive  graph  usually 
defeats  the  end  of  its  existence. 

EXERCISES   II. 

1.  Are  the  points  4(J,  1),  £(£,  £),  C(-±,  J),  D(5,  100),  ̂ (3,  40)  on 
the  curve  whose  equation  is  y  =  4^  ? 

2.  Is  the  ?/-axis  Y'O  Y  an  axis  of  symmetry  for  the  graph  of  any  of 
the  functions  — 

(i)  gtf2  -  3#*  ;     (ii)  %x?  -  S^6  ;     (iii)  #2w  ;     (iv)  x?n+\n  integral)  ; 

(v)  (^+l)/(#2+l);       (vi)  l/(#2-hl);        (vii)  a  +  bx*  +  ex*  +  dot*  ? 
Does  the  point  (1,  -  1)  lie  on  any  of  the  graphs  ?  What  must  be 

the  value  of  a  if  the  origin  lies  on  the  graph  of  (vii)  ? 

3.  Trace   the   graphs   of  the   following  functions  for  -w^lues  of  x 
between  —2  and  +2,  and  find  the  turning  points  of  the  graphs  and 
the   abscissae    of   the    points    where    the    graphs   cross   the   axis  of 
abscissae  — 

(i)  x*  -  1  ;  (ii)  2#2  -  1  ;  (iii)    -  2^2  +  1  ; 
(iv)  3#-2#2;  (v)  l-#-tf2;  (vi)   -  1  +  3#  -  2#2. 
How  may  the  graphs  (i),  (ii),  (iii)  be  derived  without  calculation 

from  the  graphs  of  #2,  2#2,  —  2#2  respectively  ?  How  may  the  graph 
of  (iii)  be  derived  from  that  of  (ii),  and  the  graph  of  (vi)  from  that 
of  (iv)  ? 

4.  Having  given  the  graph  of  the  function  /(#),  show  how  to  obtain 
the  roots  of  the  equation  f(x)  =  0.     Illustrate  from  the  graphs  of  ex.  3. 

[Let  a  be  the  abscissa  of  any  point  A  on  the  graph  ;  by  the 
nature  of  a  graph  the  ordinate  of  A  is  /(a).  Hence,  if  /(a)  =  0,  A  must 
be  on  the  axis  of  abscissae  ;  but  if  /(a)=0,  then  a  is  a  root  of  the 
equation  /(#•)  =  0.  Therefore  the  roots  of  the  equation  f(x)  =  0  are  the 
abscissae  of  the  points  where  the  graph  of  /(#)  crosses  the  axis  of 
abscissae.] 

5.  Trace  the  curve  whose  equation  is  y=x*. 
To  every  point  P  on  the  curve  there  corresponds  another  point 

P  on  the  curve  which  is  symmetric  to  P  with  respect  to  the  origin 

(§  6,  ex.  3.)  ;  for  if  P  is  the  point  (a,  6),  P'  is  the  point  (  -  a,  -  6),  and 
when  6  =  a3  then  also  —  b=(  —  a)3.  When,  as  in  this  case,  the  equation 
is  not  altered  by  replacing  x  and  y  by  —  x  and  —  y  respectively,  the 
origin  is  called  a  centre  of  symmetry  of  the  curve. 

6.  On  which  of  the  curves  given  by  the  following  equations  is  the 
origin  a  centre  of  symmetry— 

(i)  y  =  axz-\-bd>  ;    (ii)  y=op  ;    (iii)  y=#2  ;    (iv) 
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§  21.  The  Linear  Function.  If  any  point  be  taken  on  the 
bisector  of  the  angle  XO  F,  the  ordinate  of  the  point  will  be 
equal  both  numerically  and  in  sign  to  the  abscissa  of  the 
point ;  but  if  any  point  not  on  that  bisector  be  taken  its 
ordinate  will  not  be  equal  both  numerically  and  in  sign  to 
its  abscissa.  Hence  the  bisector  has  for  equation  y  =  x\  the 
bisector  is  the  graph  of  the  function  x. 

Similarly  y  =  —  x  is  the  equation  of  the  bisector  of  the 

angle  VOX'.  " 

If  P  is  any  point  on  the  straight  line  BOA  (Fig.  9)  and 
if  x,  y  are  the  coordinates  of  P,  then  y  =  x  tan  X  OA  ;  this 
equation  is  true  whether  the  coordinates  of  P  are  both 
positive  or  both  negative  as  when  P  has  the  position  Pr 
Conversely,  if  the  point  is  not  on  BOA  the  equation 
y—x  tan  XOA  will  not  be  true  for  the  coordinates  of 
the  point.  Hence  the  straight  line  BOA  has  for  its  equa- 

tion y  =  x  tan  XOA  ;  BOA  is  the  graph  of  the  function 
x  tan  XOA. 

Similarly  y  =  x  tan  XOA'  is  the  equation  of  the  straight 
line  BOA',  the  angle  XOA  and  tan  XOA  are  both 
negative. 

Hence  the  equation  y  =  ax  always  represents  a  straight 
line  through  0,  the  origin  of  coordinates,  and  a  is  the 
tangent  of  the  angle  which  the  line  makes  with  OX, 
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If  through  G  a  line  DCE  be  drawn  parallel  to  BOA  then 

ME  =  MP  +  PE  =  OM  tan  XOA  +  00 

MJ)  =  M^Pl  +  PJ)  =  OM1  tan  XOA  +  00 

by  the  rule  for  addition  of  steps  (§  2). 
Hence  if  x}  y  are  the  coordinates  of  E  and  00  is  equal  to  b 

y  =  x  tan  XOA  +  b 
and  the  same  equation  holds  if  x,  y  instead  of  being  the 
coordinates  of  E  are  the  coordinates  of  D  or  of  any  other 
point  on  DE. 

If  0  were  taken  on  OF',  the  only  difference  would  be 
that  its  measure  b  would  be  a  negative  number. 

The  graph  of  any  function  of  the  form  ax  +  b  is  therefore 
a  straight  line ;  a  is  the  tangent  of  the  angle  which  the  line 
makes  with  OX  and  b  is  the  distance  from  0  of  the  point 
where  the  line  crosses  the  axis  0  Y,  or  as  it  is  usually  called 
the  intercept  on  OF.  (See  also  Exer.  III.,  ex.  2.) 

If  a  =  0,  the  line  is  parallel  to  the  axis  OX  if  b  is  not  also 
zero ;  if  both  a  and  b  are  zero  the  line  is  the  axis  itself. 

The  equation  x  =  c  represents  a  line  parallel  to  the  axis 
OF  if  G  is  not  zero;  if  c  =  0,  the  equation  represents  the 

axis  F'F.  In  this  case,  the  line  is  perpendicular  to  OX  and 
the  tangent  of  the  angle  it  makes  with  OX  is  infinite. 

Since  the  graph  of  ax  +  b  is  a  straight  line,  ax  +  b  is  often 
called  a  linear  function  of  its  argument  x. 

It  is  important  that  the  student  should  attach  a  definite 

meaning  to  the  phrase  "the  angle  that  a  straight  line  makes 
with  the  axis  of  abscissae."  We  make  the  following  con- 

vention which  will  save  constant  repetitions ;  the  line  is 
understood  not  to  be  perpendicular  to  OX.  Through  0 
draw  a  parallel  to  the  given  line ;  by  the  angle  which  the 
given  line  makes  with  OX  is  meant  the  acute  angle  (positive 
or  negative)  through  which  a  line  coinciding  with  OX 

(not  OX')  must  be  turned  till  it  coincides  with  the  parallel 
through  0 :  or,  what  amounts  to  the  same  thing,  it  is  the 
acute  angle  (positive  or  negative)  through  which  a  line 
drawn  from  any  point  on  the  given  line  parallel  to  OX 
(not  OX')  must  be  turned  till  it  coincides  with  the  given line, 
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Thus  the  angle  which  DE  makes  with  OX  is  XOA  or 
AGE,  if  GA  be  parallel  to  OX  ;  this  angle  is  positive.  The 

angle  which  B'A'  makes  with  OX  is  XOA'  and  is  negative. 
§  22.  Gradient.  The  gradient  of  a  line  is  the  tangent  of 

the  angle  the  line  makes  with  the  axis  of  abscissae  OX; 
the  gradient  is  therefore  positive  or  negative  according  as 

the  angle  is  positive  or  negative.  Instead  of  "gradient" 
the  word  "slope"  is  used  by  some  writers;  but  the  term 
"  gradient  "  is  already  well  established  in  this  meaning. 

If  we  suppose  the  axis  of  abscissae  OX  to  be  horizontal 
and  the  axis  of  ordinates  OF  vertical,  the  positive  directions 
being  to  the  right  and  upwards  respectively,  we  can 
describe  the  motion  of  a  point  which  moves  along  the 

line  briefly  thus:  as  the  projection  of  the  point  on  X'X 
moves  to  the  right  or  to  the  left  the  point  itself  moves 
upwards  or  downwards  ;  or,  if  the  coordinates  of  the  point 
be  (x,  y),  we  may  say,  as  the  point  x  moves  to  the  right  or 
left  the  point  (x,  y)  moves  upwards  or  downwards. 

When,  as  on  the  straight  line  DE,  the  gradient  is  positive 
we  see  that  as  the  point  x  moves  to  the  right  the  point 
(x,  y)  on  the  line  moves  upwards  ;  but  when,  as  on  the 

straight  line  B'A',  the  gradient  is  negative,  as  the  point  x 
moves  to  the  right  the  point  (x,  y)  on  the  line  moves  down- 

wards. Of  course  if  the  direction  of  motion  of  the  point  x 

be  reversed  so  is  that  of  the  point  (x,  y).  Instead  of  "  the 
point  (x,  y)  on  a  line  or  curve  "  we  shall  sometimes  say 
simply  "  the  graphic  point  "  meaning  the  point  supposed  to 
be  describing  the  graph. 

EXERCISES    III. 

1.  Find  the  gradients  of  and  the  intercepts  on  the  axis  of  y  made  by 
the  lines  whose  equations  are 

(i)#=-.r+2;      (ii)y  =  f.r-l;      (iii)  y=  -\x-\. 
Trace  the  lines  on  a  diagram. 

2.  Show  that  the  equation 

represents  a  straight  line,  and  find  its  gradient. 
The  equation  may  be  written  y=-&x+\\  it  therefore  represents 

a  straight  line  with  the  gradient  —  f  . 
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In  the  same  way  it  may  be  seen  that  the  equation 

ax  +  by  +  c=0  ....................................  (i) 

represents  a  straight  line.  If  6  is  not  zero,  the  gradient  is  —  a/6.  If 
b  is  zero,  the  equation  becomes  x  —  —c\a  and  represents  a  straight  line 
perpendicular  to  the  #-axis  ;  in  this  case  the  gradient  is  infinite. 

If  «,  b  are  both  different  from  zero,  and  if  the  line  cut  the  #-axis 
at  A  and  the  #-axis  at  B,  then  OA=-c/a,  OB=-c/b.  For  the 
coordinates  of  A  are  (OA,  0),  and  since  these  satisfy  (i),  we  must  have 

aOA  +  c  =  0     or     OA=—c/a. 
Similarly  the  coordinates  of  B  are  (0,  OB),  and  therefore  bOB  +  c=Q. 

OA,  OB  are  called  the  intercepts  made  by  the  line  on  the  coordi- 
nate axes  ;  of  course,  the  simplest  method  of  graphing  the  straight 

line  is  to  find  the  intercepts  OA,  OB,  and  to  join  AB. 

3.  Determine  whether  any  or  all  of  the  points  4(1,  1),  2?(2,  —  1), 
(7(9,  —  4)  lie  on  the  straight  line  given  by  the  equation 

4.  Show  that  whatever  constant  value  a  may  have  the  point  (#1? 
will  lie  on  the  line  given  by  the  equation 

y-yi=o{x-xl.) 
The  equation  is  true  when  for  x  we  put  xl  and  for  y  we  put 

and  this  is  the  only  condition  required. 

5.  Determine  the  constant  a  in  Ex.  4  so  that  the  point  (#2>  ̂ 2)  mav 
lie  on  the  line. 

.    Since  the  coordinates  (x%  y2)  must  satisfy  the  equation,  we  find 

and  therefore  the  equation  of  the  line  through  the  points  (#1}  y^)t 
(*z,  y2)  is 

y*-y\f        \        4-i y-V  .=22  —  'Z±(x-  X  ,). #2-^1 

6.  Find  the  equations  of  the  lines  through  the  following  pairs  of 
P°ints—  L  -o.->c   - 

(i)  (1,  2X  (2,  1)  ;  (ii)(-l,2),(2,    -1); 

(iii)  (0,  0),  (1  ,  -  1)  ;  (iv)  (0,  3),  (  -  2,  0).  *  *  -«j  +  Vfc 
7.  Find  the  equation  of  the  line  with  the  gradient  2  passing  through 

the  point  (3,  1). 

8.  Find  the  equation  of  the  line  with  the  gradient  c  passing  through 
the  point  (a,  6). 

9.  Find  the  coordinates  of  the  point  of  intersection  of  the  two  lines 
given  by  the  equations 

(i)  x  +  2y  =  3  ;  (ii)  3#  +y  =  4. 
Since  the  point  of  intersection  lies  on  both  lines,  its  coordinates 

must  satisfy  both  equations  (i)  and  (ii).     Solving  these  as  simultaneous 
G.C.  c 
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equations,  we  get  for  the  required  coordinates  #  =  1,  y=\.     Verify  the 
result  by  means  of  a  diagram. 

10.  Draw  on  one  diagram  the  curves  whose  equations  are 
237-f?/  — 3  =  0,     y=.r2, 

and  find  by  measurement  the  coordinates  of  the  points  of  intersection. 
Verify  by  solving  the  equations  as  simultaneous  equations. 

11.  Show  that   the   roots   of   the   equation   2#-f  ̂ 2-3  =  0  are   the 
abscissae  of  the  points  of  intersection  of  the  curves  of  ex.  10. 

12.  Show  that  the  roots  of  the  equation  f(x}  =  c  are  the  abscissae  of 
the  points  of  intersection  of  the  curves  given  by 

Compare  Exer.  II.  ex.  4. 

§  23.  Eational  Functions.     An  expression  of  the  form n   (1) 

where  the  coefficients  a,  b,  c, .. .  are  constants  and  the 
indices  of  the  powers  of  x  are  all  positive  integers  of  which 
n  is  the  greatest  is  called  a  Rational  Integral  Function  of 
x  of  degree  n. 

The  quotient  of  two  rational  integral  functions  of  x  is 
called  a  Rational  Fractional  Function  of  x. 

It  is  known  from  the  theory  of  equations  that  an 
expression  of  the  form  (1)  will  in  general  vanish  for  n 
values  of  x ;  hence  the  graph  of  the  function  (1)  will  in 
general  cross  the  #-axis  n  times.  (See  Exer.  II.  ex.  4). 
Some  of  the  values  of  x  for  which  (1)  vanishes  may  how- 

ever be  imaginary  and  for  such  values  of  the  abscissa  there 
are  no  real  points  on  the  axis  so  that  the  graph  may  not  have 
as  many  as  n  crossings.  When  two  of  the  values  of  x  for 
which  (1)  vanishes  are  equal,  the  student  will  find  that  the 
graph  touches  the  #-axis  at  the  corresponding  point. 

Graphs  of  the  even  powers.  The  graphs  xof  the  even 
powers  of  x,  x2,  x*  ...  are  all  of  the  same  general  character ; 
they  touch  the  #-axis  at  0  and  have  the  ?/-axis  as  an  axis 
of  symmetry.  The  greater  the  index  however,  the  slower 
does  the  graph  recede  from  the  cc-axis  near  the  origin ;  on 
the  other  hand,  the  greater  the  index  the  more  rapidly 
does  the  graphic  point  move  upwards  when  x  is  greater 

than  1.  The  general  shape  of  the  graphs  of  ax2,  ax*, . . . 
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can  be  seen  by  dividing  the  corresponding  ordinates  of  the 
graphs  of  x2,  x*  ...  in  the  ratio  of  a  to  1,  as  in  §  18. 

Graphs  of  the  Odd  Powers.  The  graphs  of  the  odd 
powers  higher  than  the  first,  #3,  x5, . . .  touch  the  o>axis  at 
the  origin  but  they  do  not  have  the  y-axis  as  an  axis  of 
symmetry.  For  these  the  origin  is  a  centre  of  symmetry. 
(Exer.  II.  5).  For  positive  values  of  x  the  graphs  resemble 
those  of  the  even  powers ;  near  the  origin  the  graph  of  #8 
is  flatter  than  that  of  x2, 
not  so  flat  as  that  of  a;4,  Y 
while  for  values  of  x 
greater  than  1  the  graph 
of  x3  lies  above  that  of 
x2,  below  that  of  X*. 

To  construct  the  graph 
of  x3  for  negative  values 
of  x,  take  a  point  P  on 
the  graph  of  the  posi- 

tive values  of  x,  produce 
PO  backwards  its  own 

length  to  P',  and  P'  will 
be  the  point  on  the  graph 
symmetric  to  P  (Fig.  10).  The  same  construction  holds  for 
any  curve  that  has  the  origin  for  a  centre  of  symmetry. 

The  graphs  of  the  odd  powers  thus  both  touch  and  cross 
the  #-axis  at  0,  bending  away  from  the  axis  in  opposite 
directions  on  opposite  sides  of  0  (Fig.  10). 

DEFINITION.  A  point  such  as  0  where  the  curve  crosses  its 
tangent  and  bends  away  from  it  in  opposite  directions  on 
opposite  sides  is  called  a  Point  of  Inflexion,  and  the  tangent 
at  the  point  is  called  an  Inflexional  Tangent 

The  student  should  plot  on  the  same  diagram  for  values 
of  x  between  —1  and  +1,  using  a  pretty  large  unit,  the 
graphs  of  x2,  x3,  x4,  x5.  He  will  gain  useful  ideas  of  the 
relative  magnitude  of  the  powers  of  x  when  a?  is  a  proper 
fraction.  He  will  also  be  able  to  deduce  the  general  course 
of  the  graph  of  such  a  function  as  x%  for  values  of  x 
between  0  and  1 ;  the  graph  will  lie  below  that  of  x2,  but 
above  that  of  XB,  If  a?  be  negative  x$  is  imaginary,  and 
there  is  no  part  of  the  graph  to  the  left  of  the  £/-axis. 
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In  the  same  way  by  plotting  the  graphs  of  the  same 
functions  for  values  of  x  between  1  and  3,  using  a  small 
unit,  he  will  see  how  rapidly  the  higher  powers  of  x 
increase  when  x  is  greater  than  1.  He  can  readily  verify 
the  important  principle  that  the  term  of  highest  degree  in  a 
rational  integral  function  will  for  sufficiently  large  values 
of  x  be  numerically  greater  than  the  sum  of  all  the  other 
terms,  and  will  therefore  determine  the  sign  of  the  function 
for  large  values  of  x. 

The  construction  of  the  graph  of  the  general  rational 
integral  function  is  usually  laborious  ;  when  the  student  is 
able  to  differentiate  a  function  he  will  find  that  the  labour 

may  be  considerably  reduced. 
As  an  example  take  the  function  f(x),  where 

Write  f(x)  =  *3l  -     +      - 
\      x2    x3/ 

Now,  if  x  is  numerically  equal  to  or  greater  than  2  the 
expression  within  the  bracket  will  be  positive,  as  a  little 
consideration  shows.  Hence  if  x  is  positive  and  equal  to  or 
greater  than  2,  f(x)  will  be  positive  ;  if  x  is  negative  and 
numerically  equal  to  or  greater  than  2,  f(x)  will  be 

negative,  since  x3  will  be  negative  and  the  expression 
within  the  bracket  positive.  The  graph  must  therefore 
cross  the  cc-axis  once  at  least  between  the  points  on  that 
axis  at  which  x  is  —  2  and  2  respectively. 

Examining  further,  we  find 

/(-2)=-l;  /(-!)=  +3;  /(!)=-!;  /(2)=+8, 

and  therefore  the  graph  must  cross  thrice,  namely,  between 
the  points  —2  and  —1,  —1  and  1,  1  and  2;  since  the 
equation  is  of  the  third  degree,  the  graph  cannot  cross 
more  than  thrice.  There  will  thus  be  two  turning  points. 

Again,  /(-1'9)=  -159, 

/(-I  -8)  =+  '568, 

so  that  the  graph  crosses  between  —  1*9  and  —1'8. 
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When  oj.=  -l-88,  /(«•)=  -'005, 

so  that  the  graph  crosses  very  nearly  where  x=  —  1'88,  and 
this  value  is  an  approximate  root  of  the  equation 

In  the  same  way  it  may  be  found  that  the  other  two 

roots  are  approximately  '35  and  1'53. 
V 

The  turning  points  occur  where  x  =  —  1  and  x  —  1 ,  and 
the  calculation  of  a  few  values  of  f(x)  shows  that  the  graph 
is  of  the  form  shown  in  Fig.  11. 

§  24.  Asymptotes.  The  simplest  example  of  a  rational 
fractional  function  is  l/x. 
When  x  is  small  and  positive,  l/x  is  large  and  positive, 

and  as  x  tends  towards  zero  l/x  becomes  extremely  large 
or,  in  the  usual  language,  l/x  tends  toward  infinity;  thus 
when  x  takes  the  values  *1,  *01,  '001, ...  l/x  takes  the  values 
10,  100,  1000, ...  respectively.  Hence  as  the  point  x  moves 
from  the  right  toward  0  till  it  all  but  coincides  with  0  the 
graphic  point  moves  upward  and  recedes  to  a  very  great 
distance  from  the  #-axis  while  approaching  very  close  to 
the  y-axis ;  when  x  is  zero,  that  is  when  the  point  x 
coincides  with  0,  the  graphic  point  may  be  said  to  be  at 
infinity.  In  this  case  the  graph  is  said  to  approach  the 
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positive  end  of  the  ̂ /-axis  asymptotically,  or  to  have  the 
2/-axis  as  an  asymptote. 

In  the  same  way  it  may  be  seen  that  when  x  is  very 
large  and  positive  l/x  is  very  small  and  positive;  the 
graph  approaches  the  positive  end  of  the  #-axis  asymp- 
totically. 

The  graph  is  obviously  symmetrical  with  respect  to  the 
origin,  and  approaches  both  ends  of  both  coordinate  axes 
asymptotically  (Fig.  12). 

DEFINITION.  In  general,  when  a  curve  has  a  branch 
extending  to  infinity,  the  branch  is  said  to  approach  a 
straight  line  asymptotically,  or  to  have  the  straight  line 
for  an  asymptote,  if  as  a  point  moves  off  to  infinity  along 
the  branch  the  distance  from  the  point  to  the  straight  line 
tends  towards  zero  as  a  limit,  that  is,  if  as  the  point  moves 
off  to  infinity  the  distance  becomes  and  remains  less  than 
any  given  length. 

If  x  —  a  be  a  factor  of  the  denominator  of  a  rational 
fractional  function  of  x  in  its  lowest  terms,  the  function 
will  tend  towards  infinity  as  x  tends  towards  a  and  the 
line  whose  equation  is  x  =  a  will  be  an  asymptote.  If  as  x 
tends  towards  infinity  the  function  y  tends  to  a  finite  value 
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/3  then  y  =  /3  will  be  the  equation  of  an  asymptote.  These 
asymptotes  are  parallel  to  or  coincident  with  the  coordinate 
axes,  as  in  the  example  just  considered  ;  but  there  may  be 
asymptotes  that  are  not  parallel  to  either  axis,  as  in  the 
following  example : 

-?L±£ y —     X 

Here  we  may  write 

If  we  denote  by  y1  the  ordinate  of  the  graph  and  by  y2 
the  corresponding  ordinate  of  the  straight  line  whose  equa- 

tion is  y  =  £  +  1,  we  see  that 

2/1  —  2/2  +  ̂2- 

Hence  whether  x  be  positive  or  negative  yl  is  greater 
than  2/2  and  therefore  the  graph  of  the  function  is  always 
above  the  straight  line. 

Again  when  x  is  numerically  very  large  l/x2  is  very  small, 
and  the  difference  between  y1  and  y2  will  as  the  point  x 
moves  either  to  the  extreme  right  or  to  the  extreme  left 
of  the  07-axis  become  less  than  any  given  fraction ;  hence 
the  graph  approaches  both  ends  of  the  line  whose  equation 
is  y  =  x  + 1  asymptotically. 

The  y-axis  is  also  an  asymptote ;  y  is  positive  when  x 
is  either  a  small  positive  or  a  small  negative  number  and 
therefore  the  graph  does  not  approach  the  negative  end  of 
the  y-axis  but  it  approaches  the  positive  end  both  from  the 
right  and  from  the  left. 

The  graph  will  cross  the  #-axis  for  those  values  of  x 
which  make  the  numerator  x3  +  x2-\-l  zero;  a  few  trials 
will  show  that  the  numerator  vanishes  only  once,  namely 
when  x=  -  -  T47  approximately.  When  x  is  algebraically 
less  than  -  T47,  y  is  negative ;  for  all  other  values  of  x  the 
ordinate  is  positive. 

When  x=l,y  =  3; 
when  x  =  2,  y  =  3 J, 

and  there  is  a  turning  point  when  x  =1*3  approximately. 
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The  graph  is  shown  in  Fig.  13.  The  unit  for  the 
abscissae  is  double  that  for  the  ordinates ;  if  the  units  were 
equal  the  portion  ABC  would  be  at  a  considerable  distance 

above  X'X  and  the  diagram  would  have  to  be  very  large 

FIG.  13. 
% 

to  show  that  part  clearly.  The  curve  approaches  the 
asymptote  GH  very  rapidly  but  the  asymptote  0  Y  more 
slowly. 

In  plotting  the  graph  of  a  fractional  function  it  will  be  frequently 
found  convenient  to  split  the  function  up  into  partial  fractions  as  has 
been  done  above.  Thus,  if 

we  can  write 

and  we  see  that  there  are  three  asymptotes  whose  equations  are 

y  =  l,     #  =  1,     #=2. 
In  this  case  the  graph  crosses  the  horizontal  asymptote  at  the  point 

whose  abscissa  is  ̂ ,  because  when  y=l  we  have ' 

1  =  T   ^7   ^,     or     x _  i 

For  the  equation    y^ 

2          9 
we  should  have  y=x+3  ---  =-  +  -  - 9  x-\     x- 
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and  there  would  again  be  three  asymptotes,  two  of  which  are  parallel 
to  the  y-axis  while  the  third  has  for  equation 

and  this  third  asymptote  cuts  the  graph  again  at  the  point  whose 
abscissa  is    . 

EXERCISES   IV. 

Graph  the  functions  1  —  6  : 

3.  s£- 
- 

4.  ̂ -^+2;  5.        -r-  ;  6. 
-  . 
x—\  x-\ 

7.  Show   that   the   roots   of    the   equation    x3  —  ax-b=0    are   the 
abscissae  of  the  points  of  intersection  of  the  graphs  of  x*  and  of  ax+b. 

8.  Find  to  two  decimals  the  roots  of  the  equations 

(i)  ̂ -7^  +  3=0;  (ii)  ̂ -7^  +  9  =  0. 
Graph  the  functions. 

9.  If  f(x)  =  x*-  4^3  -  4^2  +  1  Qx  +  1  ,  show  that  the  equation  f(x)  =  0 
has  four  real  roots,  and  find  these  to  two  decimals. 

[Find  the  values  of  f(x)  for  x  equal  to  -  2,  -  1,  0,  3,  4  respectively. 
The  ordinate  f(  —  2)  is  positive  and  the  ordinate/(  —  1)  negative,  so  that 
the  graph  crosses  the  axis  of  abscissae  between  the  point  -  2  and  the 
point  -  1.  Proceed  in  the  same  way  with  the  other  numbers.] 

10.  A  point  is  moving  in  a  plane  and  at  time  t  seconds  reckoned 
from  a  fixed  instant,  its  coordinates  with  respect  to  two  rectangular 
axes  in  the  plane  are  x  and  y  feet.     Construct  the  path  of  the  point 
in  the  following  cases  : 

(i)  x=t+l,y  =  2t;  (ii)  x  =  a  +  bt,  y  =  c  +  dt  ; 

(iii)  x  =  2£,  y  =  8t2  ;  (iv;  x=t,y  =  t*. 
[The  position  of  the  point  at  any  instant  may  be  found  by 

calculating  the  values  of  x  and  y  for  the  value  of  t  at  that  instant  ; 
having  found  the  position  of  the  point  for  a  number  of  values  of  £, 
the  graph  can  be  drawn  in  the  usual  way.  Or,  the  equation  of  the 
path  may  be  found  by  eliminating  t.  Thus  in  (i)  t  may  be  considered 
a  function  of  x,  namely  t=x-\  ;  but  y  is  always  2£,  and  therefore 
y  and  x  are  always  connected  by  the  equation  y  =  2(#—  1).  In  this 
case  therefore  the  path  is  a  straight  line.  In  (ii)  the  path  is  also  a 
straight  line.  The  equations  of  the  paths  in  (iii),  (iv)  are  y  =  2#2, 
y  —  x*.  This  method  of  representing  the  path  of  a  point  by  means  of 
two  equations  is  of  frequent  occurrence  both  in  Geometry  and  in 
Mechanics.] 

-  ̂   Vs0  ̂  
D   -VW 
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11.  The  angle  6  between  the  two  straight  lines  whose  equations  are 

(i)  y=mx  +  c,        (ii)  y=m' 
may  be  found  from  the  equation 

m  —  m' 

tan  6  = 

I+mm'' 

[Let  (i)  make  the  angle  a,  (ii)  the  angle  /?  with  X'OX ;  suppose 
a  >  p,  then  6= a  -  J3  and 

0  _   tan  a  —  tan  (3       m  —  mf 
1  +  tan  a  tan  (3     1  +  mm' 

If  the  numerical  value  of  (m-m')/(l  +mm')  be  taken,  the  acute  angle 
between  the  lines  will  be  obtained  whether  a  >  ft  or  ex  < 

12.  The  angle  between  the  lines  given  by 

ax  +  by  +  c  =  Q    and     a'x+b'y  +  c'=0 

is  given  by  tan  0  =  (ab'  —  a'b)/(aa'  +  bb'}. 
13.  Show  that  the  lines  of  ex.  12  are 

(i)  parallel  if  a/b  =  a'lb', 

(ii)  perpendicular  if  aa'  +  66'  =  0. 



CHAPTER  III. 

GRAPHS.     ALGEBKAIC  AND  TRANSCENDENTAL 

FUNCTIONS.     CONIC  SECTIONS. 

§  25.  Algebraic  Functions,  y  is  called  an  Algebraic 
Function  of  x  when  it  is  determined  by  an  equation  of  the 
form 

in  which  the  indices  of  the  powers  of  y  are  positive  integers 
and  the  coefficients  A ,  B, . . .  K,  L,  are  rational  integral 
functions  of  x.  Manifestly,  rational  functions  are  special 
cases  of  algebraic  functions. 

y  will  usually  be  multiple-valued  and  its  graphical  repre- 
sentation is  much  more  difficult  than  that  of  the  rational 

function  except  in  particular  cases  of  which  the  following 
are  of  special  importance l : i 

Type  I.  yn  —  x  =  0   or   y  =  xn. 
When  n  is  an  even  integer,  x  must  be  positive  and  y  will 

be  two- valued ;  when  n  is  an  odd  integer,  x  may  have  any 

value  and  y  will  be  single-valued.  The  graph  of  xn  is 
readily  found  from  that  of  xn. 

Let  QOP  (Figs.  14,  15)  be  the  graph  of  xn,  and  let  PN 

be  perpendicular  to  F'F;  then  ON=NP*,  or  NP=ON™. 
Hence  if  0  Y  be  taken  as  the  axis  of  abscissae,  that  is, 

as  the  axis  of  the  argument,  and  OX  as  the  axis  of  ordi- 
1  The  beginner  may  find  this  article  somewhat  difficult  ;  he  should  work 

out  the  simple  examples  of  the  various  cases  that  are  set  down  at  the  end 
of  the  article  and  the  discussion  will  become  more  definite.  He  need  not 
however  spend  much  time  on  this  article  at  a  first  reading  of  the  subject. 
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nates,  that  is,  as  the  axis  of  the  function,  the  curve  QOP i 

will  be  the  graph  of  the  function  ONn.  It  is  desirable 
however  to  have  OX  as  the  axis  of  abscissae  and  0  Y  as 
the  axis  of  ordinates,  that  is,  the  figure  has  to  be  turned 
so  that  OF  becomes  horizontal  and  coincides  with  the 

present  position  of  OX,  while  OX  becomes  vertical  and 
coincides  with  the  present  position  of  OF.  The  simplest 

X        X' 

way  of  securing  this  is  to  suppose  the  whole  figure  rotated 
through  two  right  angles  about  the  bisector  BOA  of  the 
angle  XOY  as  axis;  NAP  will  thus  come  into  the  position 

N'AP>  and  QOP  will  come  into  the  position  Q'OP.     Q'OP' I  i 

will  be  the  graph  of  xn,  because  N'P'=ON'n,  since 
N'P  =  NP  and  ON '  =  ON. 

Fig.  14  is  the  graph  when  n  is  even  and  when,  therefore, 
for  one  value  of  x  there  are  two  values  of  y ;  on  the  other 
hand,  when  n  is  odd,  as  shown  in  Fig.  15,  to  one  value  of 
x  there  is  but  one  value  of  y. 

Construction  of  Graph  of  an  Inverse  Function.  The  same 
transformation  gives  the  graph  of  the  function  inverse  to  a 

given  function.  If  y  —  xn  and  if  x  be  taken  as  the  argu- 
ment, QOP  is  the  graph  of  xn ;  the  function  inverse  to  y  is i 

x  where  x  —  yn,  and,  when  y  is  taken  as  the  argument,  QOP 
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i 

is  the  graph  of  yn,  that  is,  of  the  function  inverse  to  y  or 
xn.  It  is  convenient  however  to  represent  the  argument 
in  all  cases  by  lines  measured  along  X'OX  and  to  denote 
the  argument  of  the  inverse  function  by  the  same  letter 
as  is  used  for  the  argument  of  the  original  function ;  that 
is  when  the  inverse  function  has  been  formed  we  then 
replace  y  by  x  and  x  by  y,  and  the  graph  of  the  inverse 
function,  when  this  replacement  has  been  made,  will  be  the 
original  graph  rotated  through  two  right  angles  about  the 
bisector  of  the  angle  XOY. 

In  this  notation  the  graph  of  xn  is  QOP;   the  inverse i  i 

function,  which  as  first  stated  is  yn,  is  now  xn,  and  its 

graph  is  QOP'. Again,  when  the  graph  of  a  function  has  been  constructed, 
we  see  how  to  choose  the  range  of  the  variables  so  that  the 
inverse  function  may  be  single-valued.  When  n  is  even 

OP'  is  the  graph  of  +#"  and  OQ'  that  of  -xVl ;  that  is,  OP' 
and  OQ'  are  the  two  branches  of  the  two-valued  function 
inverse  to  xn  when  n  is  even. 

Type  II.  yn  —  xm  =  0  where  m,  n  are  unequal  and  not  both even. 
If  m,  n  were  both  even  the  equation  would  be  equivalent 

n          m  n         m 

to    the    two    equations    y2  —  oj2  =  0.    ?/2-f#2  =  0,   and    there i  \J  '       t/ 

would  therefore  be  two  graphs,  each  of  which  would  come 
under  one  of  the  following  groups. 

The  student  should  notice  the  remark  in  §  23  about  the 

graph  of  such  a  function  as  #2;  it.  will  be  found  useful  in 
the  discussion  of  the  groups  contained  in  the  general 
equation. 

-  TYI 
(A)  m  >  n ;  y  =  xn  where        is  an  improper  fraction. 

(AJ)  m,  n  both  odd.  The  graph  is  of  the  form  QOP 

(Fig.  15);  0  is  a  point  of  inflexion  and  X'OX  a  tangent at  0. 

(A2)  m  even,  n  odd.  The  graph  is  of  the  form  QOP 

(Fig.  14);  OF  is  an  axis  of  symmetry  and  X'OX  a  tangent at  0. 
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(AS)  m  odd,  n  even,  y  is  imaginary  when  x  is  negative; 
OX  is  an  axis  of  symmetry,  and  both  branches  touch  OX 
(and  each  other)  at  0.  (Fig.  16.) 

DEFINITION.  A  point  on  a  curve  such  as  0,  at  which 
two  branches  OA,  OB  have  the  same  tangent,  but  beyond 
which  they  do  not  pass,  is  called  a  Cusp.  It  must  be 
observed  that  neither  branch  passes  beyond  0 ;  a  point 
moving  from  A  along  the  curve  to  0  reverses  its  direction 
in  order  to  proceed  along  the  other  branch  OB. 

O 

x' 

FIG.  16. 

O 

Y'
 

FIG.  17. 

m 
m  . 

(B)  m  <  n  ;  y  =  xn  where  -  -  is  a  proper  fraction. 

^  m,  n  both  odd.      The  graph  is  of  the  form 

(Fig.  15);   0  is  a  point  of  inflexion  and   F'OF  a  tangent at  0. 

(B2)  m  odd,  n  even.  £/  is  imaginary  when  x  is  negative  ; 

OX  is  an  axis  of  symmetry  and  Y'OY  a  tangent  at  0. 
The  graph  is  of  the  form  Q'OP.  (Fig.  14.) 

(B3)  m  even,  ̂   odd.  OF  is  an  axis  of  symmetry  and  is  a 
tangent  at  0  ;  0  is  a  cusp.  (Fig.  17.) 

Thus  if  m  =  2,  7i  =  5,  since  f  lies  between  f  or  i  and n 

f  or  ̂ ,   the   graph   of  #*   will,   when   05   is    positive,   lie 
between  those  of  x%  and  a;*,  each  of  which  has  the  form 

OP'  (Fig.  15).  The  branch  OB  is  present  because  OF  is  an 
axis  of  symmetry. 

The  student  will  have  no  difficulty  in  deducing  the 

graphs  when  the  equation  is  yn  +  xm  —  0',  they  are  deduced 
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from  those  of  £/n  —  xm  =  Q  by  rotation  about  one  of  the 
coordinate  axes.  Thus  the  graphs  corresponding  to  (AJ) 

and  (BI)  are  obtained  by  rotation  about  X'X.  More  gene- 
rally, the  graphs  of  yn  —  axm  =  0  can  be  deduced  by  dividing 

the  ordinates  of    n  —  x*l  =  Q  in  the  ratio  of  an  to  1. 

Ex.  1.  Draw  the  graphs  of  the  following  cases  of  Type  I.  : 

(i)  y*=x  ;        (ii)  f=x  ;         (iii)  f=  -x  ;        (iv)  /=  -x. 
Ex.  2.  Draw  the  graphs  of  the  following  cases  of  Type  II.  (A)  : 

(i)  y*=x?>\  (ii)  f  =  tf\  (iii)  y2=3?  ; 

(iv)  yz=  —y?>  ;  (v)  yz=  —x*  ;  (vi)  «/2=  —aP. 

Ex.  3.  Draw  the  graphs  of  the  following  cases  of  Type  II.  (B)  : 

(i)  yb=x*\  (ii)  y*=x*>\  (iii)  y4^  ; 

(iv)  i/>=  -Xs  ;  (v)  ?/3=  -#2  ;  (vi)  y*=  —x*. 

Ex.  4.     Draw  the  graphs  of 

(i)  #2  =  9#3  ;  (ii)  y2=  -Q^3  ;  (iii)  y3= 

Ex.  5.  Graph  the  functions 

(0 
X 

§  26.  Conic  Sections.  For  the  sake  of  readers  unfamiliar 
with  the  conic  sections  we  give  in  this  article  the  equations 
of  the  conic  sections  and  define  the  most  frequently  occur- 

ring technical  terms  connected  with  them. 
DEFINITION. — A  conic  section  is  the  locus  of  a  point 

which  moves  in  a  plane  so  that  its  distance  from  a  fixed 
point  is  in  a  constant  ratio  to  its  distance  from  a  fixed 
straight  line. 

The  fixed  point  is  called  the  focus,  the  constant  ratio  the 
eccentricity,  and  the  fixed  line  the  directrix. 

Let  8  (Fig.  18)  be  the  focus,  KN  the  directrix  and  SK 
perpendicular  to  KN. 

Let  e  be  the  eccentricity  and  on  KS  take  A  so  that 
AS=eKA  ;  then  A  is  a  point  on  the  conic. 

As  axes  of  coordinates  take  KAS  and  the  perpendicular 
through  A  to  KAS.  Let  P  be  any  point  (x,  y)  on  the 
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conic  and  draw  PM  perpendicular  to  KS;   then  x  = 

N 

K 

Let  KA=p',  then AS  —  ep. 

M 

v 
FIG.  18. 

=  KM=p+x. 

But  SP  =  eNP  by  the 
definition  of  the  conic  ; 
hence 

or so  that,  inserting  the  values  of  SM,  MP,  NP,  we  get 

(x  —  ep)2  +  y2  =  e\x  +  p)2, 
or  after  reduction 

(l-e2)a2-2<l  +  e)p#  +  2/2  =  0  ...................  (1). 
Every  point  whose  coordinates  satisfy  equation  (1)  will 

be  a  point  on  the  conic  section  ;  for  different  values  of  the 
constants  e,  p  there  will  be  different  conies.  Evidently  AS 
is  an  axis  of  symmetry. 

If  AK  were  taken  as  the  positive  direction  of  the  axis  of  abscissae, 
then  in  equation  (1)  we  should  have  +2e(l  +e}px^  for  the  change  in  the 
direction  of  the  axis  is  equivalent  to  writing  —  x  in  place  of  x. 

Special  Forms  of  the  Conic  Section.  —  I.  If  6  =  1,  the 
conic  is  called  a  parabola.  In  this  case  equation  (  1  )  reduces  to 

2/2  =  4>px  ..............................  (P) 
A  is  called  the  vertex,  AX  the  axis  of  the  parabola. 

When  e  =  I,A8=p  and  if  SL  is  the  ordinate  at  8  equa- 
tion (P)  shows  that  SL  =  2p  =  KS.  SL  is  called  the  semi- 

latus-rectum  of  the  parabola  ;  in  every  conic  section  the 
double  ordinate  through  the  focus  is  called  the  latus  rectum. 
Sometimes  4p  is  called  the  parameter  of  the  parabola. 

It  is  easily  seen  that  the  curve  is  of  the  form  of  Fig.  19, 

extending  to  infinity  towards  the  right.  The  graph  of  x2  is 
a  parabola  with  its  axis  vertical  (see  §  16)  ;  its  latus  rectum 
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is  1,  its  focus  the  point  (0,  J)  and  its  directrix  is  the  line 
through  (0,  — J)  parallel  to  the  axis  of  abscissae. 

II.  If  e  is  less  than  unity  the  conic  is  called  an  ellipse. 
In  this  case  equation  (1)  takes  the  form 

J.  ~~~  €i  -L  ~~~  (/ 

or,  putting  a  for  ep/(l  —  e)  and  b2  for  a2(l  —  e2), 

a"     a      o* 
III.  If  e  is  greater  than  unity,  the  conic  is  called  a 

hyperbola.  In  this  case,  if  a  =  ep/(e—l)  and  b2  =  a\e2  —  1 ), 
equation  (1)  becomes 

x2     2x     y2 
£2  =  0   (H) a 

FIG.  19. 

A  more  convenient  form  for  the  equations  of  the  ellipse 
and  the  hyperbola  is  got  as  follows : 

In  (E)  let  y  =  0  ;  then  x  =  0  or  2a.  The  ellipse  therefore 
cuts  the  cc-axis  at  two  points,  namely  at  A  where  x  =  0, 
and  at  another  point,  A'  say,  to  the  right  of  A  where 
x  =  AA'  =  2a.  A  A'  is  called  the  major  axis  and  A,  A'  the 
vertices  of  the  ellipse. 

Similarly  from  (H)  it  will  be  found  that  the  hyperbola 

cuts  the  a;-axis  at  A  and  at  another  point,  A'  say,  to  the G,C. 
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left  of  A  where  A  A  is  equal  in  length  to  2a.  A  A  is  called 
the  transverse  axis  and  A,  A  the  vertices  of  the  hyperbola. 

To  find  the  shape  of  the  ellipse  take  the  origin  of 
coordinates  at  (7,  the  middle  point  of  AA  (Fig.  20). 

Attending  to  the  sign  of  the  segments  we  have  in  all  cases 
AM  =  AC  +  CM. 

Let  CM=x' ;  AM=x\  then  since  AC=  a 

Replacing  x  in  (E)  by  a-\- x'  and  reducing  we  get />>  9 

/Y>    ̂   1/<S 

In  exactly  the  same  way  we  find,  in  place  of  (H), 
/y>'2  nfi y     i 

a?"W 
' 

B'
 

FIG.  20. 

If  we  remember  that  the  abscissae  are  now  measured 
from  C  and  not  from  A  we  may  drop  the  accent ;  the 
equations  are  then 

~2  +  T2  =  l    and    -g  —  T2  =  l>   (c) 

and  these  may  be  considered  the  standard  forms. 
From  these  equations  we  see  that  both  curves  are 

symmetrical  about  both  axes.  The  origin  C  is  a  centre  of 
symmetry ;  C  is  called  the  centre  of  the  conies,  and  the 
ellipse  and  the  hyperbola  are  called  central  conies.  The 
parabola  has  no  centre. 

The  axis  of  ordinates  meets  the  ellipse  (Fig.  20)  at  two 
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points  B,  B' ';  BB'  is  called  the  minor  axis.  From  the 
equation  x2/a2  +  ?/2/fr2  =  1 
it  is  easy  to  see  that  x  is  never  numerically  greater  than  a 
nor  y  greater  than  b.  The  ellipse  is  therefore  a  closed  curve. 

The  circle  is  the  particular  case  of  the  ellipse  in  which 
b  —  a  and  e  =  0. 

The  axis  of  ordinates  does  not  meet  the  hyperbola 

because  when  x  —  0,  y2  =  —  b2  and  therefore  y  is  imaginary. 
It  will  be  seen  further  that  y  is  imaginary  if  x  is  numeri- 

cally less  than  a,  so  that  no  part  of  the  hyperbola  lies 

between  the  lines  through  A,  A'  perpendicular  to  A  A'. 

FIG.  21. 

The  curve  consists  of  two  branches  extending  to  infinity  to 

the  right  of  A  and  to  the  left  of  A'  respectively.  It  will 
be  a  good  exercise  for  the  student  to  prove  that  the  lines 

E'E,  F'F  whose  equations  are 
y  =  bx/a,  y  =  —  bx/a, 

are  asymptotes  (Fig.  21). 
If  b  =  a  the  hyperbola  is  said  to  be  equilateral ;  since  the 

asymptotes  are  in  that  case  at  right  angles  the  hyperbola  is 
also  said  to  be  rectangular. 

From  the  symmetry  of  the  central  conies  about  the  axis 
of  ordinates  through  G  it  may  be  inferred  that  they  have 

;i  second  focus  S'  and  a  second  directrix  K'N'  symmetrical 
to  S  and  KN  with  respect  to  (7;  the  curves  might  be  con- 
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structed  from  S'  and  K'N'  in   the   same   way  as   from  8 
and  KN,  the  eccentricity  being  the  same. 

Some  useful  properties  of  the  Conic  Sections  will  be 
found  in  Exercises  F.,  VI. 

§  27.  Change  of  Origin  and  of  Axes.  The  device  of  chang- 
ing the  origin  of  coordinates  is  often  useful  in  simplifying 

the  equation  of  a  curve  and  thus  making  the  construction 
of  the  curve  more  simple. 

I.  New  Axes  parallel  to  Old  Axes.  In  Fig.  22  let  B  be 
the  new  origin,  and  let  X\BXlt  Y\BY1  be  parallel  to 
X'OZ,  Y'OY  respectively. 

Y 

Y. 

. 

= 
x; 

B 

M'
 

X, 

X'            0 A M                       X 

Y; 

FIG.  22. 

Let  (a,  b),  (x,  y)  be  the  coordinates  of  B  and  of  any  other 

point  P  with  respect  to  the  old  axes  X'OX,  Y'OY',  and  let 
(x',  y')  be  the  coordinates  of  P  with  respect  to  the  new  axes 
X\BXV  Y\BYr  Then 

=  OA+AM=OA+BM'; 
and 

and  therefore  x  =  a  +  x;   y  =  b  +  y'  ......................  (1) 

Conversely  x'  =  x—  a;   y'  =  y  —  b  ......................  (I7) 

When  x  and  y  have  been  replaced  by  a  +  x'  and  b  +  y' 
the  accents  may  be  dropped,  it  being  remembered  that  the 

origin  is  then  B,  so  that  x  will  mean  not  OM  but  BM  ',  and 
y  not  MP  but  M'P, 
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EXAMPLE.     The  equation  y2  -  4r  -  2#  - 1  =0  may  be  written 
(y-  l)2  =  4(*+ir). 

Put  x+\=oc\  that  is,  #  =  -  J  +  a/  and y-l=y',  that  is,  #  =  1  +  /,  which 
means  transferring  the  origin  to  the  point  (-£,  1),  and  the  equation 
becomes 

This  equation,  and  therefore  also  the  given  one,  represents  a  parabola 
with  its  vertex  at  the  new  origin  and  with  the  new  axis  of  abscissae 
as  its  axis.  The  latus  rectum  is  4  ;  the  focus  is  the  point  (1,0)  with 
respect  to  the  new  axes,  and  therefore  the  point  (£,  1)  with  respect  to 
the  old  because  the  coordinates  of  any  point  with  respect  to  the  old 
axes  are  equal  to  those  with  respect  to  the  new  increased  by  the 
coordinates  of  the  new  origin. 

II.  The  origin  not  changed,  but  the  New  Axes  obtained 
by  turning  the  Old  Axes  through  a  positive  or  negative 
angle  0.  In  Fig.  22a  let  P 
be  the  point  (x,  y)  when 
referred  to  the  old  axes 

X'X,  Y'Y,  and  the  point 
(#',  y')  when  referred  to 
the  new  axes  X\XV  Y\YV 
so  that 

FIG.  22a. 

LXOXl  =  0=LYOYr 

By   elementary  trigono- 
metry, 

OM=  OM'  cos  0  -  M'P  sin  0 ;  MP  =  OM'  sin  0 + M'P  cos  0 ; 
that  is, 

x  =  x'  cos  0  —  y'  sin0;  y  =  x'  sin  0  -\-  y'  cos  0   (2) 
Conversely,  solving  for  x'  and  y'  in  terms  of  x  and  y, 

It  may  be  possible  to  choose  0,  so  that  the  new  equation 
is  simpler  than  the  old  or  even  is  an  equation  of  which  the 
graph  is  known. 

EXAMPLE.     By  turning  the  axes  through  45°  the  equation  xy=cL 
becomes  T'-IJ'    1*4-11'  f _V_    x  TJ  _.2    or     r'2_?/2_o-9 

V2         V2 

since,  by  (2),       x=  -j^x' -  -^y',      y  =  -&«?  +  -&</ .  : 
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The  new  form  shows  that  the  curve  is  a  rectangular  hyperbola  ; 
half  the  transverse  axis,  denoted  in  §  26  by  a,  is  v/2c.  Hence  the 

graph  of  c2/#  is  a  rectangular  hyperbola  referred  to  its  asymptotes  as coordinate  axes. 

III.  The  origin  changed  to  (a,  b)  and  the  axes  turned 
through  an  angle  0.  Combining  cases  I.,  II.  we  get  the 
more  general  transformation 

x  =  a  -fee'  cos  0  —  y'  sin  0  ; 

y  =  b+x'sm0+y'cos6  ..................  (3) 

x'  =  (x  —  a)  cos  0  +  (y  —  b)  sin  0  ; 

y'  =  —  (x  —  a)  sin  6  +  (y  —  b)  cos  0  .......  (3') 

EXERCISES  V. 

Unless  otherwise  stated  the  equations  of  the  conic  sections  in  this 
set  of  Exercises  are  supposed  to  be  in  the  standard  forms  (P),  ((7) 
of  §  26. 

1.  In  the  central  conies  prove         CS=eCA,     CA=eCK. 

For  the  ellipse,  AS  :  AK=e  =  A'S  :  A'K, 
and  therefore    e  =  A'S-AS  :  A'K-AK=S'S  :  A'A  =  CS  :  CAy 

e  =  A'S+AS'.A'K+AK=A'A  :K'K=CA  :  CK. 

For  the  hyperbola,    A'S-AS  :  A'K-AK=CA  :  CK, 
A'S+AS  :  A'K+AK=CS  :  CA. 

2.  In  Fig.  20,     S  is  the  point  (  -  ea,  0),     8'  the  point  (ea,  0). 

In  Fig.  21,     S  is  the  point  (ea,  0),         *S"  the  point  (  —  ea,  0). 
In  Fig.  19,     S  is  the  point  (p,  0). 

3.  Show  that  the  latus  rectum  (or  parameter)  of  a  central  conic  is 

4.  On  A  A'  (Fig.  20)  as  diameter  a  circle  is  described;  if  MP  is 
produced  to  meet  the  circle  at  Q,  show  that 

MP  :  M  Q  =  b  :  a  =  constant. 

For  MQz  =  CA2-CM2=az-^',    J/P2  =  ̂2(a2-^2). 

The  circle  is  called  the  Auxiliary  Circle  of  the  ellipse.  The  theorem 
shows  that  if  the  ordinate  MQ  of  a  circle  to  any  diameter  is  divided 
internally  at  P,  so  that  MP  :  MQ=  constant,  the  locus  of  P  is  an 
ellipse  whose  major  axis  is  the  diameter  of  the  circle. 

The  student  may  prove  that  if  P  is  in  MQ  produced,  the  locus  is 
an  ellipse  whose  minor  axis  is  the  diameter  of  the  circle. 
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5.  Show  that  the  point  (a  cos  6,  b  sin  0)  lies  on  the  ellipse,  whatever 
be  the  value  of  6. 

For  the  equation  of  the  ellipse  is  satisfied  by  #=acos  0,  ?/  =  &sm  0. 

As  0  varies  from  0°  to  360°  the  point  travels  round  the  ellipse.  In 
the  notation  of  ex.  4,  if  P  is  the  point  (a  cos  0,  b  sin  0)  0  is  the  angle 

A'CQ  and  is  called  the  Eccentric  Angle  of  P. 

6.  Show  that  the  point  (pt2,  %pt\  p  being  a  constant,  lies  on  a 
parabola  whatever  be  the  value  of  t. 

7.  In   Fig.   20,   if    CM=x,   prove    that    SP=a  +  ex,     S'P=a-ex, 

For  S2>=  eNP=eKC+  eCM=  a  +  ex, 
'  =  e.CK'-eCM=a-ex. 

SP,  S'P  are  called  the  focal  distances  of  P,  and  therefore  in  the 
ellipse  the  sum  of  the  focal  distances  is  constant,  the  constant  being 
the  major  axis. 

8.  In  Fig.  21,  if  CM=x,  prove  SP=ex  -  a,  S'P=ex  +  a,  S'P-SP=2a. 
Hence  the  difference  of  the  focal  distances  of  a  point  on  a  hyperbola  is 
constant. 

9.  In  the  parabola  (Fig.  19)  prove 

x  being  the  abscissa  of  P. 

10.  On  any  of  the  conies  (Figs.  19,  20,  21)  a  point  Q  is  taken  and 
the  chord  PQ  (produced  if  necessary)  meets  the  directrix  KN  at  Z. 
Prove  that  SZ  bisects  the  exterior  angle  PSQ,  except  when  P  and  Q 
are  on  different  branches  of  the  hyperbola  when  SZ  bisects  the 
interior  angle. 

Draw  QR  perpendicular  to  KN\  then 

therefore  SP  :  SQ  =  PN  :  QR  =  PZ  :  QZ, 

and  the  theorem  follows  by  Euc.  vi.  3  or  A. 

11.  Trace  the  conies  given  by  the  equations, 

(i)  x-  +  4y2  =  4  ;         (ii)  2^2  -  %2  =  6, 
and  find  the  eccentricity  of  each. 

In  (i)  a2  =  4,  62  =  1,  and  62=a2(l  -e2),  so  that  e2  =  (a2  -  62)/a2  etc. 

12.  Show  by  transferring  the  origin  to  (0,  -  6)  that  the  equation  of 
the  ellipse  when  B'  is  the  origin  and  B'B  the  axis  of  ordinates  is 

If  B  is  the  origin  and  B'B  the  axis  of  ordinates  the  equation  is 
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13.   Show  by  finding  the  values  of  A  and  B  in  terms  of  p,  a,  b  that 
when  A  is  positive  the  equation 

represents  (i)  a  parabola  if  5=0;   (ii)  an  ellipse  if  B  is  negative,  the 
ellipse  becoming  a  circle  if  B=  —  1  ;  (iii)  a  hyperbola  if  B  is  positive. 

Show  that  when  B  is  negative  and  numerically  greater  than  1  the 
major  axis  of  the  ellipse  lies  along  the  axis  of  ordinates.  Show  that 
all  the  results  hold  also  when  A  is  negative.  (See  note  on  sign  of 
term  in  x  in  equation  (1)  §  26.) 

14.  Graph  the  ellipses  given  by 

(i)  y2  =  4r  —  £o;2;         (ii)  y2  =  4#  — 
and  find  their  eccentricity. 

15.  Show  that  the  equation 

represents  two  straight  lines  through  the  point  (3,  •-  1). 

§  28.  Transcendental  Functions.  All  functions  that  are 
not  algebraic  are  classed  as  Transcendental  functions. 

The  elementary  transcendental  functions  are  (i)  the 
Trigonometric  Functions,  Direct  and  Inverse,  (ii)  the 
Exponential  Function  and  its  Inverse  the  Logarithmic 
Function. 

Graphs  of  the  direct  trigonometric  functions,  sin  x,  cos  xt 
tan  oj,  cosec  x,  sec  x,  cot  x  will  be  found  in  most  textbooks  of 

Trigonometry.  The  characteristic  property  of  these  func- 
tions is  that  they  are  periodic  ;  that  is,  if  f(x)  denote  any 

one  of  these  functions  and  if  n  be  any  positive  or  negative 

integer  /(«+2nx)=/(*> 
In  other  words  the  function  is  not  altered  if  its  argument 
be  increased  or  diminished  by  any  multiple  of  2?r.  This 
number  2?r  is  called  the  period  of  the  function.  The  tang- 

ent and  cotangent  have  also  the  shorter  period  TT. 
The  graphs  of  the  Inverse  Functions  can  be  constructed 

as  explained  in  §  25  by  rotation  about  the  bisector  of  the 
angle  XOY.  To  make  the  inverse  functions  single-  valued 
we  shall  always  suppose  the  angle  denoted  by 

cosec  ~  lx,  tan  ~  lx,  cot  "  lx  to  lie  between  —  ̂   and  ̂   and  the 

a,ngle   denoted   by   cos'1^,  sec"1^  to  lie  between  0  and  TT. 
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Thus 

sin  ~  1f  ̂  J  =  —  =  cos "  l(  ̂-  J  ;   sin  -  Jf  —  -  J  =  —  — , 5-7T 

,/     J'3\     OTT       .  TT 
cos"1!  — -^- )=-^-;   sm-1aj+cos~1ic  =  -^; 

'IX=Q  if  a;  be  positive, 

=  —  -=  if  x  be  negative. 

Ex.  1.  Plot  to  the  same  axes  the  graphs  of  sin  x,  2sin.r,  3sin#, 
sin  x.  \  sin  x  between  -  2?r  and  2?r. 

Ex.  2.   Plot  to  the  same   axes   the  graphs  of   sin^r,  sin#,  sin 
between  -  2?r  and  2?r. 

Ex.  3.  Plot  the  graph  of  sin  %x+  sin  x  +  sin  2#,  making  use  of  the 

graphs  of  ex.  2.  (  -f  <*<§)• 
Ex.  4.  From  the  graph  of  sin  x  deduce  without  calculation  the 

graph  of  sin  (x  +  a)  where  a  is  any  positive  or  negative  number. 
Deduce  the  graph  of  cos  x. 

[Shift  the  origin  to  the  point  (a,  o).] 
Ex.  5.  Plot  the  graph  of  sin  #  +  cos  x. 

sin^+cos^  =  N/2sinf  ̂ ?+-jJ,  etc. 

Ex.  6.  With  the  notation  of  ex.  10,  Exer.  IV.  construct  the  path  of 
the  point  when 

(i)  #=2£,    y  =  3sin4£;         (ii)  x=Zt,  y  =  3tan~^  ; 
(iii)  x=acosnt,    y  —  bsinnt. 

§29.  The  Exponential  Function  and  the  Logarithmic  Func- 
tion. The  power  ax  is  called  an  Exponential  Function 

of  x  ;  here  the  base  a  is  any  positive  constant,  and  the 
index  or  exponent  x  is  the  argument  of  the  function. 

ax  is  always  positive.  If  x  be  a  positive  fraction  — 

(m,  n  integers),  ax  means  the  (positive)  nih  root  of  am  ;  if  x 

be  negative,  say  —  -  -  (m,  n  positive  integers),  ax  means  the iii 

reciprocal  of  the  (positive)  ?ith  root  of  am;   if  a?  is  zero, 
az  is  1.      If  &  be  an  irrational  number  we  may  for  the 
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present  suppose  it  to  be  replaced  by  a  rational  approxi- mation. 

(i)  a  >1.  As  x  increases  from  —TV  to  +JV,  where  N  is 

a  large  positive  number,  ax  will  increase  from  a  very  small 
positive  number  a~N  through  1,  the  value  of  a*  when  #  =  0, 
to  a  very  large  positive  number  a+N. 

(ii)  a  =  l.     In  this  case  ax  is  always  1. 
(iii)  a<l,  say  a  =  1/6  where  b  is  greater  than  1.  As  x 

increases  from  —N  to  +N,  ax  will  decrease  from  a  large 

positive  number  b+N  to  a  very  small  positive  number  b~N. 

ABC  in  Fig.  23  shows  the  graph  of  ax  when  a  =  2.  The 
graph  approaches  the  negative  end  of  the  #-axis  asymptot- 
ically. 

If  a  is  greater  than  1,  I/a  is  less  than  1,  and  since 

(l/ay*  =  a~x  it  is  evident  that  the  graph  of  (I/a)*  can  be 
found  from  that  of  ax  by  rotating  the  latter  about  the 
axis  Y'Y.  Hence  when  a  is  less  than  1,  the  graph  of  ax 
will  approach  the  positive  end  of  the  cc-axis  asymptotically. 
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By  the  definition  of  a  logarithm,  x  =  logay  if  y  =  ax. 
Hence  the  logarithm  x  is  the  function  inverse  to  the 

exponential  function  ax.  By  the  method  given  in  §  25 
for  finding  the  graph  of  an  inverse  function,  we  get  the 

graph  of  logax  by  rotating  the  graph  of  ax  about  OD  the 
bisector  of  the  angle  XO  Y.  The  curve  A'B'C'  in  Fig.  23  is 
the  graph  of  Iog2x. 

The  most  convenient  base  for  the  exponential  function 
is  an  irrational  number,  usually  denoted  by  e  and  called 

Napier's  base;  approximately  e=  2*71828.  Logarithms  to 
the  base  e  will  throughout  the  book  be  denoted  by  the 

symbol  "  log "  (without  suffix),  unless  the  contrary  is 
expressly  stated ;  they  can  be  converted  into  logarithms 
to  the  base  10  by  the  ordinary  rule. 

\OglQX  =  logeX  X  Iog106  =  logeX  +  loge  10, 

and  Iog10e  =  '434  294     loge  10  =  2*302  585. 
The  exponential  function  will  be  considered  more  fully 

when  the  number  e  is  defined  (§  48). 

§  30.  General  Observations  on  Graphs.  The  graphs  that  have 
been  discussed  up  to  this  point  have  been  those  of  functions 
defined  by  equations  of  the  kind  that  occur  in  elementary 
algebra  and  trigonometry,  and  it  has  been  assumed  that  the 
functions  are  Continuous.  It  is  only  on  this  assumption 
that  we  are  justified  in  joining  the  points  whose  coordinates 
satisfy  an  equation  and  concluding  that  the  coordinates  of 
the  points  which  lie  on  the  short  lines  or  arcs  that  we  draw 
will  actually  satisfy  the  equation.  In  other  words  we 
assume  that  when  the  argument  x  changes  by  a  small 
amount  the  function  y  will  also  change  only  by  a  small 
amount.  The  only  exception  we  have  found  has  been  in 
those  cases  in  which  as  x  tended  towards  a  special  finite 
value  y  tended  to  a  very  large  value  (numerically).  See  §  24. 
Thus  if  y=l/x,  as  x  changes  say  from  1/1000  to  1/1001, 
y  changes  from  1000  to  1001,  that  is,  an  extremely  small 
change  in  x  produces  a  change  of  1  unit  in  y ;  as  x  gets 
nearer  still  to  0  a  change  of  the  same  amount  as  before 
would  produce  a  still  larger  change  in  y.  Hence  as  x 
approaches  0,  y  or  l/x  ceases  to  be  continuous,  or,  as  it  is 
usually  expressed,  becomes  discontinuous. 
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Since  division  by  zero  is  expressly  excluded  in  stating  the 

rules  of  division  in  algebra,  the  symbol  •=  is  really  meaning- 

less ;  but  since  it  is  possible  by  taking  x  nearer  and  nearer 

to  0  to  make  ~  greater  than  any  given  finite  number,  it  is oc 
1 
0 

Hence  a  function  becomes  discontinuous  for  those  values 
of  its  argument  that  make  it,  in  the  above  sense,  infinite. 

The  question  of  continuity  will  be  taken  up  in  Chap.  V. 
When,  as  frequently  occurs  in  practical  work,  the  relation 

between  a  function  and  its  argument  is  determined  by 
measurements,  it  is  only  possible  to  calculate  a  compara- 

tively small  number  of  corresponding  values  of  function 
and  argument.  In  such  a  case  it  would  be  possible  to  find 
a  great  variety  of  curves  which  would  be  continuous  in  the 
mathematical  sense  and  would  pass  through  all  the  points 
that  are  plotted.  In  practice  the  points  are  not  joined  by 
straight  lines ;  but  the  simplest  curve  on  or  near  which  the 
points  seem  to  lie  is  usually  taken  as  the  graph  of  the  func- 

tion. The  broken  line  or  curve  which  would  be  obtained 
by  joining  the  plotted  points  by  straight  lines  would  have 
this  disadvantage,  that  its  curvature  would  not  be  con- 

tinuous ;  in  the  language  of  the  Calculus,  the  derivative  of 
the  function  as  represented  by  the  graph  would  change 
abruptly,  as  a  rule,  for  the  values  of  the  function  actually 
calculated. 

Of  course  considerable  care  must  be  taken  in  selecting  the 
curve  and  no  inference  should  be  drawn,  as  a  rule,  from  the 
form  of  the  graph  outside  the  range  of  the  argument  for 
which  the  values  of  the  function  have  been  calculated. 
Examples  of  sucli  graphs  will  be  found  in  most  text  books 
of  mechanics,  physics  or  chemistry, 

EXERCISES  VI. 

1.  From  the  graph  of  f(x)  derive  that  of  f(kx),  k  being  a  constant. 
Denote  the  graph  of  f(x)  by  Gl  and  that  of  f(kx)  by  <72.  When 

#=a,  the  ordinate  of  <72  is  f(ka)  ;  but  f(ka)  is  the  value  of  f(x)  when 
x=ka.  Hence  the  ordinate  of  G2  when  x  —  a  is  equal  to  that  of  Gl 
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when  x=ka.  Since  a  may  be  any  value  whatever  of  the  abscissa, 
6?2  may  be  derived  from  Gl  without  further  calculation  of  ordinates  ; 
we  may  say  that  every  line  parallel  to  the  #-axis  is  contracted  in 
the  ratio  k  to  1,  while  every  line  parallel  to  the  y-axis  is  unaltered. 

2.  Apply  the  principle  of  ex.  1  to  construct  (i)  the  graph  of  sin  \x 
and  of  sin  2^7  from  that  of  sin  x  ;  (ii)  the  graph  of  2**  from  that  of  2*  ; 
(iii)  the  graph  of  2~te  from  that  of  2~*. 

3.  From  the  graph  of  /(#)  derive  that  of  cfljcx),  c  and  k  being 
constants. 

Deduce  the  graph  of  the  ellipse  #2/a2+y2/62  =  l 

(i)  from  that  of  the  circle  xz 
(ii)  from  that  of  the  circle  xP 

4.  A  point  moves  in  a  plane  and  at  time  t  its  coordinates  are 

x=  Vt  cos  a,    y—Vt  sin  a  —  %gt2  ; 
show  that  the  path  of  the  point  is  a  parabola  with  its  axis  vertical 
downward,  that  its  vertex  is  the  point  (  V2  sin  a  cos  a/g,  F2sin2a/2^), 
and  that  its  latus  rectum  is  equal  to  2  F2  cos2  a/g.  (Compare  Exer. 
IV.,  10.) 

Eliminate  £,  then  the  equation  between  x  and  y  may  be  written 

F2sinacosa\2         2F2cos2a/        F2sin2 

--  ~g  -  )=  ---  f-(^ 
5.  Show  that  the  equation  of  the  directrix  of  the  parabola  in  ex.  4  is 

V=  F2/2# 

6.  If  the  coordinates  of  a  point  are  given  by 

where  t  is  variable  and  a,  6,  ...  C  constants,  show  that  the  locus  of  the 
point  is  in  general  a  parabola  whose  vertex  is  the  point 

/       bB          ̂ \ 
~2C'J    "Wr 

and  whose  latus  rectum  is  equal  to  62/C7. 

7.  Apply  the  transformations  of  §  27,  (2)  to  the  equation 

Ax2  +  2Bxy  +  fy2  =  D,  .................................  (i) 
and  show  that  the  new  equation  will  be 

Laf*  +  23Myf  +  tfy'*  =  D,  ..............................  (ii) 
where  L  =  A  cos20  +  2  B  sin  6  cos  6  +  C  sin20, 

M=(C-A)  sin  B  cos  0  +  B(cos*6  -  sin20), 
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8.  Show  that  equation  (i)  of  ex.  7  represents,  in  general,  a  central 
conic. 

For  equation  (ii)  will  become  Lx'z  +  Ny"2-  —  D,  which  is  of  the  form 
(c),  §  26,  if  J/=0.  It  is  always  possible  to  choose  9  so  that  M  shall 
vanish,  because 

97? 

((7-J)sin0cos0+Jg(cos20-sin20)  =  0,  if  tan 20=-    ̂ , A  —  C 

and  whatever  be  the  values  of  A,  B,  C,  an  angle  can  always  be  found 
to  satisfy  this  equation.  The  values  of  cos  0,  sin  0  found  from  this 
equation  have  to  be  inserted  in  the  values  of  L  and  N. 

9.  Show   by   turning   the   coordinate   axes   through   45°   that   the 
equation 

= 72 

represents  an  ellipse  whose  axes  are  6  and  4.     Sketch  the  curve. 

10.  The  coordinates  of  a  point  are  given  by 
t 

X  =  ( 

where  t  is  a  variable,  say  the  time.     Show  that  the  point  describes  the 
ellipse  given  by  the  equation 

y*          irti  *?/ 
-5  —  2-4f  cos  27ra  +  ro  =  siu227ra. a2      ab  o2 

11.  The  coordinates  of  a  point  are  given  by 

show  that  the  point  describes  the  parabola  given  by 
nt  O  /ytLi (/  4UvU 

'l+       ~a?' 

12.  Find  the  coordinates  of  the  centre  and  the  lengths  of  the  axes 
of  the  central  conies  given  by  the  equations 

(i)  4#2  -f  9y2  —  24.r  +  72_y  +  144  =  0  ; 

(ii)  3.#2  —  4^/2  +  66^r  +  40y  +  25 1=0. 

Equation  (i)  may  be  written 

9  4 

13.  Show  by  turning  the  axes  through  45°  that  the  equation 

3p+y*=z%j2kxy  .....................................  (i) 

becomes,  the  accents  being  dropped, 

(ii) 
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From  the  form  (ii)  show  that  there  is  an  asymptote  perpendicular 
to  the  new  axis  of  abscissae.  Show  further  that  the  new  x  is  not 

greater  than  3k  nor  less  (algebraically)  than  -&,  it  being  assumed 
that  k  is  positive. 

14..  In  Fig.  20,  taking  S  as  origin,  SK  as  initial  line,  SP=r, 
LKSP=0,  show  that  for  this  system  the  polar  equation  of  an  ellipse  is 

where  ?  =  e^S'=/S'Z  =  semi-latus  rectum. 
By  the  definition  of  a  conic  SP—eNP;  hence,  since  NP—KS+SM, 

r=eKS+eSM—  l  +  ercos(7r-6)  =  l-  'er  cos  0, 
and  therefore  r(l  +  e  cos  6)  =  I. 

The  equation  is  the  same  if  *S"  is  origin,   S'K'  initial  line,   and 
L.K'S'P=e. 

15.  Show  that  the  polar  equation  of  a  hyperbola  is 

r  =  l/(I  +  ecos0). 

16.  Show  that  the  polar  equation  of  the  parabola  (Fig.  19)  is 

where  2p  =  SL  and  LKSP—  6,  the  origin  being  S  and  the  initial  line  SK. 
If  LXSP=  0,  we  shall  have  1  -  cos  0  instead  of  1  +  cos  0. 

17.  Show  that  the  length  of  the  perpendicular  from  the  point 
(#!,  y^)  to  the  line  y-x  tan  0=0  is 

(y^  -  x^  tan  <9)/V(l  +  tan20). 

In  Fig  22a,  §  27,  let  P  be  the  point  fo,  y^  ;  then  M'P  is  the 
required  perpendicular,  since  XJOXl  is  the  line  #-.rtan0  =  0.  But 
by  (2'),  §  27, 

M'P—y'  =yl  cos  0  —  x±  sin  6  =  cos  0(yl  -  x\  tan  6) 
=  ($i  -  xv  tan  0)/V(l  +  tan20). 

By  putting  —  a/6  for  tan  0,  we  see  that  the  perpendicular  on  the 
line  whose  equation  is  ax  +  by=Q  is 

Hence  to  find  the  length  of  the  perpendicular  from  the  point 
(#!>  2/i)  on  the  line  whose  equation  is  ax  +  by  =  Q,  substitute  x^y^  for 
#,  y  in  the  expression  ax+by  and  divide  by  the  square  root  of  the  sum 
of  the  squares  of  the  coefficients  of  x  and  y. 

18.  By  the  method  of  ex.  17  show  that  the  length  of  the  perpen- 
dicular from  the  point  (#„  y^  to  the  line  whose  equation  is 

I 

The  sign  of  the  expression  for  the  perpendicular  will  be  positive 
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or  negative  according  as  a^  +  b^  +  c  is  positive  or  negative  if  the  root 
have  always  the  positive  sign  ;  the  numerical  value  however  always 
gives  the  length. 

19.  Find  the  length  of  the  perpendicular  in  the  cases  : 

(i)  point  (2,  1);         line,         3#-4y  +  5  =  0. 

(ii)  point  (2,    -1);     line,  12#-13y-10  =  0. 

20.  Find  the  length  of  the  perpendicular  on  the  line  given  by 

«        x       /\    y  •    n    i 
-cos0+^sm0=l, a  o 

from  the  points     (i)  (0,  0)  ;     (ii)  (<?«,  0)  ;     (iii)  (  —  ea,  0). 

If  e2=(a2-62)/a2  show  that  the  product  of  the  perpendiculars  from 
the  points  (ii)  and  (iii)  is  equal  to  62. 

21.  Show  that  the  straight  line  in  ex.  20  meets  the  ellipse  given  by 

at   only  one   point,   namely   the   point  (a  cos  0,   b  sin  6).      (Compare 
Exercises  III.  9,  10.) 

The  line  is  therefore  a  tangent  to  the  ellipse;  the  three  perpen- 
diculars are  those  from  the  centre  of  the  ellipse  and  the  two  foci. 

(See  Exercises  X.  9.) 

22.  If  MP  (Fig.  21)  is  produced  to  meet  the  hyperbola  again  at  P 

and  the  lines  CE,  CF,  at  $,  $'  show  that 

Q'P.PQ=MQ2-MP2=bz=Q'P'  .FQ. 
From  these  equations  prove  that  CE  and  CF  are  asymptotes  ;  also 

that  PQ  and  Q'P  are  equal. 



CHAPTEK  IV. 

RATES.     LIMITS. 

§  31.  Rates.  The  fundamental  problem  of  the  Differential 
Calculus  may  be  considered  as  the  investigation  of  the  rate 
at  which  a  function  changes  with  respect  to  its  argument. 

The  element  of  time  does  not  necessarily  enter  into  the 
conception  of  a  rate.  Whatever  be  the  nature  of  the 
magnitudes  under  consideration  a  change  in  the  one  which 
is  taken  as  the  independent  variable  or  argument  will 
usually  produce  a  change  in  that  which  is  taken  as  the 
dependent  variable  or  function,  and  by  comparing  the 
change  in  the  function  with  the  change  in  the  argument 
we  can  determine  the  rate  at  which  the  function  changes 
with  respect  to  its  argument.  Many  problems  in  pure 
and  applied  mathematics  depend  on  such  a  comparison,  so 
that  their  solution  reduces  to  the  determination  of  a  rate  ; 
for  example,  the  problem  of  drawing  a  tangent  to  a  curve 
is  equivalent  to  that  of  determining  the  rate  at  which  the 
ordinate  varies  with  respect  to  the  abscissa. 

§  32.  Increments.  When  a  variable  x  changes  from  a 
value  xl  to  a  value  x2  the  difference  x2  —  xl  (not  xl  —  x2)  is 
called  the  increment  that  x  has  taken,  and  is  often  denoted 

by  the  symbol  $x±  or  Aa^,  read  "  delta  xl  "  ;  <S,  A  are  the 
Greek  forms  of  the  small  d  and  capital  d,  the  initial  letter 

of  the  word  "  difference."  The  symbol  3xt  must  be  taken  as 
a  whole  ;  S  by  itself  in  this  use  of  the  letter  is  meaningless. 

If  x2  >  xl  the  increment  is  positive,  so  that  x  has  increased 
algebraically  ;  if  x2  <  xl  the  increment  is  negative,  so  that 
x  has  decreased  algebraically.  In  both  cases  the  one  word 
G.C.  E 
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"increment"  is  used,  so  that  a  negative  increment  is  an 
algebraic  decrease. 

Since  x2  —  x1  =  &Cj  we  have  #2  =  ̂   -f  Sxv  so  that  if  x  change 
from  the  value  x1  to  another  value  and  if  the  increment 
that  x  takes  is  Sxl  that  other  value  is  x1  +  Sxl  ;  the  student 
must  accustom  himself  to  this  method  of  denoting  the 
value  to  which  x  changes,  for  although  x1  +  Sx-^  seems  more 
cumbrous  than  x2  its  form  is  more  suggestive  and  is  really 
simpler  in  many  investigations. 

Let  y  be  a  function  of  x,  say  5#  —  3,  and  let  xv  yl  be 
corresponding  values  of  x  and  y.  When  x  changes  from 
xl  to  xl-{-Sxl  let  y  take  the  increment  Syv  so  that  the  value 
of  y  corresponding  to  xl  +  Sxl  is  yl  +  Syl  ;  then 

2/1  =  5^-3;   yl-\-Sy1  =  5(x1  +  Sxl)  -3, 
and  therefore  Sy1  =  5Sxr 

If  2/  =  3#2  +  7#  —  2,  we  find,  using  the  same  notation, 

yl  =  S^2  +  lxl  -  2  ;   ̂   +  ̂   =  3(^  +  Sx^  +  7(^  +  SxJ  -  2, 
and  therefore,  by  subtracting  the  left  side  of  the  first 
equation  from  the  left  side  of  the  second,  and  the  right 
side  of  the  first  from  the  right  side  of  the  second, 

In  general,  if  y=f(x),  we  have 

The   same   notation   is   used  whatever   letters  denote  the 
variables,  so  that  if  s  = 

and  so  on. 

As  this  process  of  finding  increments  is  of  constant 
occurrence  the  student  should  make  himself  quite  familiar 
with  it.  The  following  examples  should  be  worked 
through. 

T?     i    ™         1     i,       4-v      a 
Ex.  1.  If  y=-9,  snow  that  8i/l=  - 

.r2 

Ex. 
 
2.  If  f(x}

=x* 
 
-  1,  show

  
that
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Ex.  3.  If  y  =  log#,  show  that 

Ex.  4.  If  y=x*,  Sy^C^  +  oX)3-^3,  calculate  %:  and  8^/8^  when 
.£=10,     6X  =  1,  -5,  -1,  -01,  -001. 

Ex.  5.  If  y  =  sin  .r,  show  that 

8i/1  =  8  sin  xv  —  sin^j  +  ft^)  -  sin  x^  . 

From  the  Tables  calculate  8^  and  ̂    for  the  following  values 
of  xl  and  8x^  the  numbers  denoting  the  value  of  the  angles  in  degrees  : 

(i)  *a  =  30,     &T!  =  I,  "5,  -2,  '1; 

(ii)  ̂   =  60,     &p1  =  l,  -5,  -2,  -1. 

Ex.  6.  If  .y  =  log10ff,  find  from  the  Tables  the  values  of  8^  and  ̂ l 

(i)  when  ̂   =  325  and  8^  =  2,  1,  -5,  '1  ;. 

(ii)  when  ̂   =  72    and  8X  =  2,  1,  •!,  '01. 

§  33.  Uniform  Variation.  When  the  argument  of  a  func- 
tion takes  a  series  of  values  xv  xz,  xs,  x±...  the  function 

takes  a  corresponding  series  of  values  yv  y2,  y3,  y±.  When 
the  increment  of  the  function  is  in  a  constant  ratio  to  the 
corresponding  increment  of  the  argument  the  function 
is  said  to  vary  uniformly  or  at  a  constant  rate  with  respect 
to  its  argument. 

If  the  constant  ratio  is  a,  then 

and 

If  the  increments  (x2  —  a?1)  and  (sz;4  —  xs)  of  the  argument  are 
equal  so  are  the  corresponding  increments  (2/2  —  2/1)  and 
(2/4  —  2/3)  °f  ̂ ne  function.  The  increment  (x2  —  x^)  may  be 
either  positive  or  negative  and  may  be  of  any  magnitude 
whatever;  the  corresponding  increment  of  the  function  is 
a(x2  —  x^,  and  always,  when  the  argument  takes  two  equal 
increments  so  does  the  function. 

It  follows  from  the  definition  that  the  uniformly  varying 
function  is  a  linear  function  of  its  argument.  For  when 
the  argument  changes  from  any  value  xl  to  any  other 
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value  x,  let  the  function  change  from  y1  to  y  ;  then  the 
increment  of  the  argument  is  (x—x^),  the  increment  of  the 
function  is  (y  —  2/1) 

that  is,  y  =  ax  +  y1  —  axv 
But  xv  yl  are  fixed  values  of  the  argument  and  function 
and  the  ratio  a  is  constant,  so  that  y  is  a  linear  function 
of  x. 

It  is  easy  to  see  conversely  that  if  y  is  a  linear  function, 
ax  +  b  say,  of  x,  then  y  varies  uniformly  with  respect  to  x. 

Measure  of  a  Uniform  Rate.  —  The  constant  ratio  a  is 
taken  as  the  measure  of  the  rate  at  which  the  function 
varies  with  respect  to  its  argument.  Instead  of  saying  that 
the  ratio  a  measures  the  rate  we  shall  generally  use  the 
briefer  expression  that  a  is  the  rate. 

When  a  is  a  positive  number,  y  increases  as  x  increases 
and  decreases  as  x  decreases  ;  when  a  is  a  negative  number, 
y  decreases  as  x  increases  and  increases  as  x  decreases. 
The  particular  case  in  which  the  function  reduces  to  a 
constant,  y  =  b,  may  be  included  in  the  general  category  of 
uniformly  varying  functions  by  saying  that  the  function 
varies  at  the  rate  zero  ;  a  =  0. 

Since  the  graph  of  ax  +  b  is  a  straight  line  with  the 
gradient  a  (§  22)  the  gradient  of  the  line  measures  the  rate 
at  which  the  function  varies  with  respect  to  its  argument. 
It  should  be  noticed  that  if  in  plotting  the  graph  the  unit 
for  the  ordinates  is  not  of  the  same  length  as  the  unit  for 
the  abscissae  the  tangent  of  the  angle  shown  on  the  diagram 
will  not  be  equal  to  the  rate  a  ;  if  the  unit  for  abscissae  is 

1  inch  and  for  ordinates,  say  *1  inch,  then  to  an  increment 
1  of  the  abscissa  the  diagram  will  show  an  increment,  not 

of  a  but  of  'la  of  the  ordinate,  so  that  the  real  gradient 
or  rate  will  be  found  by  multiplying  by  10  the  tangent  of 
the  angle  shown  on  the  diagram. 

§  34.  Dimensions  of  Magnitudes.  It  is  customary  and 
convenient  to  use  such  expressions  as  "  the  area  of  a 
rectangle  is  the  product  of  its  base  and  its  altitude,"  "  the 
speed  of  a  body  which  moves  uniformly  is  the  distance 
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gone  in  a   given   time  divided   by  the   time,"  and   these 
expressions  are  represented  in  the  form  of  equations  : 

...  distance 
area  =  base  x  altitude  ;    speed  =  -  -^-     -. time 

When  considered  as  equations  in  the  sense  commonly 

understood  in  algebra  these  must  be  interpreted  as  "  the 
number  of  square  feet  (or  square  inches,  etc.)  in  the  area  is 
equal  to  the  product  of  the  number  of  linear  feet  (or  inches, 

etc.)  in  the  base  and  in  the  altitude,"  "  the  number  of  units 
of  ispeed  is  equal  to  the  quotient  of  the  number  of  units  of 

length  in  the  distance  by  the  number  of  units  of  time." 
But  the  equations  may  be  interpreted  in  a  different 

manner.  Let  capital  letters  denote,  not  numbers  but 
magnitudes  ;  L  the  straight  line  of  unit  length,  T  the 
interval  of  time,  taken  as  the  unit.  Taking  as  unit  of  area 
the  square  on  the  line  L,  and  as  unit  of  speed  that  of  a  body 
which  moves  uniformly  a  distance  L  in  time  T,  the 
equations  may  be  stated  for  the  unit  magnitudes  in  the 
form 

unit  area  =  LxL;   unit  speed  =  ™  ; 

or,  combining  the  symbols  by  the  algebraic  laws  of  indices, 

unit  area  =  L2  ;    unit  speed  —  LT~\ 
These  equations  are  usually  called  dimensional  equations, 

and  the  indices  are  said  to  give  the  dimensions  of  the 
magnitudes  ;  thus  the  first  equation  states  that  the  unit  area 
is  of  2  dimensions  in  L,  the  unit  of  length,  and  the  second 
states  that  the  unit  of  speed  is  of  dimension  1  in  L  and  of 
dimension  —  1  in  T.  Since  all  areas  are  magnitudes  of  the 
same  kind  as  the  unit  area,  area  is  said  to  be  of  2 

dimensions  as  to  length  and  to  have  L2  as  its  dimensional 
formula.  Similarly,  the  dimensional  formula  of  speed  is 

If  M  denote  the  unit  mass  the  dimensional  formula  of 

momentum  will  be  MLT~l,  because  momentum  is  the 
product  of  mass  and  velocity. 

It  may  happen  that  a  magnitude  has  zero  dimensions; 
thus  anles  when  measured  in  radians  have  zero  dimensions, 
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because  the  radian  is  "  arc  divided  by  radius,"  and  its 
dimensional  formula  therefore  is  L/L,  that  is  Z°. 

A  notation  that  suggests  the  dimensional  formula  is 
sometimes  used ;  thus  an  area  of  10  square  feet  is  denoted 

by  10  ft.2,  a  speed  of  10  feet  per  second  by  10  ft./sec.,  a 
pressure  of  14  pounds  per  square  inch  by  14  lb./hi.2  and  so 
on.  The  characteristic  word  for  expressing  a  rate,  namely 
per,  is  represented  by  the  symbol  of  division. 

When  a  function  varies  uniformly  the  number  which 
has  been  defined  as  the  rate  of  variation  is  quite  inde- 

pendent of  the  magnitude  of  the  increment  which  the 
argument  takes;  it  is  therefore  possible  to  choose  at 
pleasure  the  increment  of  the  argument  that  shall  be 
called  unit  increment.  Thus  we  may  speak  of  a  speed  of 
30  miles  per  hour,  although  the  motion  may  only  last  5 
minutes,  or  1  minute  or  less ;  a  rate  of  30  miles  per  hour 
is  the  same  thing  as  one  of  half  a  mile  per  minute,  or  of  44 
feet  per  second.  It  is  important  to  bear  in  mind  this 
aspect  of  a  rate  when  discussing  non-uniform  variation. 

Again,  the  statement  that  the  speed  of  a  moving  body  is  30 
miles  per  hour  is  equivalent  to  the  statement  that  the  distance 
travelled  varies  with  respect  to  the  time  at  the  rate  30,  when 
it  is  understood  that  the  units  are  the  mile  and  the  hour. 
The  latter  mode  of  expression  is  more  simple  in  many  cases. 
When  the  measure  of  a  magnitude  is  interpreted  as  a 

rate  the  dimensional  formula  for  the  magnitude  will  be  the 
quotient  of  the  formula  for  the  function  by  that  for  the 
argument.  Thus  force  may  be  measured  as  the  rate  of 
change  of  momentum  with  respect  to  time ;  its  dimensional 

formula  is  therefore  MLT~1IT  or  MLT~\ 
It  is  important  to  bear  in  mind  that  the  measure  of  one 

magnitude  can  often  be  interpreted  as  the  rate  of  change  of 
a  second  magnitude  with  respect  to  a  third,  because  it  is 
through  this  connection  that  the  calculus  is  applied  to  the 
investigation  of  the  numerical  relations  of  magnitudes,  and 
in  all  such  interpretations  the  theory  of  dimensions  is  of 
great  service.  For  a  full  treatment  of  that  theory  the 
student  is  referred  to  the  books  named  below.1 

1  Everett's  Units  and  Physical  Constants  ;   Gray's  Absolute  Measurements 
in  Electricity  and  Magnetism ;  Maclean's  Physical  Units. 
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§  35.  Variable  Rates.  So  far,  only  uniformly  varying 
functions  have  been  discussed.  But  it  may  happen  that 
the  increment  of  the  function  is  not  in  a  constant  ratio  to 
the  corresponding  increment  of  its  argument,  or  in  other 
words,  that  two  equal  increments  of  the  argument  do  not 
always  produce  two  equal  increments  of  the  function  ;  in 
that  case  the  function  is  said  to  vary  non-uniformly  ,  or  at 
a  variable  rate,  with  respect  to  its  argument. 

Let  y  =  3#2  ;  when  x  varies  from  x^  to  xl  +  h  let  y  vary 
from  yl  to  y^k,  and  when  x  varies  from  x2  to  x2  +  h  let  y 

vary  from  y2  to  y2  +  k'.  Then 

therefore   k/h  =  Qxl  +  3/t  ;   and   in   the   same   way  we  find 

The  two  ratios  k/h,  k'/h  are  therefore  unequal,  so  that  y 
varies  non-uniformly  with  respect  to  x. 

In  this  case  the  ratio  k/h  depends  both  on  h  and  on  xl  ; 
the  characteristic  property  of  a  uniformly  varying  function 
is  that  the  ratio  k/h  depends  neither  on  h  nor  on  the  value  xl 
of  x,  from  which  the  increment  begins.  To  obtain  the 
number  which  is  taken  as  the  measure  of  a  variable  rate 
we  proceed  as  follows. 

§  36.  Average  Rate.  We  first  define  an  average  rate. 
thus  :  —  The  average  rate  at  which  a  function  varies  with 
respect  to  its  argument  while  that  argument  takes  a  given 
increment  h  is  defined  to  be  that  uniform  rate  which  would 
give  the  actual  increment  k  taken  by  the  function. 

The  average  rate  is  thus  k/h.  In  the  example  of  last 
article  the  average  rate  at  which  y  varies  with  respect  to  x 
while  x  varies  from  xl  to  xl-\-h  is 

k/h  =  60?!  +  3/i  ; 
the  average  rate  at  which  y  varies  while  x  varies  from  x2 

The  average  rate  thus  depends  both  on  x  and  on  h. 
Next,  it  agrees  with  our  ordinary  notions  of  a  rate  of 

change  to  suppose  that  the  smaller  h  is  the  better  will  the 
average  rate  measure  the  rate  at  which  the  function  varies 
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as  x  varies  from  xl  to  xl-\-h.  But  as  h  is  taken  less  and 
less  the  average  rate  6x1-\-3h  approximates  more  and  more 
closely  to  the  definite  number  6^.  The  average  rate  will 
never  be  exactly  6xv  because  it  would  be  absurd  to  suppose 
h  actually  zero ;  that  would  amount  to  supposing  that  x 
had  not  changed  from  the  value  xl  at  all.  On  the  other 
hand,  however  small  h  may  be,  provided  it  is  not  zero,  the 
quotient  k/h  can  be  calculated  and  the  average  rate  for 
that  small  increment  determined.  We  may  therefore 
suppose  h  to  be,  not  zero,  but  so  small  that  the  difference 
between  6xl  +  3h  and  6xv  namely  3h,  shall  be  less  than  any 
fraction  that  may  be  named,  however  small  that  fraction 
may  be,  provided  only  it  is  not  zero ;  for  example,  the 
difference  will  be  less  than  '001  if  h  be  numerically 
less  than  one  third  of  '001,  say  less  than  '0003.  It  is 
natural  therefore  to  consider  Qx±  as  measuring  the  rate  at 
which  y  changes  with  respect  to  #  as  #  increases  or 
decreases  from  the  value  xv 

We  therefore  define  6^  as  the  rate  at  which  the  function 
y  or  3x2  varies  with  respect  to  its  argument  x  for  the  value 
x1  of  the  argument 

In  the  same  way  6x2  is,  by  definition,  the  rate  of  change 
for  the  value  x2  and  in  general  for  any  value  a  of  the 
argument  the  rate  is  6a,  because  the  reasoning  does  not 
depend  on  the  particular  value  xl ;  the  reasoning  is  the 
same  whatever  value  of  the  argument  be  chosen. 
When  x  has  the  values  0,  J,  J,  f,  1,  f,  2  ...the  rate  is 

equal  to  0,  f,  3,  f,  6,  9, 12  ...  respectively  ;  thus  for  the  value 
1  of  x,  y  is  increasing  twice  as  fast  as  for  the  value  J,  for 
the  value  -|  thrice  as  fast,  for  the  value  2  four  times  as  fast 
and  so  on.  The  student  should  compare  these  statements 
with  the  information  to  be  derived  from  an  inspection  of 

the  graph  of  3a?2. 
When  x  is  positive  the  rate  is  positive,  so  that  as  the  point 

x  moves  to  the  right  the  graphic  point  moves  up  ;  on  the 
other  hand,  when  x  is  negative  the  rate  is  negative,  so  that 
as  the  point  x  moves  to  the  right  the  graphic  point  moves 
down. 

It  will  be  noticed  that  in  stating  a  variable  rate  the 

phrase  "  for  the  value  xl  of  the  argument "  occurs ;  the 
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phrase  is  needed  because,  unlike  that  of  a  uniformly  vary- 
ing function,  the  rate  is  in  this  case  itself  a  variable.  If  the 

number  s  of  feet  described  by  a  moving  body  in  t  seconds 
be  3£2,  the  rate  at  which  s  varies  with  respect  to  t  at  time 
tt  seconds  after  motion  begins  is  6^,  that  is,  the  speed  at 
time  t±  is  6^  feet  per  second. 

§  37.  Measure  of  a  Variable  Bate.  The  method  just  given 
of  defining  a  variable  rate  is  of  fundamental  importance, 
and  the  student  should  make  sure  that  he  masters  the 
reasoning  on  which  the  definition  is  based.  The  process 
consists  of  three  steps  : 

(i)  We  find  the  average  rate  k/h;  the  number  k/h 
depends  both  on  xl  and  on  h. 

(ii)  We  assume  as  consistent  with  our  notions  of  rate  of 
change  that  the  smaller  h  is  the  better  will  the  quotient  k/h 
measure  the  rate  at  which  the  function  changes  as  the 
argument  changes  from  xl  to  x^-\-h.  It  usually  happens 
that  by  taking  h  less  and  less  the  quotient  k/h  gets  nearer 
and  nearer  to  a  definite  number ;  h  is  not  supposed  to 
become  zero,  but  in  general  we  can  take  h  so  small  that  the 
difference  between  k/h  and  a  definite  number  will  become, 
and  for  smaller  values  of  h  will  remain,  less  than  any  stated, 
non-zero,  fraction.  The  number  will  depend  on  xr 

(iii)  We  then  define  this  number  as  the  rate  at  which 
the  function  changes  with  respect  to  the  argument  for 
the  value  xl  of  the  argument. 

The  more  rigorous  of  the  older  mathematicians,  such  as 
Maclaurin,  starting  from  definitions  or  axioms  respecting 
variation  at  a  greater  or  less  rate,  proved  that  6xl  is  the 

'  true  measure  "  of  the  rate  at  which  3x2  varies  with  respect 
to  x  for  the  value  xl ;  but  the  reasoning  on  which  we  have 
based  the  definition  seems  sufficient  to  establish  its  correct- 

ness. Of  course  if  the  values  considered  were  determined 
by  measurement  a  stage  of  smallness  for  h  would  soon  be 
reached  at  which  it  would  become  impossible  to  distinguish 
between  6x1  and  §xl  +  3h ;  the  average  rate  determined  by 
the  smallest  available  value  of  h  would  therefore  coincide 
with  that  determined  by  the  process  and  definition  we  have 
adopted. 
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Ex.  1.  If  s  =  $gt2,  find  the  rate  at  which  8  varies  with  respect  to 
when  t  has  the  values  0,  £,  1,  2. 

Ex.  2.  If  p  —  -  ,  find  the  rate  at  which  p  varies  with  respect  to  v 

when  v  =  v1. 

§  38.  Limits.  It  would  seem  at  first  sight  as  if  the  rate 
6x1  could  be  determined  from  the  average  rate  Go^  +  SA, 
simply  by  putting  h  equal  to  0.  But  the  logic  of  such  a 
step  would  be  faulty,  because  the  equation 

r fl 

can  only  be  established  on  the  assumption  that  h  is  not 
zero  ;  in  proving  the  laws  of  division  in  algebra  the  case  in 
which  the  divisor  is  zero  is  expressly  excluded.  But 
further,  if  h  =  0,  so  also  is  k,  and  the  quotient  k/h  would 
appear  in  the  form  0/0  —  a  symbol  which  has  absolutely  no 
meaning  whatever.  The  ground  in  common  sense  for 
defining  Qxl  as  the  rate  of  change  for  the  value  x^  is  that 
6^  is  the  one  definite  number  towards  which  the  average 
rate  k/h  settles  down  as  h  is  taken  smaller  and  smaller. 
(See  the  values  of  Syl/Sxl  in  examples  4,  5,  6  (§  32)  as  an 
illustration  of  this  settling  down.) 

In  mathematical  language  we  are  said,  in  determining 
the.  number  towards  which  the  quotient  k/h  settles  down, 
to  find  the  limit  of  k/h  when  h  tends  to  zero  as  its  limit  ; 
in  this  process  h  is  a  variable  number,  positive  or  negative, 
and  it  may  take  any  value  except  zero  ;  zero  is  so  to  speak  a 
boundary  to  which  it  gets  nearer  and  nearer,  but  which  it 
never  actually  reaches. 

Before  giving  a  formal  definition  of  a  limit  we  will 
consider  a  few  typical  cases  ;  by  carefully  studying  these 
the  student  will  gather  the  necessity  for  the  introduction  of 
the  word  and  will  see  what  it  really  means. 

§  39.  Examples  of  Limits,  (i)  Let  AB  (Fig.  24)  be  a 
chord  of  a  circle  whose  centre  is  0  ;  AT,  BT  the  tangents 
at  A,  B.  Let  OT  cut  the  chord  AB  at  M  and  the  arc  AB  at 
N  ;  M  and  N  will  be  the  middle  points  of  the  chord  and  the 
arc  respectively  and  OM  will  be  perpendicular  to  AB. 
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The  triangles  OMA,  OAT  are  equiangular;  therefore 

MA     OM 

AT"  OA 

-0) 

B 

FIG.  24. 

Suppose  now  that  the  chord  AB  moves  towards  N,  the 
point  N  remaining  fixed  and  AB  being  always  perpendicu-, 
lar    to    ON',    let   A,  B   always 
denote  the   ends   of   the  chord, 
M  its  mid  point  and  T  the  point 
where  the  tangents  at  A  and  B 
meet.     So  long  as  A  and  B  are 
not  coincident,  that  is  so  long  as 
AB  is  really  a  chord,  equation 
(1)    remains    true.       The    ratio 
MA  \AT  is  a  function  of   OM, 
for  as  soon  as  OM  is  fixed  every 
other  line  in  the   figure   is   fixed,  and   the   ratio  can  be 
calculated. 

When  OM  is  all  but  equal  to  ON  both  MA  and  A  Twill 
be  all  but  zero ;  nevertheless  the  ratio  MA  :  A  T  will  be  all 
but  equal  to  1,  because  equation  (1)  remains  true  and  OM 
is  all  but  equal  to  ON  which  is  equal  to  OA.  Manifestly 
the  nearer  M  gets  to  N  the  nearer  does  the  ratio  MA  :  A  T 
get  to  unity. 

This  behaviour  of  the  ratio  MA  :  A  T  is  expressed  in  the 
words : — as  OM  approaches  ON  as  its  limit  the  ratio 
MA  :AT  approaches  1  as  its  limit. 

Here  again  it  has  to  be  noted  that  the  reasoning  ceases 
to  be  just  if  OM  becomes  actually  equal  to  ON,  for  the  tri- 

angles will  then  have  disappeared  and  the  equation  (1)  on 
which  the  reasoning  is  based  could  not  be  established. 
We  might  equally  well  consider  the  ratio  as  a  function, 

not  of  OM  but,  of  the  angle  NO  A  ;  if  the  angle  NO  A 
approaches  zero  as  its  limit  the  ratio  approaches  1  as  its 
limit. 

(ii)  Suppose  AB  (Fig.  24)  to  be  the  side  of  a  regular  poly- 
gon of  n  sides  (regular  Ti-gon)" inscribed  in  the  circle ;  then 

it  is  easy  to  prove  that  the  side  of  the  regular  n-gon  cir- 
cumscribed about  the  circle  is  equal  to  A  T+  BT  or  2  A  T  and 

that  the  angle  NO  A  is  180  /n  degrees.  If  p,  P  denote  the 
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perimeters  of  the  inscribed  and  of  the  circumscribed  poly 
gons  respectively,  then 

and  p_MA_OM_       MN 
-~-L     OA 

Imagine  a  series  of  polygons  constructed  corresponding 
to  greater  and  greater  values  of  n.  When  n  becomes  very 
large  the  angle  NO  A  will  become  very  small  ;  AB  and  MN 
will  also  become  small,  and  therefore  the  ratio  p/P  will 
become  nearly  equal  to  1.  Hence  when  the  angle  NO  A 
approaches  0  as  its  limit,  the  ratio  p/P  approaches  1  as  its 
limit  ;  or  again  it  may  be  put  thus,,  when  n  becomes  indefi- 

nitely large  p/P  approaches  1  as  its  limit. 
We  may  express  the  relation  between  p  and  P  in  a 

slightly  different  way.  From  equation  (2)  we  get 

p 
r  —  ?•)  =  -  •  *  • r    P     OA 

When  n  is  greater  than  4,  P  will  be  less  than  the  peri- 
meter of  the  circumscribed  square,  that  is  less  than  80  A  ; 

hence  .  P-p<8MN. 

Now  let  e  be  any  line  that  is  as  small  as  we  please,  only 
not  zero.  By  the  geometry  of  the  figure  we  see  that  we  can 
take  n  so  large  that  MN  shall  be  less  than  any  given  line  ; 
choose  n  therefore  so  large  that  MN  is  less  than  e/8.  Then 
for  this  and  for  all  greater  values  of  n,  8MN  will  be  less 
than  e  and  therefore  P—  p  less  than  e. 

It  is  here  that  the  limit  notion  comes  in  ;  no  matter  how 
large  n  may  be  P  and  p  will  never  exactly  coincide,  but  as 
n  increases  beyond  all  bounds  the  difference  P  —  p  tends  to 
zero  as  its  limit,  that  is  the  perimeters  P  and  p  tend 
towards  the  same  limit. 

G«       H 
FIG.  25. 

On  the  straight  line  FH  (Fig.  25)  mark  off  Fgn,  FGn  equal 
to  the  perimeters  p,  P  respectively ;  then  clearly  for  every 
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value  of  n,  Fgn  is  less  than  FGn.  But,  when  n  has  been 
chosen  as  above,  gnQn  =  P-P<€) 
and  therefore  n  can  be  taken  so  large  that  gnGn  shall  be  less 
than  the  line  e.  Hence  the  common  limit  of  p  and  P  is  a 
line  jTO  greater  than  every  one  of  the  lines  Fgn,  but  less  than 
every  one  of  the  lines  FGn, 

Since  the  circumference  C  of  the  circle  always  lies 
between  p  and  P,  the  circumference  will  be  equal  to  the 
line  FG  ;  the  circumference  may  therefore  be  considered 
as  the  limit  either  of  an  inscribed  or  of  a  circumscribed 
regular  polygon  when  the  number  of  its  sides  increases 
indefinitely. 

(iii)  Show  that  the  area  of  a  circle  may  be  considered  as 
the  limit  either  of  an  inscribed  or  of  a  circumscribed  regular 
7i-gon  ;  and  that  an  arc  of  a  circle  may  be  considered  as 
the  limit  of  the  sum  of  n  equal  chords  obtained  by  dividing 
the  arc  into  n  equal  arcs. 

The  polygons  have  been  supposed  regular,  but  it  would 
not  be  difficult  to  show  that  the  theorems  hold  even  if  they 
be  not  regular,  provided  that  as  n  increases  beyond  all 
bounds  the  length  of  each  side  of  the  polygons  approaches 
zero  as  its  limit. 

(iv)  Let  0  be  the  number  of  radians  in  the  angle  NO  A, 
where  the  angle  is  supposed  to  be  acute  ;  we  have 

chord  A  B  <  arc  AB  <  A  T+  BTt 

and  therefore  MA  <  arc  NA  <  A  T% 

MA      a,rcNA      AT 
Hence 

that  is,  sin  0  <  0  <  tan  0. 

Divide  by  sin  0  ;  therefore 
0  1 

sin  0   *  cos  0  ' ~ 
and  therefore  1  >  -        >  cos  6. u 

Thus  the  quotient  sin  0/0  lies  between  1  and  cos  0.  When 
0  approaches  0  as  its  limit  cos  9  approaches  1  as  its  limit  ; 
therefore  also  sin  0/0  approaches  1  as  its  limit. 
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From  the  nature  of  a  limit,  or  from  the  last  inequality, 
we  see  that  the  statement  that  sin  0/0  approaches  1  as  its 
limit  when  0  approaches  0  as  its  limit  may  be  put  in  the 
form  :  when  0  is  a  small  number  sin  0  is  approximately 
equal  to  0.  The  student  should  verify  this  statement  from 

the  Tables;  thus,  for  L  NOA  =  l°, 
0  =  -0174533;    sin  0=  "0174524  ; 

for  LNOA  =  5°, 
0  =  '0872665;   sin  0=  '087  15  57. 

(v)  Show  that  the  limit  of  tan  0/0,  as  0  approaches  0  as 
its  limit,  is  unity. 

(vi)  Provided  x  is  not  equal  to  a, 

The  equation  holds  true  so  long  as  x  is  not  equal  to  a  ;  but 
we  can  take  x  so  nearly  equal  to  a  that  x  +  a  shall  differ 
from  2a  by  as  little  as  we  please.  That  is,  the  quotient 
can  be  brought  as  near  to  2a  as  we  please  simply  by  taking 
x  near  enough  to  a.  Hence  although  the  quotient  has  no 
meaning  whatever,  no  value,  when  x  is  equal  to  a,  it  has 
a  definite  limit,  namely  2a,  for  x  approaching  a  as  its  limit. 

(vii)  Let  8PT  (Fig.  26)  be  the  tangent  to  a  circle  at  P  ; 
PQ  a  secant  and  PR  a  given  length  measured  along  the 

secant.  Describe  a  circle  with 
centre  P  and  radius  PR,  cutting 
PT  at  R. 

Now  let  Q  move  along  the 
arc  PQ  towards  P;  R  will 
therefore  move  along  the  arc 
RR  towards  R.  The  nearer  Q 
approaches  P,  the  nearer  does 
R  come  to  R,  and  the  smaller 
becomes  the  angle  TPR.  If 
we  suppose  Q  to  approach  P 

as  its  limiting  position,  the  secant  PR  will  approach  the 
tangent  PT  as  its  limiting  position.  If  we  suppose  the 

secant  drawn  on  the  other  side  of  P,  as  PQ',  PS  will  be  the 
limiting  position  of  the  secant  as  Q'  approaches  P.  Hence 
we  may  define  a  tangent  thus  : 

DEFINITION.      A  tangent  to  a  curve  at  a  point  P  is  the 
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limiting  position  of  a  chord  PQ  as  Q  approaches  P  as  its 
limiting  position. 

It  is  this  definition  of  a  tangent  that  will  be  subsequently 
used  in  the  book. 

(viii)  Show  from  the  theorem  in  Exercises  V.  10,  that  if  T  is 
a  point  on  the  directrix  KN  such  that  the  angle  PST  is  a  right 
angle,  the  line  PT  will  be  the  tangent  to  the  conic  at  P. 

§  40.  General  Explanation  of  a  Limit.  The  special  meaning 
of  the  word  limit  should  now  be  fairly  clear.  In  each  of 
the  examples  there  are  two  variables,  one  being  a  function 
of  the  other. 

One  of  these  variables,  the  argument,  is  supposed  to 
become  all  but  equal  to  a  definite  number,  for  example  to 
a  or  0  or  ON ;  or  else  it  is  supposed  to  increase  beyond  all 
bound.  In  the  former  case  the  definite  number  is  called 
the  limit  of  the  argument ;  it  is  not  a  value  that  the 
argument  actually  takes  ;  thus  in  (iv)  0  is  not  a  value  that  0 
assumes.  In  the  latter  case  the  argument  is  generally  said 
to  have  infinity  for  limit,  though  this  mode  of  expression 
seems  rather  a  contradiction  in  terms ;  the  argument  has 
infinity  for  limit  if  it  is  supposed  to  become  greater  than 
any  number  N,  no  matter  how  great  N  may  be. 

Again,  when  the  argument  becomes  nearly  equal  to  its 
limit  the  function  at  the  same  time  becomes  nearly  equal  to 
a  definite  number;  not  only  so,  but  we  can  make  the 
argument  differ  so  little  from  its  limit  that  the  function 
shall  differ  by  as  little  as  we  please  (except  by  the  difference 
zero)  from  that  definite  number.  This  definite  number 
therefore  is  called  the  limit  of  the  function  for  the 

argument  approaching  its  limit. 
We  will  now  give  a  formal  definition  of  a  limit ;  the  first 

mode  of  statement  is  somewhat  rough,  the  second  is  more 
definite,  but  in  a  first  reading  it  may  be  found  a  little  more 
difficult  to  grasp. 

§  41.  Definition  of  a  Limit.  Notation.  Distinction  between 
Limit  and  Value. 

DEFINITION  1.  When  it  is  possible  to  make  the  argu- 
ment of  a  given  function  so  nearly  equal  to  a  definite 

number  a  that  the  function  will  differ  from  another  definite 
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number  A  by  as  little  as  we  please,  that  difference  remaining 
as  small  as  we  please  when  the  argument  is  taken  still  nearer 
to  a,  then  A  is  called  the  limit  of  the  function  for  the  argu 
ment  approaching  (or  converging  to)  a  as  its  limit. 

DEFINITION  2.  Given  any  positive  number  e  that  may 
be  as  small  as  we  please,  except  that  it  must  not  be  zero , 
given  also  two  definite  numbers  a,  A  ;  if  it  be  possible  to 
find  a  positive  number  r\  such  that  a  given  function  shall 
differ  from  A  by  less  than  e  for  all  values  of  its  argument 
that  differ  from  a  by  less  than  r\  (the  value  a  itself  being 
excluded),  then  A  is  called  the  limit  of  the  function  for  the 
argument  approaching  (or  converging  to)  a  as  its  limit. 

The  modifications  required  when  either  a  or  A  is  infinite 
offer  no  difficulty.  In  general  a  variable  is  said  to  become 
infinite  if  it  takes  values  that  are  numerically  greater  than 
any  positive  number  N,  no  matter  how  large  N  may  be  ;  if 
the  variable  is  positive  it  converges  to  +  oo  ,  if  negative  to 
—  oo .  The  definite  number  A  will  be  the  limit  of  a 
function  for  its  argument  approaching  +00  as  its  limit, 
provided  that  a  positive  number  N  can  be  found  such  that 
for  every  value  of  the  argument  greater  than  N  the  difference 
between  the  function  and  A  shall  be  as  small  as  we  please. 

The  notation  for  a  limit  is  the  letter  L  or  the  first  three 
letters  of  the  word  limit,  namely  lim.  To  state  that  the 
function  f(x)  approaches  A  as  its  limit  when  x  approaches 
a  as  its  limit,  the  notation  is 

L  f(x)  =  A    when   L  x  =  a, 
or,  more  usually,  L  f(x)  =  A  ; 

x=a 

read  "  limit  of  f(x)  for  x  equal  to  a  is  A."  It  must  be 
remembered  however  that  the  more  usual  form  is  a  con- 

traction for  the  first,  and  that  a,  A  are  not  values  that  the 
variables  are  supposed  actually  to  take. 

In  this  notation,  if  LNOA  =  6  and  OJ=a,  ex.  (i)  of  §  39  may  be 
stated  T    ̂ _i  MA-^ u   -       —  1    or     Li  ~      —  i  ; 

ex.  (ii)  :  L  p=  L  P=C  \ n=x>  n=x> 

sin  6     ,  tan  6 

o 
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The  necessity  for  the  introduction  of  the  notion  of  a 
limit  arose  from  the  consideration  of  cases  in  which  the 
function  ceased  to  have  meaning  when  a  particular  value 
was  assigned  to  the  argument ;  but  the  notion  of  a  limit  is 
not,  by  the  definition,  restricted  to  such  cases.  Whether 
f(x)  has  or  has  not  a  definite  value  when  x  is  equal  to  a  the 
limit  is  found  by  considering  the  values  of  f(x)  for  values 
of  x  nearly  equal  to  a ;  the  value  a  itself  is  not  to  be  used 
in  the  process.  It  may  of  course  happen  that  the  limit  A 
of  the  function  coincides  with  the  value  f(a) ;  still,  even 
when  A  and  f(a)  coincide,  the  fact  that  they  are  deter- 

mined by  different  processes  should  not  be  forgotten. 
Instances  frequently  occur  in  which  the  limit  A  and  the 
value  f(a)  are  both  definite  and  yet  unequal. 

§  42.  Theorems  on  Limits.  We  now  state  the  principal 
rules  for  working  with  limits.  In  the  following  theorems 
the  functions  have  the  same  argument,  x  say,  and  the 
limits  spoken  of  are  the  limits  for  each  function  as  the 
argument  approaches  a  limit,  say  a,  the  limits  of  the 
functions  being  finite ;  it  will  be  sufficient  therefore  to  use 

the  letter  L  without  the  subscript  "  x  —  a."  The  number  of 
functions  is  supposed  to  be  finite ;  the  theorems  are  not 
necessarily  true  if  the  number  be  infinite. 
THEOREM  I.  The  limit  of  the  algebraic  sum  of  any 

number  of  functions  is  equal  to  the  like  algebraic  sum  of 
the  limits  of  the  functions. 
THEOREM  II.  The  limit  of  the  product  of  any  number 

of  functions  is  equal  to  the  product  of  the  limits  of  the 
functions. 

THEOREM  III.  The  limit  of  the  quotient  of  two  functions 
is  equal  to  the  quotient  of  the  limits  of  the  functions,  pro- 

vided the  limit  of  the  divisor  is  not  zero. 
The  proof  of  these  theorems  is  simple ;  it  depends  on  the 

particular  cases  that  if  the  limit  of  each  of  a  finite  number 
of  variables  is  zero,  then  the  limit  of  their  sum  and  of  their 
product  must  be  zero. 

Let  hlt  7i2,  hs,  for  example,  be  three  variables  the  limit  of 
each  of  which  is  zero.  To  prove  that  the  limit  of  their  sum 
is  zero  we  have  to  show  that  x  can  be  taken  so  near  a  that 
that  sum  will  be  numerically  less  than  any  given  positive 
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number  e.  Now,  since  the  limit  of  each  is  zero,  we  can 
take  x  so  near  a  that  each  of  the  variables  shall  be  numeri- 

cally less  than  Je;  hence  we  can  take  x  so  near  a  that 
their  sum  shall  be  less  than  e.  The  same  reasoning  holds 
if  there  be  n  variables  ;  each  can  be  made  less  than  ejn. 
It  does  not  matter  whether  the  variables  be  positive  or 
negative  or  whether  the  sum  contain  negative  terms  since 
it  is  the  numerical  value  alone  that  is  concerned.  Mani- 

festly the  product  will  also  have  zero  for  limit. 
Again,  if  C  be  any  finite  constant,  the  limit  of  Gh^  will 

be  zero  ;  we  need  only  choose  x  so  near  to  a  that  h-^  shall 
be  numerically  less  than  e/C. 

Now,  let  u,  v,  w  be  functions  of  x  whose  limits  are 
Uy  V,  W.  Then  by  the  nature  of  a  limit  when  x  is  nearly 

equal  to  a,  u,  v,  w  are  nearly  equal  to  U,  V,  W',  hence  we 
may  write  u=U+h  v=V+h2,  w=W+h » 

where  hv  h2,  hB  are  variables  which  have  zero  for  limit. 

Then  u  +  v-iv=  11+1^+  V+h2-  W-h 

Hence,  since  the  limit  of  each  of  the  numbers  hv  hz,  hs  is 

zero'  L(u  +  v-w)=U+V-W, 

Again,  uv  =  (  U+  h^(  F+  h2), 

so  that  L  (uv)  =  UV=  (L  u)  x  (L  v). 

Again,  L  (uvw)  =  L  (uv)  X  L  w, 
=  L  u  x  L  v  x  L  iv, 

by  applying  twice  the  case  for  the  product  of  two  variables. 

Finally  S Finally,  v 

u_U 
or  v~v 

The  limit  of   the   second   fraction   is   zero  because  the 

numerator  can  be  made  as  small  as  we  please,  while  the 
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denominator  is  not  zero,  since  V  is  by  hypothesis  not  zero  ; 
it  follows  that  u     u 1  1  —  —  —  — —     —     -  . 

v     V    L  v 

We  have  for  simplicity  taken  only  three  functions,  but 
clearly  the  reasoning  holds  if  there  be  more  than  three 
functions,  the  limits  U,  F,  .  .  .  being  of  course  all  finite  and 
no  denominator  having  zero  for  limit. 

If  one  or  more  of  the  functions  be  constant  it  is  evident 

that  the  reasoning  holds  ;  thus  u  might  be  a  constant,  and 
then  we  might  consider  Lu  as  being  simply  u  itself, 
without  in  any  way  violating  the  conditions  for  a  limit. 

§  43.  Examples.  We  will  now  give  a  number  of  examples 
in  which  the  above  principles  come  into  play.  In  seeking 
the  limit  it  is  useful  to  bear  in  mind  that  any  transforma- 

tion of  the  function  which  is  legitimate  when  the  argument 
is  not  equal  to  its  limit  may  be  applied  as  a  help  towards 
the  solution.  Thus 

x 

The  division  of  x  out  of  numerator  and  denominator  is 

legitimate  so  long  as  x  is  not  zero  ;  but  in  finding  the  limit 
for  x==0,  x  is.  not  to  become  0,  and  therefore  the  first  and 
the  last  of  the  three  fractions  are  equal  for  all  values  of  x 
considered.  Hence 

2'
 

In  the  same  way  we  find 

l_   T  1  _0 =      Lt  —     -  —  "• X 

We  take  it  to  be  sufficiently  evident  that  the  first  of 
these  limits  is  J;  by  Def.  2,  §  41,  we  should  be  able  to  find  q, 
so  that  when  x  is  numerically  less  than  r\  the  difference  be- 

tween the  function  and  \  shall  be  less  than  any  number  we 

may  name,  say  less  than  '001.  But  the  search  for  r\  is  usually 
very  troublesome,  and  in  such  simple  cases  as  we  have  to 
deal  with  we  shall  usually  dispense  with  that  part  of  the 
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investigation,  as  the  nature  of  the  processes  involved  will 
show  that  such  a  number  can  be  found. 

Ex.  1. 

1+2  +  3+  ... _      f, 
For  the  .urn- 

This  example  shows  that  Th.  L,  §  42,  is  not  necessarily  true  unless 
the  number  of  functions  is  finite  ;  for  although  the  limit  of  each  term 
in  the  bracket  is  zero,  the  limit  of  the  sum  is  not  zero. 

9 
2. 

for 

!2  +  22  +  32+  .  .  +n      1      1 
and  therefore  -  =  -H  ---  1 

n*  3^2n 
so  that  the  limit  is  -. 

o 

Ex.  3.     If  r  be  a  proper  fraction  and  n  a  positive  integer,    L  rn  =  0. n:=oo 

For  any  positive  proper  fraction  is  of  the  form  1/(1  +a),  where  a  is  a 
positive  number.     Now,  by  the  binomial  theorem  or  otherwise  we  can 
readily  show  that  (1  +a)n  is  greater  than  1  +na. 

Hence,  so  far  as  numerical  value  is  concerned, 

and  since  the  limit  of  1/(1  -\-tia}  for  n=  oo  is  zero,  the  iimit  of  rn  is  also zero. 

Ex.  4.     Show  that  if  r  be  a  proper  fraction  and  n  a  positive  integer 

L  nrn=0,       L  wVl  =  0,  etc., 
»J  =  30  »l=00 

for  (\+a)n>l-\-na  +  ̂ n(n-\)az\  so  that 

nrn<~  -  -  -  .,  etc. 

n 

.   5.  Ij 

for  the  fraction 
*+S-i 

/Y*  wli 

3  —  —  4- •y»  /Y*£t •  \  vU 

and  the  limits  of  numerator  and  denominator  are  2  and  3  respectivelv. 
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Ex.  6.  L( 

for  -     m  3^     3 

2 

9 
First  remove  the  common  factor  #+1 ;  it  is  the  presence  of  this 

factor  that  makes  the  fraction  take  the  form  0/0  when  we  try  to 
calculate  its  value  for  x=  —  1. 

Ex.8.  L    „     .  ̂ f~L   ^=-8. 

Ex.  9.  L8^: 
x=0      X 

f  sm3.r     sin  3^  T  sm3# 
for  -=— — x3    and     L— — -  =  1. 

x  &x  X=Q   3^: 

Ex.  10.  L  £Ul£=i. 

-'2 

sn  when  x  v 

as  its  limit.     Hence 

7T"  7F 

Put  ̂   =  g  -y\  then  when  ̂   approaches  -  as  its  limit  y  approaches  0 

_ 

This  device  of  changing  the  variable  is  often  useful  ;  for  example  : 

Ex.  11.  L(j+A-g-|«*.  ' 7t=0  »  2 

Put  *-  =  ?/2  and  x+h=(y+k^  so  that  when  A  approaches  0  so  does  ̂ ; therefore 

37/2     3       3  i —  *^  —  —  >/  —  —  *•». 

~2y~2y~2'r 
Ex.  12.  P,  P'  are  the  perimeters  of  two  regular  w-gons  circum- 

scribed about  two  circles  whose  radii  are  a,  a'  and  circumferences 
(7,  C  ;  show  that 

P:a  =  P':a'     and     Cr:a=(7':«'. 

The  constant  ratio  of  circumference  to  radius  is  denoted  by  2vr  ; 

TT  is  an  irrational  number,  approximately  equal  to  3'14159. 
Ex.  13.  Show  that  the  area  of  a  circle  of  radius  a  is  Tra2,  and  that 

the  area  of  a  sector  of  the  circle  of  angle  0  radians  is 
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Ex.  14.     Show  that  the  volume  of  a  right  circular  cylinder,  the 
radius  of  the  base  being  a  and  the  altitude  A,  is  7r«2A. 

Show  that  the  area  of  the  curved  surface  is  27rah. 

Ex.  15.  If  A  is  the  base  and  h  the  altitude  of  a  triangular  pyramid, 
and  if  the  pyramid  be  divided  into  n  slices,  each  of  height  hfn,  by 
planes  parallel  to  the  base  ;  show  that  the  volume  of  the  pyramid 
is  less  than 

*{a  +  <-^t  +  <^  +  ...  +»,  +  -'44 n  I  n2  nz  nz        n2     ) 

but  greater  than 

n  \     n  n  n         n 

Hence  show,  by  ex.  2,  that  the  volume  is  ̂ hA.  Extend  the  result  to 
any  pyramid. 

(Let  V  be  the  vertex  and  DEF  the  base  ;  through  the  line  in  which 
a  plane  meets  the  face  Flfi^draw  a  plane  parallel  to  VD  to  meet  the  two 
planes  next  above  and  next  below  the  plane  containing  the  line.  Two 
sets  of  triangular  prisms  will  be  formed  ;  the  one  set  will  lie  within 
the  pyramid,  the  other  set  will  include  the  pyramid.  The  two  sums 
are  the  volumes  of  the  two  sets  ;  the  highest  pyramid  of  the  upper 
set  is  got  by  drawing  a  plane  through  the  vertex  parallel  to  the  base.) 

Ex.  16.  Taking  a  circular  cone  as  the  limit  of  a  pyramid  whose 
vertex  is  the  vertex  of  the  cone  and  whose  base  is  a  regular  ?i-gon 
inscribed  in  or  described  about  the  base  of  the  cone,  deduce  from 
ex.  15  that  the  volume  of  a  cone  is  ̂ hA,  h  being  its  altitude  and 
A  its  base. 

Ex.  17.  Show  that  the  volume  of  the  frustum  of  a  right  circular 

cone  is  ̂ h(A  +  *jAB  +  B)  or  ̂ -f  a?  +  ab  +  b2  J,  where  h  is  the  height  of 
the  frustum,  J,  a  and  B,  b  the  areas  and  the  radii  of  the  circular  ends. 

Ex.  18.  C  and  a  are  the  circumference  and  the  radius  of  the  base, 
and  I  is  the  slant  side  of  a  right  circular  cone  ;  show  that  the  area  of 
the  curved  surface  is  \IC  or  irla. 

(The  curved  surface  may  be  considered  as  the  limit  of  the  lateral 
surface  of  either  of  the  pyramids  of  ex.  16.) 

Ex.  19.  If  the  slant  side  of  a  frustum  of  a  right  circular  cone  is  £, 
and  if  the  radii  of  the  circular  ends  are  a,  b  show  that  the  area  of 

the  curved  surface  is  irl(a  -f  6)  ;  if  c,  c'  are  the  circumferences  of  the 
ends,  the  area  is  ̂l(c  +  c'). 



CHAPTEK  V. 

CONTINUITY  OF  FUNCTIONS.     SPECIAL  LIMITS. 

§  44.  Continuity  of  a  Function.  The  conception  of  a  limit 
enables  us  to  put  in  arithmetical  form  the  property  that 
may  be  considered  as  most  characteristic  of  a  continuous 
function. 

The  argument  will  be  said  to  vary  continuously  from  a 
to  b  when  it  takes  once  and  once  only  every  value  lying 
between  a  and  b ;  when  the  argument  is  represented  as  an 
abscissa,  the  corresponding  point  will  move  along  the  axis 
from  the  point  a  to  the  point  b  as  the  argument  varies 
continuously  from  a  to  b,  and  will  coincide  once  and  once 
only  with  every  point  on  that  segment. 

In  plotting  the  graphs  of  the  elementary  functions  it 
was  found  that,  except  in  the  immediate  neighbourhood  of 
those  values  of  the  argument  for  which  the  function 
became  infinite,  a  small  change  in  the  argument  produced 
only  a  small  change  in  the  function.  Now  by  the  defini- 

tion of  a  limit,  when  x  is  nearly  equal  to  a  the  function, 
f(x)  say,  is  nearly  equal  to  its  limit  A  ;  if  therefore  the 
limit  A  be  identical  with  the  value  f(a)  of  the  function, 
we  see  that  when  x  either  increases  or  decreases  from  the 

value  a  by  a  small  amount  the  function  f(x)  will  also 
change  by  a  small  amount  from  the  value  /(a).  Hence  the 

DEFINITION.  A  function  f(x)  is  defined  to  be  continuous 
for  the  value  a  of  x,  or  more  simply,  continuous  at  a  if 

(i)  f(a)  is  a  definite  (finite)  number,  and 

(ii)  Lf(x)=f(a). 
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For  continuity  therefore  the  'value  of  f(x)  for  x  —  a  and 
the  limit  of  rf(x)  for  x  =  a  must  coincide ;  since  infinity  is 
not -a  value,  in  the  sense  that  is  required  for  the  application 
of  the  laws  of  algebra,  a  function  ceases  to  be  continuous, 
that  is  it  becomes  discontinuous,  for  those  values  of  the 
argument  that  make  it  infinite. 

Again  it  is  implied  in  the  definition  that  x  may  approach 
a  either  through  values  less  than  a  or  through  values 
greater  than  a ;  that  is  when  /(a)  is  represented  as  an 
ordinate  the  point  x  may  approach  a  either  from  the  left 
or  from  the  right  and  the  limit  must  for  both  methods  of 
approach  be  the  same.  It  will  sometimes  happen,  as  for 
example  when  f(x)  =  +/(a2  —  x2),  that  x  can  only  approach 
a  from  one  side,  the  function  being  undefined  for  values  of 
x  on  the  other  side ;  in  such  cases  of  course  the  condition 
that  the  limit  must  be  the  same  from  whichever  side  x 
approaches  a  has  to  be  modified,  but  the  modification  offers 
no  difficulty.  To  express  that  x  is  to  approach  its  limit  a 
through  values  less  than  a  the  notation 

Lf(x) 
x  =  a-Q 

is  sometimes  used,  and  in  the  same  way  the  notation 
x  =  a+0  implies  that  x  is  to  approach  a  through  values 
greater  than  a ;  but  we  shall  as  a  rule  use  the  ordinary 
notation  and  leave  the  student  to  modify  it  to  suit  special 
cases. 

The  only  other  type  of  discontinuity  that  needs  special 
mention  is  that  represented  in  Fig.  27.  As  x  varies  from  a 

value  a  little  less  than  a  to 

one  a  little  greater  the  func- 
tion changes  by  the  finite 

amount  BO.  Here  the  func- 

B. 

tion  f(x)  has  not  a  definite 
value  when  x  =  a ;  as  x  ap- 
proaches  a  from  the  left  f(x) 

X     approaches  one  definite  limit 
O a 

FlG  27  ^^»   while  as  x   approaches 
from  the  other  side  f(x)  ap- 

proaches another  definite  limit  AC.  If  a  moving  particle 
were  at  a  certain  instant  to  experience  an  impulse  the 
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graph  of  its  velocity  would  present  a  discontinuity  of  this 
kind  for  the  value  of  the  abscissa  representing  the  instant. 
(See  §  69,  ex.  6,  for  an  example  of  discontinuity.) 

§  45.  Theorems  on  Continuous  Functions.  When  f(x]  is 
continuous  at  a  it  is  merely  stating  the  definition  of 
continuity  in  another  form  to  say  that  if  x  be  nearly  equal 
to  a,  f(x)  is  nearly  equal  to  f(a) ;  or  again  we  may  say  that 
f(x)=f(a)  +  d}  where  d  is  a  variable  which  converges  to  zero 
when  x  converges  to  a. 

A  function  is  said  to  be  continuous  over  the  range  from  a 
to  b  if  it  is  continuous  for  every  value  of  its  argument  that 
lies  between  a  and  b ;  the  range  is  understood,  unless 
the  contrary  is  stated,  to  include  its  extremities  a,  b.  A 
range  which  includes  its  extremities  is  sometimes  called  a 
closed  range ;  one  which  excludes  its  extremities  an  open 
range. 

The  following  theorems  are  of  constant  application : 

THEOREM  I.  If  /(x)  is  continuous  at  a  and  if  /(a)  is  not 
zero,  then  for  values  of  x  near  a,  /(x)  has  the  same  sign  as 

/(a). 
For  if  f(x)—f(a}-\-d,  the  sign  of  f(x)  will  be  that  of 

the  numerically  greater  of  the  two  numbers  /(a)  and  d ; 
since  x  may  be  taken  so  near  to  a  that  d  shall  be  less 
(numerically)  than  any  given  number,  and  therefore  less 
(numerically)  than  /(a),  the  sign  will  be  that  of  f(a). 

The  meaning  of  the  phrase  "  near  a '  and  of  similar 
phrases  will  be  gathered  from  the  proof. 

THEOREM  II.  If  f(^)  be  continuous  over  the  range  from  a 
to  b,  and  iff(&)  =  A  and  /(b)  =  B,  then  /(x)  will  assume  once 
at  least  every  value  lying  between  A  and  B  as  x  ranges 
continuously  from  a  to  b ;  in  particular  if  A  and  B  have 
opposite  signs  /(x)  ivill  become  zero  for  at  least  one  value  of 
x  lying  between  a  and  b. 
A  mathematical  proof  of  this  theorem  lies  beyond 

our  scope;  so  far  as  a  function  is  adequately  represented 
by  a  graph  the  theorem  is  geometrically  evident.  It  is 
easy  also  to  show  by  use  of  a  graph  that  the  converse 
theorem  is  not  necessarily  true. 
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§  46.  Continuity  of  the  Elementary  Functions.  The  theo- 
rems on  limits  stated  in  §  42  enable  us  to  prove  that  the 

elementary  functions  of  a  single  variable  are  continuous  for 
all  values  of  the  variable  except  those  for  which  a  function 
becomes  infinite. 

When  x  varies  continuously  so  does  the  product  x11  and 
the  product  axn,  n  being  any  positive  integer  and  a  a  con- 

stant. (§  42,  Th.  II.).  Hence  by  Th.  I.  a  rational  integral 
function  is  continuous  for  all  finite  values  of  its  argument  ; 
and  by  Th.  I.  and  Th.  III.  a  rational  fractional  function  is 
continuous  for  all  finite  values  of  its  argument  except  such 
as  make  its  denominator  vanish. 

From  the  geometrical  definition  or  by  direct  application 
of  the  limit  test  we  see  that  the  trigonometrical  functions 
are  continuous  for  all  values  of  the  variable  except  such  as 
make  the  function  infinite.  The  sine  and  the  cosine  are 
continuous  for  all  values  of  the  argument  ;  the  tangent  and 
the  secant  for  all  values  except  the  odd  multiples  of  7r/2  ; 
the  cotangent  and  the  cosecant  for  all  values  except  0  and 
multiples  of  TT. 

A  full  discussion  of  the  continuity  of  ax  would  take  us 
too  far  into  abstract  considerations  ;  we  will  therefore 
assume  that  ax  is  continuous  for  all  finite  values  of  x  and 
that  its  inverse,  log  x,  is  continuous  for  all  finite  positive 
values  of  x  but  discontinuous  for  x  =  0.  When  x  is  irra- 

tional we  may  in  practice  replace  ax  by  a?'  where  x  is  a 
rational  approximation  to  x  ;  the  simplest  discussion  is 
based  on  the  exponential  series. 

Function  of  a  Function.  When  y  is  a  function  of  u, 
say  y  =  (j)(u),  and  u  a  function  of  x,  say  u=f(x),  then  y  is 
said  to  be  a  function  of  a  function  of  x  ;  y  is  thus  given  as 
a  function  of  x  mediately,  through  u.  Functions  of  func- 

tions are  of  constant  occurrence  in  the  calculus,  and  there 
may  be  several  intermediate  variables  such  as  u. 

If  y  is  a  continuous  function  of  u,  and  u  a  continuous 
function  of  x,  the  student  will  have  no  difficulty  in  showing 
that  y  is  a  continuous  function  of  x  ;  in  the  notation  of  §  42 

Again  when  a  function  is  continuous  so  is  its  inverse 
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function.  Hence  xn  is  continuous  when  n  is  fractional, 
positive  or  negative,  except  for  x  =  0  when  n  is  negative. 
In  the  same  way  we  see  that  the  inverse  trigonometric 
functions  are  in  general  continuous. 

nrffl,  _  rtfl 

§  47.   L          -.      The   limits   discussed   in  §§  47-49   are x=a  &       ̂  
fundamental. 

ln 

x=a 

n  being  any  rational  number. 

(i)  Let  n  be  a  positive  integer ;  then 
/y>n  __  ft  n ..  <j  Q        O 

x  —  a 

LI    JU         ~"
~    \AJ 

(- 

\    />•  —  fl y.=.n.  ̂     w        t(/ 

since  the  limit  of  each  of  the  n  terms  is  a"'1. 

(ii)  Let  n  be  a  positive  proper  fraction  p/q,  where  p,  q 
are  positive  integers. 

Put  yi  for  x  and  &  for  a  ;  then  when  x  =  a,y  =  b.  Hence 
since  xn  =  xP/v  =  P  and  an  = 

xn~  an 

by  rejecting  the  common  factor  y  — 

_y  = ...    x-a 

9 

(iii)  Let  ti  be  negative,  but  either  integral  or  fractional, 
say  n  =  —  m.     Then 

/yi/v  ̂ ^^  y~rf  ft"            /yl  "™  7/C'            /^   ~~  liV  SWl't   ^^  //  '*(' IAJ              \Aj              tAs                      t-v  IA/                VA/                         -•- 

          S/     * 

/v>          /-•                          y          /  /  /y  __  /'I                /y>Wi/7  W*  ' 
J>   CO                        X    a  JU  —  Uj               vis      tt 
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fxn-an\  /xm-am^  "• 
x  L 

=  —  mam~ l  X  —  -  =  —  ma  ~m~l  =  nan  ~ l, 

a2m
 

since  the  limit  of  the  first  factor  is  mam~l  by  cases  (i) 
and  (ii). 

The  student  should  be  able  to  identify  the  theorem  in 
whatever  notation  it  may  be  presented ;  thus 

h\n   /v.7i  1/1  1\  1 
It)     —  d/  1T1/JL  l  \  l —  =  /n/r,n  ~ l  •      1 1  — I   I  —   

v/        v2' 
COK.     If   h  be   a   small    positive   or   negative    number, 

(x+h)n  is  equal  to  xn+nhxn-1  approximately. 

8  48.  L   (l  +  -  -Y"      The  number  e. 
"  V        m  / 

J)l=00    v  "t'/ 

(i)  Let   m   be   a   positive   integer   and   expand   by   the 
Binomial  Theorem ;    then 

(        1  \m_         m     1      m(m-l)    1 ~  i   — 
mJ  1m1        2  !        m2 

m(m  —  l)(m  —  2)    1 
3 

I-1     fi-iVi-2' 11—  -         II  --  I  \  •*  -- m     \       m/  V      m 
~    + 

3! 

In  the  expansion  there  are  (m  +  1)  terms  and  every  term 
after  the  second  can  be  written  in  the  form  given  to  the 
3rd  and  4th  terms;  for  example,  the  last  or  (m  +  l)th  term 
is 

~m  I 

m 

Let  n  be  any  positive  integer  less  than  m  and  let  n  be 
kept  fixed  while  m  increases.  Denote  the  first  (n-\-l)  terms 

of  the  expansion  by  S'n+1  and  the  remaining  (m  —  n)  terms 
by#w+1.  Then 

/  -j  \  m 1 
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Now, 

*vy}        \  WYL  /  \  (YYI  / 

=14.14. — 224.. — ISi-i — SL+... 
+  1^    2!  3!  r 

The   limit   for   ra  =  oo   of   each   of   the  factors  (1   ), 
/        2\ 
(1   ) .  •  •  is  1 ,  and  since  there  is  a  finite  number  of  factors \       m/ 
the  limit  of  each  numerator  is  1.     Denote  by  Sn+l  the  limit 

for  m  =  oo  of  S'n+1 ;  therefore 

-  -       =i_f!_i_J_4.1  +  ...  +  JL 

We  have  now  to  consider  the  limit  of  -R'n+1.     The  first 
term  of  R'n+l  is 

and  this  term  is  a  factor  of  every  one  that  follows  it. 

Hence  R'n+l  is  the  product  of 

and 

A 
V ,  97i       \         m  /  \         m  /  ,          ,  , 

1  H   jr —   •   —   —   — to  (m  —  n)  terms I      O  / —       i      .»\/._       i      O\  V  / 

Everywhere  replace  each  of  the  factors  (l  ---  ),  (  1  —  -X  ••• 
/       wi  —  \\  m  m 

J,  which  are  all  positive  and  less  than  1,  by  the 

factor  1,  and  replace  each  of  the  factors  (n  +  2),  (n+3)  ...  m 

by  (w  +  1);  by  so  doing  we  shall  increase  R'n+\t  which  is therefore  less  than' 

1H  ---  rr  +  7     r^TxsH  ----  to  (m-?i)  terms  [• 
+  1)!!       w+1     (?i+  1)2 
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But  the  series  within  the  bracket  is  a  geometrical  pro 
gression  whose  sum  is 

(n+l) m~n 
1         \. 

+  I)m-n)  ' 
__  __  

n n  +  I 

and  for  every  value  of  m  greater  than  n,  this  sum  is  less 
than  (n  +  I)/n. 

Hence  R'n+i  is  a  positive  number  which  for  every  value 
of  m  greater  than  n  is  less  than  Rffn+i>  where 

7?"  1  ̂ +l          1 
>-  n 

/        1  \m But  L  (1  +  --)   =L/ _      \          971  /        m  =  <x> 

The  first  limit  is  Sn+l,  and  the  second  limit  is  a  positive 

number  less  than  R"n+l ;  therefore,  inserting  the  values  of 
8n+l  and  R"n+l  we  get, 

L  (i     IT    1  +  1  +  14-1+      +1-- 
7n  =  oo  \          "*'  25  .       O  .  TO  « 

but  • 

/          \\m  11  1 

or        L  (1  +  -)   =1  +  1+^+^,  +  ...+---,  +  ̂+!  ........  (A) m=co  \          ̂ '«'/  a  ! 

where  Rn+,  is  less  than  ̂ x/w+1  or 
, 

n(n 

When  n  is  even  moderately  large,  ̂ ,l+1  is  very  small  ;  for 

example,  when  71  =12,  l/n(n\)  is  less  than  3xlO~10;  so 
that  the  value  of  the  limit  may  be  obtained  very  approxi- 

mately by  calculating  the  series  as  far  as  1/121.  The 
calculations  are  very  easy  to  effect,  and  the  value  will  be 
found  to  be,  for  the  nearest  7-figure  approximation, 

27182818. 

The  limit  is  usually  denoted  by  e  ;  e  is  really  an  irrational 
number.  It  is  easy  to  see,  by  comparing  Sn+i  with  the  sum 

o  +  sp"  Tow-i* 



INFINITE   SERIES  FOR  e.  95 

which  is  greater  than  Sn+l  and  equal  to  3--1/271"1,  that  no 
matter  how  great  n  may  be  Sn+l  is  certainly  finite  and 
less  than  3.  Since  e  —  8n+l  is  equal  to  Rn+v  and  since  the 
limit  for  n  =  oo  of  En+l  is  zero,  e  may  be  considered  as 

L   (1  +  1  +  I+I  +  . ..  +  1);   (B) n  =  oo  >  ^  i       O  i  71  I/ 

or,  in  the  usual  phraseology, 

e  =  1  + 1  +  ̂   ?  +  ̂   + . .  .to  infinity. 

(ii)  Next  suppose  that  m  proceeds  to  infinity  through 
positive  fractional  values ;  m  will  therefore  always  lie 
between  two  consecutive  integers,  say  n  and  7i  +  l.  Hence 

n  m  i 
n+l        /  l  \m        /  1      \w 

1  m/      v  -  n+\j 

But      L  (1+-)      =  L(l+-Nfx  L(l+-)  =  6Xl; ,      \  fl/  —        \  ffl/  —         \  Ti/ 

/  1       \n  /  1      \n+l 

and  L  M+— L.)  =  L(l+-        N n=00 
by  case  (i). 

Hence  in  this  case  also  the  limit  is  e,  because  as  m  becomes 
infinite  so  does  n. 

(iii)  Let  m  be  negative,  m=  —  n  where  n  is  positive  but 
either  integral  or  fractional.  Then 

/  1  \  m       /          1  \  -  n       //n\w       /  IV1 

/  1  \m  /  1      \w 

L  (1+W  =L(1+^l) nt=— ao^  "  v'         n  —  <x> 

=  Lr,+_LYi-ix =  ex  1 

by  cases  (i)  and  (ii). 

/        l\m Hence  finally  L  ( 1  +  -  - )   =e, / 
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whether  in  proceeds .  to  infinity  through  integral  or  frac- 
tional values. 

COR. 

§  49.   The    Function   ex.      If    #=1=0,  we   see,    by  putting 
m  =  MX,  that  when  m  becomes  infinite  so  does  M ;  hence 

/  X\m       /  1\Mx       (/  -\\M\x 

\1+m/    =V1  +  ir^     = 
/  ™\m  (  /  1  \M\x        I  /  -\\M\x 

and    L(l+--)    =  L-Ul  +  irr)       =       L(l+4)       =  «x, m  =  «A          W        M=<»IA          Jf/      J  ljtf=o,V          ̂ /      J 

by  §  46  (Function  of  a  Function). 
Since  M  may  be  positive  or  negative,  integral  or  frac- 

tional, the  result  holds  whether  #  or  m  be  positive  or 
negative,  integral  or  fractional. 

By  exactly  the  same  method  as  in  §  48,  it  may  be  shown 
that 

/^. by  expanding  ( 1  +  -  -  J  for  positive  integral  values  of  m. 

It  is  easy  to  see  that  this  series  is  a  finite  number  no 
matter  how  great  n  may  be  ;  for  as  soon  as  n  is  numerically 
greater  than  x, 

'     Inr.    _L  i>\    '     '     I M      I      Q\1     * 

/yi  /y»^ 

*  l      II      I      /  £\\  /  |      O  \  "" 

is  numerically  less  than 
x  n+l     C  x  /     x      \  2  1 

(ti+l)!\1+^+T+V^fT;  +"'j' where  a^  is  the  numerical  value  of  x.  The  series  in  brackets  is 
a  geometrical  progression  with  a  common  ratio  numerically 
less  than  1 ;  hence  if  we  write 

-h   (A) 
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Rn+i  will,  for  every  value  of  n  greater  than  x  numerically, 
be  less  than 

ti+1  a x 

If  xl  =  1 ,  this  gives  the  value  of  Rn+i  in  §  48. 

x=Q     X 

For  if  x  be  a  positive  proper  fraction,  we  may  put  1  for  n  in  (A)  ; 

therefore  e*  >  1  +  x,     but    e*  <  1  +  x  +  ̂--, 
e*  —  1                                   x 

so  that  — = —  >  1,     but    <C  1  +  A   » */*  x  —  *¥* 

from  which  the  result  follows  for  positive  values  of  x. 
If  x  be  negative,  x=  -h  where  h  is  positive,  then 

L— —  =  L- — ^— =  L— T—x-r—l A    ?*        *.  A    ~~*  y/        i  t\    h        P 

by  the  first  case,  so  that  the  limit  is  the  same  whether  x  proceeds  by 
positive  or  negative  values  towards  its  limit  0. 

§  50.  Compound  Interest  Law.  When  an  exponential 
function  is  spoken  of,  the  base  is  usually  understood  to 
be  e ;  where  the  base  is  any  other  number,  say  a,  the  func- 

tion ax  can  be  written  ekx,  where  k  =  log  a. 
The  rate  at  which  aekx  increases  with  respect  to  x  when 

x  =  xl  is  kaek\  that  is,  is  proportional,  to  the  value  of  the 
function  when  x  —  xr  For  when  x  increases  from  xl  to  xt + h 
the  increment  of  the  function  is 

Z*f-y»       I     ft  \  Z*'V*  ,«Z*'>*      /  fitph 

ft  ̂ **\"'1     l^  '*'/  /V  @**f*V'\    — —   /"Y  @nntj-t  I    rtfcfft  ̂ ^_ 
l^VO'  ^  t>V  v  A    ̂"^~    VA/O"  •*•  \    C* 

and  the  average  rate  is 
-.—YT 
h  kh 

By  §  49,  COR.,  the  limit  of  this  expression  for  h  =  0  is 
Many  processes  in  nature  follow  this  law;   the  law  is 

sometimes  quoted  as  the  compound  interest  law,  since  the 
simplest   case  of  it  is  that  of  compound  interest.      For, 
suppose  a  principal  of  P  pounds  to  earn  interest  at  the 
rate  of  p  per  cent,  per  annum ;  let  interest  be  calculated  at 
n  equal  intervals  in  each  year,  and  let  it  be  added  to  the 
principal  as  soon  as  it  is  earned,  so  that  the  interest  bears 
o.c.  G 
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interest.     It  is  easy  to  see  that  at  the  end  of  t  years  the 
principal  will  amount  to 

Let  us  suppose  now  that  n  increases  indefinitely,  that  is, 
suppose  that  the  interest  is  added  on  at  shorter  and  shorter 
intervals  ;  we  thus  approach  a  condition  in  which  the 

interest  is  added  on  continuously.     Put  n==^7^  so  that 
when  n  becomes  infinite  so  does  m.     The  limit  of  the  above 
expression  for  n  increasing  indefinitely  is 

A  =  LP{(1+IJ 

Again,  we  see  that  if  t  increase  in  any  arithmetical  pro- 
gression, whose  common  difference  is  h.  A  will  increase  in  a 

ph 

geometrical  progression  whose  common  ratio  is  e100;  for  if p(t+h)  ph 

t  become  t+h,  A  will  become  Pe  10°  ,  that  is,  Aelw.  Hence 
A  is  a  quantity  which  is  equally  multiplied  in  equal  times. 

The  density  of  the  air  as  we  descend  a  hill  is  a  quantity 
which  is  equally  multiplied  in  equal  distances  of  descent,  for 
the  increase  in  density  per  foot  of  descent  is  due  to  the 
weight  of  that  layer  which  is  itself  proportional  to  the 
density.  Many  other  instances  may  be  found  in  physics. 

EXERCISES  VII. 

1.  If  f(x)=axn+bxn-l-\-...+kx+l  is  a  rational  integral  function 
of  X,  show  that 

-i 

-    L' 

and  therefore  that  when  x  is  numerically  large, 

where  d  is  a  variable  whose  limit  is  zero  for  x=  ±  co  . 
Use  Th.  I.,  §  42. 

2.  Show  that  f(x)  in  ex.  1  has  the  same  sign  as  a  when  x  is  a  large 

positive  number,  but  has  the  same  sign  as  (-l)na  when  x  is 
numerically  large  but  negative  (that  is,  has  the  sign  of  +  a  or  -  a 
according  as  n  is  even  or  odd). 
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3.  From  the  result  of  ex.  2,  show,  by  applying  Th.  II.  of  §  45,  that 
every  equation  of  odd  degree  has  at  least  one  real  root,  and  that  if  it 
has  more  than  one  it  must  have  an  odd  number. 

4.  If  f(x)  is  a  rational  fractional  function 

,f  ._ ~ 

a 

prove  (i)    f(x)  =  -rxm-n(l  +  d^  \i.m>n\ A 

(ii)    /(#)=-j(l+o?2)if  m=n; 

(iii)    yW~- 

where  c?1?  o?2,  ds  are  numerically  very  small  when  x  is  numerically  very 
large. 

'UseTh.  I.  andTh.  III.,  §42. 
5.  Show  that,  the  angle  being  measured  in  radians, 

l-cos0\     1 

Hence  show  that  when  6  is  small,  cos  0=  1  -|#2  approximately. 

6.  Prove  l>cos0>l-£6»2. 

7.  Prove        (i)    L=;     (ii)    L - 
e=osiub0    b  6=0  tan  b$    b 

8.  Prove        (i)    L    (xe~x}=Q\    (ii)    L X=+oo  z=0 

By  §49  (A) 

therefore  ^e-^  =  £<-__£——  that  is, 

and  the  limit  of  the  fraction  last  written  is  zero. 

Next  put  x=e~y\   then  x\ogx=-ye-y  and  the  limit  for  #=0  is 
equal  to  the  limit  for  y=  +  oo  ,  which  is  zero. 

9.  Prove  L   xne~x=0. 

10.  Prove  that  if  n  be  positive  L  #M 

For  xn  log  x  =  -  xn  log  (xn) 

and  the  limit  is  zero  by  ex.  8  since  the  limit  of  xn  is  zero. 
11.  Prove  L  sinolog  #=0, x=0 

For 
x 

12.  If  x  is  any  finite  quantity,  prove 
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Suppose  x  equal  to  or  less  than  the  integer  /x  ;  then,  numerically, 
xn    x*      x         x 

But  #/(//,  -I-  1)  is  a  proper  fraction. 
13.  If  a  be  a  constant  or  a  function  of  x  which  is  finite  for  every 

value  of  X)  prove 

(i)   L  (sin^:-V=l;      (ii)   L  (cos  £ a;=oo  \          SB      Xj  se=oo  \          X 

(iii)   L  (tan-  :-)*  =  !. 
X=ao  \  XXI 

14.  If  sn  is  a  variable  that  (i)  always  increases  as  n  increases  but 
(ii)  always  remains  less  than  some  definite  fixed  number  a,  show  that 
as  n  tends  to  infinity  sn  tends  to  a  definite  limit  that  is  equal  to  or 
less  than  a. 

Take  the  values  sx,  s2,  s3...  as  the  abscissae  of  points  Alt  A2,  A3... 
on  the  #-axis  and  let  A  be  the  point  whose  abscissa  is  a  ;  for  every 
value  of  n,  An  will  be  to  the  right  of  An^  but  to  the  left  of  A.  As  n 
increases  the  point  An  will  move  further  and  further  to  the  right, 
but  will  not  for  any  finite  value  of  n  coincide  with  A.  There  must 
therefore  be  some  point  S  to  the  left  of  A  or  coinciding  with  A  to 
which  An  may  be  made  to  approach  as  near  as  we  please;  if  the 
abscissa  of  S  is  s  then  by  the  definition  of  a  limit 

L  sn=s, 
n=tx> 

and  5  is  less  than  or  equal  to  a.     (Compare  §  39  (ii)  and  Fig.  25.) 

15.  If  sn  is  a  variable  that  (i)  always  decreases  as  n  increases  but 
(ii)  always  remains  greater  than  some  definite  fixed  number  6,  show 
that  as  n  tends  to  infinity  sn  tends  to  a  definite  limit  that  is  equal  to 
or  greater  than  b. 

16.  If  Sn=1+l  +  I]+|.  +  ...+i.) 
show  that  sn  converges,  as  n  tends  to  infinity,  to  a  number  that  is 
greater  than  2  but  less  than  3. 

17.    If  Sn=]2  +  22+22+'-'+n2i 

show  that  sn  converges  to  a  number  that  lies  between  1  and  2. 

Let  ,._'+^+-!s+...+5-JiJ-_2_l<2> 
then  for  every  value  of  n  (greater  than  1)  sn<s'n<<2. 

18.  Apply  the  theorems  of  exs.  14,  15  to  establish  the  results  of 
exs.  (i),  (ii),  (iii)  of  §  39  when  the  Ti-gons  are  not  regular  but  are  such 
that  as  n  increases  indefinitely  the  length  of  each  side  diminishes 
indefinitely. 



CHAPTER  VI. 

DIFFEEENTIATION.     ALGEBRAIC  FUNCTIONS. 

§  51.  Derivatives.  Differentiation.  The  process  of  §§  36, 
37  can  now,  by  making  use  of  the  notion  of  the  limit,  be 
stated  more  compactly. 

The  average  rate  at  which  the  function  3x2  varies  as  x 
varies  from  xl  to  x^Sx^  where  8xl  may  be  either  a 
positive  or  a  negative  increment,  is  by  definition 

8(Sx*)     Sfo  +  te^-te.* 

~teT   -  ̂   -       l        " and  the  number  which  is  taken  as  measuring:  the  rate  of 
i  i_  •  " 

change  when  x  =  xl  is 

=  L  (fee, .. 

The  reasoning  does  not  depend  on  the  particular  value  X1 
of  the  argument,  and  we  therefore  state  the  result  in  the 

form,  "  the  function  3#2  varies  with  respect  to  x  at  the  rate 
6x"  leaving  it  to  be  understood  that  when  x  =  xl  the  rate  is 
fo1}  when  x  =  x2  the  rate  is  6x2  and  so  on.  It  will  save 
multiplication  of  symbols  to  use  x  as  the  symbol  for  the 
argument  in  general  and  also  as  the  symbol  for  some 
definite  value  of  the  argument,  and  the  student  will  find 
that,  as  a  rule,  it  causes  no  ambiguity  to  do  so  ;  if  he  ever 
finds  difficulty,  let  him  choose  a  separate  symbol  as  xl  for 
the  definite  value  at  which  the  rate  is  measured. 
Now  take  the  general  case.  Let  f(x)  be  a  continuous 

function  of  x  ;  as  the  argument  varies  from  x  to  x  +  8x, 
where  Sx  may  be  either  a  positive  or  a  negative  increment, 
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the  function  varies  from  f(x)  to  f(x  -f-  Sx).     The  average  rate 
of  change  of  the  function  when  the  argument  changes  by  Sx  is 

Sf(x)f(x 
Sx  Sx 

and  the  number  which  measures  the  rate  of  change  is 

We  shall  find  that  for  all  the  elementary  functions  this 
limit  is  a  definite  number,  except,  it  may  be,  for  particular 
values  of  x.  In  general  the  limit  will  depend  on  x,  and  a 

special  name  is  given  to  it,  namely,  "  the  derivative  of  f(x) 
with  respect  to  x." 

Instead  of  "derivative,"  the  names  "differential  co- 
efficient," "derived  function'1  are  also  used;  in  certain 

connections  also  the  word  "gradient'1  or  "slope"  is  used. 
(§53.)  The  process  of  finding  the  derivative  is  called 
"differentiation";  the  name  "differential  coefficient'5  was 
formerly  more  frequently  used  than  "  derivative." 

Again,  there  are  special  notations  for  the  derivative.  A 
very  convenient  notation  is  obtained  by  accenting  the 

functional  letter,  as  f'(x);  another  is  got  by  prefixing  the letter  D,  with  or  without  the  suffix  x,  as  Dxf(x)  or  Df(x). 
If  the  function  be  denoted  by  a  single  letter,  as  y,  the  nota- 

tion for  the  derivative  of  y  with  respect  to  the  argument 

x  is  similar,  as  y'x,  Dxy  or  y',  Dy.  As  a  rule  the  suffix  is omitted  when  there  is  no  ambiguity  as  to  the  argument. 
Finally,  to  denote  the  value  of  the  derivative  for  a  special 

value  of  x,  say  xv  the  following  notations  are  used  : 

/W;   [D*f(x)]x=Xl;   [y']x=Xl. 
As  a  matter  of  fact,  the  derivative  is  really  formed  for 

such  a  definite  value,  but  the  functional  character  of  the 
derivative  is  more  prominent  when  that  value  is  denoted  by 
the  same  symbol  x  as  represents  the  argument  in  general. 

To  sum  up  then  we  have  the  defining  equations  :- 

=  L          =  L 
Sx  =  Q    OX          Sx= 
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The  function  thus  determined  is  called  the  derivative,  or 
the  differential  coefficient,  or  the  derived  function  of  f(x) 
with  respect  to  x  and  it  measures,  or  briefly  it  is,  the  rate 
at  which  the  function  varies  with  respect  to  its  argument 
for  the  particular  value  x. 

Of  course  other  letters  than  x,f,  y,  may  be  used  ;  thus 

and  cj)'(t)  is  the  derivative  of  </>(t)  with  respect  to  t. It  will  be  convenient  often  to  use  such  expressions  as  the 
x-derivative  of  f(x),  or  the  time-rate  of  change  of  a  func- 

tion, instead  of  the  derivative  with  respect  to  x,  or  the  rate 
of  change  with  respect  to  the  time. 

Ex.  1. 

T 
for  Z)j3dr-4z?  +  3  =  L 

Now  8(3^2  -  4#  +  3)  =  3(#  +  6>)2  -  4(#  +  6#)  +  3  -  (3.r2  -  4#  +  3) 

Sx=Q 

(c\    
     c 

-  J  =  —  2)  (c  constan
t), 

./c\         c        c       —cSv 
for  §1-)  —  —  ns  ---  =~2~;  —  ?~  > \v/     v  +  ov    v    ir+wfa 

n  T        v JJV\    •*    I  =      OJ  rv  =    —  —R- 

\VJ       dv=0     00  V* 

If  y=0,  the  above  process  cannot  be  carried  out. 

§  52.  Increasing  and  Decreasing  Functions.     By  definition 
of  a  limit  and  of  a  derivative 

where  a  is  a  variable  which  is  very  small  when  Sx  is  very 
small  and  converges  to  0  when  Sx  converges  to  0. 

For  an  illustration  of  the  difference  between  8/(ff)/&e  and  /(#),  see 
the  results  of  examples  4,  5,  6,  §  32. 

Hence  if  f(x)  is  not  zero  the  sign  of  f'(x)  +  a  and  there- 
fore of  Sf(x)/Sx  will  be,  for  sufficiently  small  values  of  Sx,  the 
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same  as  that  of  f'(x)  (compare  §  45  Th.  I.)  ;   therefore  the 
sign  of  8f(x)  will  be  that  of  f'(x)8x. 

Now  suppose  Sx  a  positive  increment  ;  then  Sf(x)  will  be 
positive  or  negative  according  as  f(x)  is  positive  or 
negative.  But 

hence  f(x  +  Sx)  is  algebraically  greater  or  less  than  f(x) 
according  as  f(x)  is  positive  or  negative.  In  other  words, 
f(x)  increases  as  x  increases  so  long  as  f(x)  is  positive,  but 
f(x)  decreases  as  x  increases  so  long  as  f(x)  is  negative, 
increase  and  decrease  being  algebraical  and  not  numerical 
increase  or  decrease. 

If  we  suppose  Sx  a  negative  increment  then  Sf(x)  will  be 

negative  or  positive  according  as  f'(x)  is  positive  or  negative; 
f(x)  will  decrease  as  x  decreases  so  long  as  f(x)  is  positive 
but  will  increase  as  x  decreases  so  long  as  f(x)  is  negative. 

Hence  the  mere  sign  of  f'(x)  tells  how  the  function 
changes  as  x  changes;  if  f(x)  =  ax+b,  f'(x)  =  a  and  the 
conclusions  agree  with  the  statements  of  §  33  for  the 
uniformly  varying  function. 

DEFINITION.  A  function  which  increases  as  its  argument 
increases  and  decreases  as  its  argument  decreases  is  called 
an  increasing  function  ;  one  which  decreases  as  its  argu- 

ment increases  and  increases  as  its  argument  decreases  is 
called  a  decreasing  function. 

Thus  since  Z)(3#2)  =  6o?,  3&2  is  a  decreasing  function  for  all 
negative  values  of  x  and  an  increasing  function  for  all  posi- 

tive values  of  x.  The  function  ceases  to  decrease  and  begins 
to  increase  as  x  passes  through  the  value  0;  hence  when  x  =  0 
the  function  is  a  minimum  (§17,  iv),  and  its  value  is  then  0. 
It  will  be  noticed  that  when  x  =  0  the  derivative  is  0  ;  the 
rate  of  change  is  therefore  zero  for  the  minimum  value. 

The  derivative  of  3#2  —  4>x  +  3  is  6x  —  4  ;  hence  so  long  as 
6#  —  4  is  positive,  that  is,  so  long  as  6x  is  greater  than  4, 
that  is,  so  long  as  x  is  greater  than  -f  ,  the  function  is  an 
increasing  one;  on  the  other  hand  so  long  as  x  is  (al- 

gebraically) less  than  f  it  is  a  decreasing  function.  When 
x  =  f  the  function  is  a  minimum,  the  minimum  value  being 
•f  .  Here  again  when  x  =  f  the  derivative  is  zero,  that  is  the 
rate  of  change  of  the  function  is  zero. 
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Stationary  Values.  The  conclusions  about  increasing 
and  decreasing  cease  to  hold  for  those  values  of  x  for 
which  f(x)  is  zero.  Since  f(x)  measures  the  rate  of  change 
of  the  function  it  is  usual  to  class  those  values  of  the 

function  for  which  f'(x)  is  zero  as  stationary  values. 
Ex.  Show  that  the  function  x3  + 1  has  a  stationary  value  when 

^•=0,  and  that  for  all  other  finite  values  of  x  it  is  an  increasing function. 

§  53.  Geometrical  Interpretation  of  a  Derivative.  A 
specially  useful  interpretation  of  a  derivative  is  obtained 
from  the  graphic  representation  of  a  function. 

Let  ABP  (Fig.  28  a,  b)  be  the  graph  of  f(x).  Take  a 
point  P  on  the  graph  ;  OM=x,  MP  =  y=f(x). 

Y 

FIG.  28  a. 

Let  MN=Sx;  then  ON=x  +  Sx,  NQ  =  y  +  Sy=f(x+Sx). 
From  P  draw  PR  parallel  to  the  ic-axis  to  meet  NQ  (or  NQ 
produced)  at  R ;  then,  both  in  sign  and  in  magnitude, 

RQ  =  NQ  -NR  =  NQ  -  MP  =f(x  +  to)  -f(x)  =  Sf(x), 
RQ     RQ     Sf(x) 

4-  Q  y*          /^*     LJ  I     \  _         _**      _ ^  *^  -         V         ̂   '    t 

~  PR    MN~     Sx 
When  Sx  converges  to  0  as  its  limit,  the  quotient  Sf(x)/Sx 

converges  to  f(x)  as  its  limit.  But  as  Sx  converges  to  0,  N 
tends  towards  coincidence  with  M  and  Q  tends  towards 
coincidence  with  P.  Hence  since  tan  RPQ  converges  to  a 
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definite  value,  namely  f(x),  the  angle  RPQ  converges  to 
a  definite  angle  and  therefore  the  secant  PQS  tends  to  a 
definite  limiting  position  PT.  The  line  PT  is,  by  defini- 

tion (§  39,  ex.  vii.)  the  tangent  to  the  curve  at  P. 

Hence  f'(x)  is  the  trigonometrical  tangent  of  the  angle 
that  the  tangent  to  the  graph  at  P,  the  point  (x,  fix)),  makes 
with  the  cc-axis.  From  this  property  of  the  derivative,  the 
name  gradient  is  used  (see  §  22). 

In  Fig.  2  8  a,  the  tangent  PT  makes  with  the  o;-axis  the 
positive  angle  RPT  or  XLP ';  in  Fig.  286  it  makes 
the  negative  angle  RPT  or  XLP.  We  will  usually  denote 
the  angle  by  <f>,  so  that  tan  </>  =f(x). 

H 

FIG.  286. 

In  the  diagrams  Sx  is  positive,  but  it  is  evident  that  the 
same  conclusions  can  be  drawn  if  Sx  is  negative,  that  is  if 
Q  is  on  the  opposite  side  of  P.  In  particular  cases  it  may 
happen  that  P  can  only  be  approached  from  one  side. 
Thus  if  f(x)  =  ̂ /x3,  x  cannot  take  negative  values ;  in 
finding  f(0)  therefore  Sx  must  be  positive.  Here 

and  the  tangent  makes  a  zero  angle  with  the  #-axis  ;  since 
=  0,  the  ic-axis  is  itself  the  tangent  at  the  origin. 

Ex.  Find  the  gradient  of  the  graph  of  3#2  —  4#  +3  at  the  points 
whose  abscissae  are  --1,  0,  §,  1,  2. 

§  54.  Derivative  as  an  Aid  in  Graphing  a  Function.  The 
conclusions  drawn  in  §  52  from  the  sign  of  the  derivative 
are  valuable  as  an  aid  to  a  mental  representation  of  the 
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variation  of  a  function  ;  those  of  §  53  are  equally  valuable 
in  helping  us  to  graph  the  function. 

The  diagrams  of  §  53  may  be  considered  the  standard 
ones.  We  see  that  when  the  gradient  f(x)  is  positive  the 
graphic  point  moves  upward  as  the  point  x  moves  to  the 
right—  as  along  BPQ  Fig.  28a,  along  HAB  Fig.  286  ;  when 
the  gradient  is  negative  the  graphic  point  moves  down  as 
the  point  x  moves  to  the  right  —  as  along  AB  Fig.  28a, 
along  BPQ  Fig.  286.  At  B  the  gradient  is  0,  and  the 
tangent  is  parallel  to  the  #-axis  ;  the  graphic  point  is  for 
the  moment  stationary. 

The  student  must  not  confuse  moving  upwards  with 
motion  away  from  the  ovaxis  ;  thus  near  H  (Fig.  286)  the 
graphic  point  in  moving  up  gets  nearer  the  axis.  The 
graphic  point  moves  up  or  down  when  the  point  x  moves 
to  the  right  according  as  NQ  is  algebraically  greater  or  less 
than  MP  ;  for  NQ  —  MP  =f(x)8x  approximately,  and  when 
f'(x)  is  positive,  Sx  being  supposed  also  positive,  NQ  is 
algebraically  greater  than  MP.  If  MP  and  NQ  are  both 
negative  this  implies  that  NQ  is  numerically  less  than  MP. 

As  an  exercise,  trace  the  graph  of  f(x}=x*  —  3#+l,  already  shown 
in  §  23.     Here  it  is  easily  found  that 

f(x)  =  3#2  -  3  =  3(x 
So  long  as  x  is  less  than  —  1,  that  is,  so  long  as  the  point  x  is  to  the 

left  of  the  point  --1,  both  x+\  and  x  —  \  are  negative,  and  there- 
fore f(x)  is  positive.  Hence,  as  the  point  x  moves  from  the  extreme 

left  of  the  #-axis  to  the  point  —  1  ,  the  graphic  point  moves  steadily 
upwards. 

So  long  as  x  is  greater  than  —  1,  but  less  than  1,  x+\  is  positive 
and  x  —  \  negative,  and  therefore  f(x)  is  negative.  Hence,  as  the 
point  x  moves  from  the  point  -1  to  the  point  1,  the  graphic  point 
moves  downwards. 

If  x  be  greater  than  1,  f'(x)  is  positive.  Hence,  as  the  point  x 
moves  from  the  point  1  to  the  extreme  right,  the  graphic  point  moves 
steadily  up. 

The  turning  points  of  the  graph  are  found  where  x=  —  1  and  where 
:  +  1  ;  when  x=  -  1,  the  function  has  a  maximum  value  3,  and  when 

#=4-1,  it  has  a  minimum  value  —  1. 

§55.  Derivative  not  definite.  It  may  happen  that  the 
limit  of  Sf(x)/Sx  is  not  a  definite  finite  number.  There  are 
two  chief  cases. 



108     AN  ELEMENTARY  TREATISE  ON  THE  CALCULUS. 

(i)  f(x)  may  be  infinite  for  particular  values  of  x.     Thus 

if  f(x)  —  ,Jx,  then 
=  00 

but,  for  all  other  positive  finite  values  of 

=  L ~ 

We  see  that  as  se  approaches  the  origin  the  gradient  gets 
greater  and  greater,  and  when  x  coincides  with  the  origin 
the  tangent  to  the  graph  is  perpendicular  to  the  o>axis.  In 

general  the  tangent  at  a  point  on  the  graph  at  which  f'(x)  is 
infinite  will  be  perpendicular  to  the  o>axis.  When  f(x)  is 
infinite  for  a  finite  value  of  x  as  in  the  case  of  l/x  for  x  =  0, 
it  will  usually  be  found  that  as  x  tends  towards  that  value 

f'(x)  tends  towards  infinity;  we  may  say,  therefore,  that 
the  tangent  which  meets  the  graph  at  the  infinitely  distant 
point  is  perpendicular  to  the  o>axis.  Such  a  tangent  is  an 
asymptote.  (See  the  graphs  of  §  24) 

(ii.)  It  may  happen  that  at  particular  points  of  the  graph 
there  are  two  tangents,  as 
at  A,  Fig.  29.  Although 
the  function  is  continuous 
when  x  =  a,  the  gradient 
f(x)  is  not.  There  is  one 
gradient  as  we  approach  A 
from  the  left,  another  as  we 
approach  A  from  the  right; 
as  x  increases  through  the 

value  a,  f(x)  changes  sud- 
denly from  tan  XBA  to 

tan  XCD. 
It    will    be    found    that 

for  all  the  ordinary  func- 
tions the  derivative  f(x)  is,  except  for  particular  values 

of  x,  a  continuous  function  and  therefore  these  func- 
tions can  be  appropriately  discussed  by  means  of  their 

graph. 
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§  56.  Fluxions.  Newton  founded  his  treatment  of  the 
calculus  on  the  conception  of  the  growth  of  mathematical 
quantities  by  a  continuous  motion ;  he  called  the  time-rate 
of  change  of  a  variable  its  fluxion,  the  variable  itself  being 
called  the  fluent.  He  laid  little  stress  on  notations  but 
sometimes  denoted  the  fluxion  of  a  variable,  say  x,  by  the 
symbol  x,  and  this  notation  is  still  often  used  in  works  on 
mechanics  to  denote  a  time-rate  of  change. 

We  may  take  one  illustration  of  a  time-rate  of  change. 
Suppose  a  particle  to  move  along  the  path  APQ  (Fig.  28) 
and  at  time  t  seconds  from  a  chosen  instant  let  it  be  at  P, 

the  point  (x,  y),  where  y  =f(x)  is  the  equation  to  the  path. 
Let  s  be  the  length,  in  feet  say,  of  the  arc  ABP  measured 
from  some  fixed  point  A  on  the  path,  x,  y,  s  are  then  all 
functions  of  t. 

Suppose  that  when  the  time  increases  from  t  to  t+St  the 
particle  comes  to  Q  (Fig.  28  a,  6)  and  denote  the  increments 
MN,  RQ,  arc  PQ  of  x,  y,  s  by  8x,  Sy,  Ss.  By  the  usual 
definitions,  the  chord  PQ  is  the  displacement  of  the  particle 
in  time  St  and  the  quotient  of  the  displacement  by  St  is  the 
average  velocity  of  the  particle  during  the  interval,  the 
direction  of  this  velocity  being  given  by  the  angle  RPQ. 
To  get  the  velocity  at  time  t,  find  the  limit  of  the  average 
velocity  for  St  approaching  0. 
Now  the  limit  of  the  angle  RPQ  is  RPT,  so  that  the 

direction  of  the  velocity  at  time  t  will  be  along  the 
tangent  PT. 

Again,  to  find  the  magnitude  of  the  velocity,  or  the 
speed,  as  the  magnitude  is  now  usually  called,  we  have  to 
find  chord  PQ 

St=Q  $ 

We  will  assume  as  an  axiom  that  when  the  chord  PQ  is 
very  small,  the  arc  and  the  chord  are  nearly  equal ;  or,  in 
the  more  definite  language  of  limits,  we  will  assume 

L      /chord  PQ\  _  1 
chord  PC=O\  arcPQ  / Now, 

chord  PQ  _  chord  PQ  arc  PQ  =  chord  PQ  Ss 

~St~  arc  PQ          St  arc  PQ   '  St 
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Hence,  since  Ss  =  0  when  St  —  0,  we  have 
T  chord  PQ  /chord  PQ\      T  Ss 

speed=  L       -^—    ̂  =  L T"»  /~V        I   '>       •*-*       n  i   •*» arc  -r^/  /      5t=ooc 

This  equation  of  course  simply  states  that  the  speed  is 
the  time-rate  of  change  of  s,  and  may  be  considered  merely 
as  the  symbolic  statement  of  the  definition  of  speed;  but, 
however  simple  the  conception  of  a  rate  is  at  bottom,  it  will 
be  well  for  the  student  to  recur  again  and  again  to  the 
process  by  which  the  number  is  determined. 

Again,  x  is  the  rate  of  change  of  x,  that  is,  x  is  the  rate  at 
which  the  point  moves  to  the  right,  and  in  the  same  way  y 
is  the  rate  at  which  the  point  moves  upward.  These  two 
rates  are  called  the  components  of  the  velocity  parallel  to 
the  coordinate  axes. 

From  the  diagram  we  see  that 

(&)2 + (Sy)*  =  (chord  POT  =  (°^dp^Q)2 .  (&)s and  therefore 

(fa\*  JL  (fy V  _  /chord  PQ\* 
\St)  *\St)      \  arcPQ  /  ' 

Hence,  taking  the  limit  for  St  —  0,  we  get 

a  result  that  expresses  the  usual  rule  for  determining  the 
resultant  velocity  s,  when  the  component  velocities  x,  y  are 

given. 
Ex.  Suppose  x=t,  y—t^.  For  every  value  of  t,  y=x* ;  that  is,  the 

point  P  lies  on  the  parabola  whose  equation  is  y =x2.  The  component 
velocities  are  Jb=l,  y  =  2£,  and  the  magnitude  of  the  resultant  velocity 
s  is  x/(.«2+2/2)  =  >/(l  +  4£2).  The  direction  of  the  velocity  is  given  by 
tan  <$>=Dxy  =  2x =2t. 

It  will  be  observed  that  the  path  of  the  point  is  given  by  stating 
where  at  each  instant  the  point  is,  because  whenever  the  instant  is 
named,  that  is,  whenever  the  value  of  t  is  gwen,  the  coordinates  x,  y 
can  at  once  be  calculated.  By  eliminating  t  between  the  equations 
determining  x  and  y,  we  find  a  relation  that  holds  between  the 
coordinates  of  every  point  on  the  path,  that  is,  we  find  the  equation  of 
the  path  in  the  usual  form.  (See  Exercises  IV.  10,  VI.  4,  6,  10,  11.) 

We  will  now  show  how  to  find  the  derivatives  of  the 

ordinary  functions  ;  in  the  exercises  examples  will  be  found 
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illustrating  the  geometrical  and  the  mechanical  applications 
of  the  derivative.  After  the  student  has  gained  some 
facility  in  differentiating,  other  examples  will  be  considered. 

§  57.  Derivative  of  a  Power.      By  definition 

D  (a*)-  L ~ 
fa 

and,  by  §47,  this  limit  is  nxn~1  ;  that  is, 

Hence  the  derivative  of  a  power  with  respect  to  its  base 
is  got  by  multiplying  by  the  index  and  then  diminishing 
the  index  by  1. 

It  is  obvious  that  the  derivative  is  a  continuous  function 
for  all  finite  values  of  x,  except  for  #  =  0,  and  it  is  then 
discontinuous  only  when  n  —  1  is  negative  ;  that  is,  when 
n  is  less  than  1  algebraically. 

COK.     If  a  be  a  constant, 

Ex.  1. 

- 
2 

Ex.  2.     Write  down  the  derivatives  with  respect  to  t  of 

Ex.  3.     Write  down  a  function  of  x  which  has  x2  as  its  derivative. 
Reverse  the  process  for  obtaining  a  derivative,  that  is,  increase  the 

index  by  1,  and  then  divide  the  result  by  the  new  index.  Thus,  one 
function  whose  ̂ -derivative  is  x*  is  J^p3,  as  may  at  once  be  tested  by 
differentiation. 

Ex.  4.  Write  down  for  each  of  the  following  functions  a  function 
of  which  it  is  the  derivative, 

IT  2  JL 
V^'     Jo?     x*    x* 

§  58.  General  Theorems.  The  following  theorems  are  of 
constant  application.  We  suppose  x  to  be  the  independent 
variable,  so  that  the  suffix  may  be  omitted  in  indicating 
derivatives. 
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THEOREM  I.  An  additive  constant  disappears  in 
differentiation;  or,  two  functions  which  differ  only  by  a 
constant  have  the  same  derivative. 

For  let  f(x)  =  <f>(x)  +  C,  whe.re  C  is  a  constant,  that  is,  does 
not  change  as  x  changes  ;  f(x)  and  (f>(x)  therefore  differ  only 
by  the  constant  C, 

,  f(x  +  Sx)  -/(a?)  =  \tfx  +  fa)  +  C]-  [0QO  +  G] Sx  Sx 

_</>(x  +  Sx)-<p(x) 

Sx Take  the  limit  of  these  equal  quantities  for  Sx  converging 

to  0  and  we  find  f(x)  -  Q' 
Ex. 

THEOEEM  II.    A  constant  factor  remains  as  a  constant 
factor  in  the  derivative. 

For    Dg*    =  LC/(ff+  *    "  Gf(X}  -  G  I/* 

therefore 

THEOREM  III.  The  derivative  of  an  algebraic  sum  of  a 
finite  number  of  functions  is  equal  to  the  like  algebraic 
sum  of  the  derivatives  of  the  functions. 

Let  f(x),  F(x),  <j>(x)  be  three  functions  of  x  ;  then  it  is 
easy  to  see  that 

8  [/(a)  +  F(x)  -  <J>(x)]  =  Sf(x)  +  SF(x)  -  S<t>(x). 
Therefore,  dividing  by  Sx  and  taking  the  limit,  we  get 

D  [f(x)  +  F(x)  -  0(aj)]  =  Df(x)  +  DF(x)  -  D<j>(x). 
The  same  proof  holds  for  more  than  three  functions  ;  the 

number  of  them,  however,  must  be  finite,  for  if  there  be  an 
infinite  number  the  theorem  is  not  necessarily  true,  just  as 
in  the  case  of  the  corresponding  theorem  in  limits  (§  42, 
Th.  I). 

Ex.  Z)(3#2  -  5#  +  1)  =  #(3#2)  -  D(5x)     TL  III.  and  I. 
Th.  II. 
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THEOREM  IV.     D(uv)  =  vDu+uDv,  where  u,  v  are  func- 
tions of  x. 

When  x  takes  the  increment  Sx,  let  u,  v  take  the  incre- 
ments Su,  Sv  respectively,  then 

S(uv)  =  (u  +  Su)(v  -f  Sv)  —  uv 
=  vSw  +  uSv  +  SuSv  ; 

S(uv)      Su       Sv  ,  Su -  -  * Sx         Sx       Sx    Sx 

When  Sx  converges  to  0  so  does  Sv,   the  limit  of  the  last 
term  is  therefore  0,  and  we  get 

D(uv)  =  vDu  +  uDv. 

If  there  be  more"  "than  two  factors,  say  u,  v,  w,  we  may extend  the  theorem  by  applying  it  twice  ;  thus,  first  consider 

vw  as  forming  one  factor,  we  get' 
D(uvw)  =  D(u  .  vw)  =  vwDu  +  uD(vw). 

But  D(vw)  =  wDv  +  vDw  ; 

D(uwv)  =  vwDu  +  uwDv  +  uvDw. 

If  we  divide  both  sides  by  iww  we  get 

D(  uvw)  _  Du    Dv    Dw 

umv        u       v       w' 
More  generally,  if  there  be  n  factors,  uv  u2,  ...  unt  we 

2  .  .  .un)  _  Du^  .Duz 
u n 

Logarithmic  Differentiation.  When  the  differentiation 
is  carried  out  in  the  form  last  written,  the  process  is  usually 
called  logarithmic  differentiation.  (See  §  65,  ex.  3.) 

The  student  must  particularly  notice  that  the  derivative 
of  a  product  is  not  the  product  of  the  derivatives  of  its 
factors. 

Ex.        Z)[(5#+2X&p-  7)]  =  (&c-  7)Z)(5^+2)+(5^+2)Z>(3^-  7) 

=  30^-29. 

The  result  may  be  verified  by  first  distributing  the  product  and 
then  differentiating. 
G.c.  H 
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m  TT       nfu\      vDu  — IHEOREM  V.     l/f--)  =  —    -5—       provided  v  is  not  zero 
\v/  vz 

for  the  values  of  x  considered. 
^  Ju\     u  +  Su    u    vSu—uSv 
H  or  n(  —  I  =  --  —  —  =  -  • 

xJL  ^^        W     v+Sv     v      v*+vSv 
4%          .p 

'f 
. 

Since  the  limit  for  &e  =  0  of  the  denominator  is  v2-  and  v2 
is  not  zero,  we  can  apply  the  theorem  that  the  limit  of  a 
quotient  is  the  quotient  of  the  limits  of  numerator  and 
denominator.  Hence  the  theorem. 

g^sf  * '  If  we  divide  by  -  we  get 

\v/     Du    Dv 
U  U          V 

V 

THEOREM  VI.  If  the  derivatives  of  two  functions  are 
equal  for  every  value  of  the  argument,  the  functions  can 
only  differ,  if  at  all,  by  a  constant. 

This  theorem  is  the  converse  of  Theorem  I.  and  seems 
hardly  to  require  proof  for  the  ordinary  functions.  For 

if  f(x)  —  </>'(x)  for  every  value  of  x,  then  putting  y  equal 
to  f(x)  —  $(x)  we  have 

A0  =  Dx[f(x)  -  <j>(x)}  =/'(*)  -  j(x)  =  0. 
Hence  the  gradient  of  the  graph  of  y  is  zero  for  every 

value  of  x  ;  the  graph  must  therefore  be  either  the  aj-axis 
or  a  straight  line  parallel  to  that  axis.  But  the  equation 
of  every  line  parallel  to  the  #-axis  is  y  =  const.  =  G  ;  the 
equation  will  represent  the  axis  itself  if  (7=0. 

Therefore  f(x)  -  <p(x)  =  C  or  f(x)  =  <j>(x)  +  ft 
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Ex.     If  L^y—x^--  1,  determine  the  general  value  of  y. 
The  derivative  of  ̂ x3  —  x  is  ;v2  —  1,  as  may  be  tested  by  differentia- 

tion ;  therefore  the  derivatives  of  y  and  of  \y?  -  x  are  the  same  for 
every  value  of  x.  Hence  y  and  \x*-x  can  only  differ  by  a  constant, 
that  is,  y  =  J.^3  —  x+C.  This  value  is  called  the  general  value,  because 
every  function  which  has  the  same  derivative  as  y  will  at  most  differ 
from  ̂ x?  —  x  by  a  constant,  and  C  may  be  any  constant. 

The  particular  function  which  has  the  value  2,  say,  when  x  has  the 
value  1,  will  require  a  particular  value  of  the  constant  C.  But  always 

therefore  2  =  J  - 1  +  #,     /.    (7=  §  ; 
o  TT\  r\  4t  —  i  /y$   1ir.  /v»    I    8 
< I  I  IV  I  «    —       OW  ft/       |^  "O» 

It  is  to  be  observed  that  the  derivatives  must  be  equal 

for  every  value  of  the  argument ;  thus  x2  —  1  and  cc3— 1  are 
equal  when  x  is  0  or  1,  yet  the  functions  ̂ x*  —  x+C  and 
%x*  —  x+C',  of  which  they  are  the  derivatives,  do  not  differ 
merely  by  a  constant :  they  are  different  functions. 

EXERCISES  VIII. 

Differentiate  with  respect  to  #,  examples  1-10  : 

O,    \X — 1  ̂y2? -f- £j\X ™~  **)•  4.    ̂ o$?       t  ji\O  ~ 

1  c  I  ,      M3 5.  Jx+-j-*  6.  \*Jx — T-]" Jx  \          Jxl 

7    rw4-—  8 I  •  n*  v* 

.&  1  _A        _£ 

Differentiate  with  respect  to  £,  examples  11-14  : 
11.  (a«  +  6V(c«  +  rf).  12. 

13.    a*2  +  2fo  +  C/^2  +  2^  +  C'.  14. 

15.  Give  a  geometrical  interpretation  of  Th.  I.  §  58. 
u 

Deduce  Th.  V.  from  Th.  IV.  by  putting  -=w,  so  that  Du  =  D(vw). 

16.  If  at  time  t  the  adjacent  sides  of  a  rectangle  are  u  and  w  feet 
respectively,  where  w,  v  are  both  functions  of  £,  show  that  at  time  t 
the  area  is  growing  at  the  rate  vu  +  uv. 

If  at  time  t  the  three  edges  of  a  rectangular  parallelepiped  which 
meet  at  one  corner  are  u,  v,  w  feet  respectively,  find  the  rate  at  which 
the  volume  is  increasing. 

Show  that  these  results  give  a  geometrical  interpretation  of  Th.  IV., 
§58. 
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17.  Find  the  values  of  x  for  which  the  following  functions  are 
(i)  increasing,  (ii)  decreasing,  (iii)  stationary.     Apply  the  results  to 
the  graphing  of  the  functions,  and  state  the  turning  points. 

I  /y  \     ̂ <  J—  /y»  ,!._,    >  •  -j    •         i  /i  i      -y***  —  "^  /Y*    i     O    •          I  s»\      fvA.     O  /vi2 
\  Ov  I      O          •-</     (^  tXv        •          \^  /     *^  Oi-f/     |^  •    9          V  ̂  /     ̂      "~"~  «t^      "  ""    I  . 

18.  State  the  most  general  function  which  has  as  its  derivative 
1 

(i)  2#-l  ;     (ii)  Sx--^;     (iii)  ax2  +  6^  +  c. $/ 

19.  The  gradient  of  a  curve  is  #2-#+l,  and  the  curve  passes 
through  the  point  (1,  f  )  ;  find  the  equation  of  the  curve. 

20.  If  pv=pQv0  where  p0,  v0  are  constants,  show  that -vDvp=p. 

21.  The  speed  of  a  particle  at  time  t  seconds  from  the  beginning  of 
its  motion  is  V—  gt  feet  per  second;    find  how  far  it  has  moved  in 
t  seconds. 

§  59.  Derivative  of  a  Function  of  a  Function  and  of  Inverse 
Functions. 

The  derivative  of  such  a  function  as  (a?2  —  x  +  l)%  cannot 
be  found  by  immediate  application  of  the  rule  for  the  deri- 

vative of  a  power.  In  a  case  like  this  we  may  proceed  as 

follows  :  —  Denote  (x2  —  x  +  1)^  by  y  ;  now  put  x2  —  x  -f-  1  =  u. 
Then  y  =  u^  where  u  =  x2—x+l-}  that  is,  y  is  a  function 
of  u  where  u  is  a  function  of  x.  In  other  words,  y  is  a 
function  of  a  function  of  x  (§  46). 

When  x  takes  the  increment  Sx  let  u  take  the  increment 

Su  ;  when  u  ta-kes  the  increment  Su  let  y  take  the  incre- 
ment Sy.  Hence  when  x  takes  the  increment  Sx,  y  takes 

the  increment  Sy,  and  when  Sx  converges  to  zero  so  do  Su 

andfy.  Now  ^^/  Su. 

Sx~Su'Sx' ,,      f  T  Sy     T  Sy    T  Su 
therefore  L  -/-  =  L  ̂   •  L  -r-  ; ' 

that  is,  Dxy  =  Duy  x  Dxu. 
In  the  derivative  Dxy,  y  is  supposed  to  be  expressed  as  a 

function  of  x,  while  in  the  derivative  Duy,  y  is  supposed  to 
be  expressed  as  a  function  of  u.  That  is, 

*  -  x+  1)*=  Duu*  x  Dx(x2  -05+1) 

2(x2  — 
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where,  after  the  differentiation  is  effected,  u  is  replaced  by 
its  value  in  terms  of  xt  namely  x2  —  x+I. 

The  reasoning  is  perfectly  general,  so  that  we  have  the 
theorem  :  —  If  y  =f(u)  and  u  =  <j>(x),  then  y  is  a  function  of 
a  function  of  x,  and 

Dxy  =  Duf(u)  x  Dx(f>(x)   or   Dxy  =  DuyxDxu. 
If  we  had  y=f(u),  u  =  $(v\  v  =  \js(x\  we  should  get  in 

exactly  the  same  way 

Dxy  =  Duf(u)x  Dv$(v)  x  D^x) 
or  Dxy  =  Duy  x  Dvu  x  Dxv. 

The  same  method  shows  how  to  obtain  the  derivative  of 

an  inverse  function.  Let  y=f(x)  so  that  x  is  the  inde- 
pendent variable.  The  inverse  function  is  ®=f~1(y)  and  y 

is  now  considered  to  be  the  independent  variable. 
Let  Sx  and  Sy  be  two  corresponding  increments  of  x  and 

y,  so  that  Sx  and  Sy  vanish  together.  Then 

SxSy~    ' Si/         Sx 
therefore     L  -/-  x  L    -  =  1  ;    that  is,  Dxy  x  DyX  =  1. 

The  result  is  evident  geometrically.  In  Fig.  28  (§  53)  Dxy 
is  the  tangent  of  the  angle  that  PT  makes  with  OX,  DyX  is 
the  tangent  of  the  angle  that  PT  makes  with  0  Y,  and  since 
these  two  angles  are  complementary  the  product  of  their 
tangents  is  1. 

This  theorem  is  of  great  use  in  finding  the  derivatives  of 
inverse  functions  (§  §  64,  65)  ;  meanwhile  we  note  that 

and  the  theorem  remains  true  even  if  one  of  the  derivatives 
is  zero. 

The  student  should  carefully  note  the  following  ex- 
amples ;  at  all  stages  the  rule  for  differentiating  a  function 

of  a  function  has  constantly  to  be  used. 

Put  ftr-i-h  —  n -*-    I* \J  \JUtJU  ̂ |^  t/  "'      Cv* 

then  Dx(ax  +  b)n = Duiin  x  Dxu = nun~ l  x  a = na(az  +  b)n ~ l. 
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With  a  little  practice,  the  student  will  be  able  to  dispense  with 
the  actual  substitution  of  u.     Thus  he  will  write 

Dx(ax  +  b)n  =  n(ax  +  b)n~l  x  a  =  na(ax 

x  3  = 

Ex.  2, 

Ex.  3.     If  A#  =  #V(^2  -  <*2)  and  u=x*-  a2,  find  Z>My. 

DMy  =  Dxy  x  DM#  =  DxyjDxu  =  #  v/(#2  -  a2)/2^  ; 

therefore       Du  y  =  %J(xz  -  a2)  =  %>Ju. 

Ex.  4.     If  y  is  a  function  of  #,  so  is  ̂   y3,  ...  ̂   ̂   ...,  and 

and  generally,  using  y'  for  Z>a#, 

=  xm-lyn~\nxy'  +  my). 

Conversely,  yy'  =  A(iy2)>    yn~^'  =I)x(-yn\ \lv          / 

This   transformation   is   specially  useful   in  mechanical   problems. 
Thus,  t  being  the  argument, 

Ex.  5.     If  v  =  s,  prove  *  = 
v=Dtv=  Dsv  xDfS=  sDsv  =  v  Dsv  = 

or,  in  words,  the  time-rate  of  change  of  v  is  equal  to  the  space-rate  of 
change  of  ̂ y2  (see  §  69). 

Ex.  6.  If  the  coordinates  of  a  point  on  a  curve  are  given  in  the 
form  x—f(t\  y=$(t\  where,  for  example,  t  may  denote  the  time, 
find  D^y. 
y  is  a  function  of  £,  and  t  may  be  supposed  to  be  determined  as  a 

function  of  x  by  the  first  equation.  Hence 

Dxy  =  DtyxDxt. 
But  Dxt  =  \jDtX  by  the  rule  for  inverse  functions  ;  therefore 

^=AM.  ^  , xy     Dx    x 

Thus,  if  x=at2,  y=2at, 
tx    x 
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Ex.  7.     When  y  is  given  as  an  implicit  function  of  x  by  an  equation 
of  the  form 

Axmyn  +  Bx*'y<i+...  +  Kx  +  Ly  +  M=Q,  ...................  (a) 

we  can  find  y'  by  the  method  of  ex.  4.  For  in  whatever  way  x  changes 
y  must  change  so  that  the  equation  (a)  always  remains  true  ;  therefore 
the  rate  at  which  the  expression  on  the  left  side  of  (a)  changes  as 
x  changes  must  always  be  zero  ;  that  is, 

that  is,          ADx(xmyn}  +  BD^y*)  +  ...  +  K+  LD,y  =  0. 
Each  term  may  now  be  differentiated  and  the  equation  solved  for 

or  i/.    For  example,  given 

then 

that  is, 

and  therefore  y'—  --  -^. 

To  find  the  gradient  of  the  ellipse  represented  by  (ft)  at  particular 
points,  we  proceed  as  follows  : 
When  #=1,  7/2-fy=0  ;   that  is,  y=0  or  —  1  ; 

at  the  point  (1,  0),  .  /=  -  ±=  -2  ; 

2  —  1 
at  the  point  (1,  -  1),  y'*=--  —  5=1. 1  —  2t 

To  find  where  the  tangent  is  parallel  to  the  #-axis,  we  have  to  solve 
(/3)  and  the  equation  y'  =  0,  taking  care  that  the  values  which  make 
the  numerator  of  y'  vanish  do  not  also  make  the  denominator  vanish. 
If  this  were  to  happen,  then  y'  would  for  such  values  take  the  form 
0/0,  and  y'  might  or  might  not  be  zero.  In  the  above  case  we  have  to 1  2 
solve    ((3)    and    Zx+y=Q.     The    values    are    #=-7^,  y=  —  rr,  and 
12  *  * 

x=  -  -^,  y  =  -j-\  at  these  points  the  tangent  is  parallel  to  the  #-axis. 

\, In  the  same  way  we  find  where  it  is  perpendicular  to  the  #-axis  by 
solving  (/?)  and  ̂   +  2y  =  0,  which  makes  y'  infinite.    The  points  are Diving  (/?)  and  .r  +  2y  =  0,  \ 
2  1  \     /       2        1  \ 

EXERCISES  IX. 

Differentiate  as  to  #,  examples  1-8  : 

*).  <  2.  xl*J(l-x).  3. 

4.  ̂ /V(a2-^2).     '  5. 
7.  V+l2-!-        8. 
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In  differentiating  a  quotient  of  the  form  (x  +  a)m/(x+b)n,  it  is 
often  advisable  to  write  the  quotient  as  a  product  in  the  form 

(x-\-d)m(x  +  b}~n  ;  when  simplified,  the  result  will  appear  in  its  lowest 
terms.  Differentiate  in  this  way  : 

9.  (x+Vfl(x-l)\  10.  .(a?+a)"Y(ff+&)".       11. 
12.  State  in  words  the  equation 

/I     1\  Ic 
13.  If  v2  =  2&(  ---  ),  show  that  v=  —-$  s  and  v  being  functions  of \s     ct/  s 

the  time  t. 

14.  If  2#2  +  3^2  =  5,  find  y'.     Then  find  the  gradient  at  the  points  : 
(i)  (1,  1),         (ii)  (-1,  1),         (iii)  (-1,  -1),         (iv)  (1,  -1). 

15.  If  (#+#)2-5.r-f  y  =  l,  find  y*.     Find  the  gradient  at  the  point  or 
points  where  the  line  whose  equation  is  x+y=\  cuts  the  graph. 

16.  If  x=at,  y  =  bt  —  ̂ct2,  find  the  components  parallel  to  the  axes  of 
the  velocity  of  the  point  (x,  y\  and  find  the  direction  in  which  the 
point  is  moving  at  time  t.     (Compare  Ex.  VI.  4.) 

17.  Find  Dxy  in  the  following  cases  : 

(i)  (x  -  a)2  +  (y  -  by2  =  c2.  (ii)  f  =  Ax  +  Ex\ 

(iii)  xy^c*.  (iv)  xmyn=cm+n. 

18.  If  Dxy=x?*J(ax*  +  b}  and  u  =  ax?  +  b,  find  Duy. 

19.  If  Dxy  =  (x+  a)(x2  +  2ax  +  b)n  and  u  —  x1  +  Zax  +  6,  find  Duy. 
20.  If  Dxy=f(ax  +  b)  and  ̂   =  a^7  +  6,  find  Duy. 

§  60.  Differentials.     In  Fig.  28  a,  6,  §  53,  the  value  of  f(x) 
or  Dxy  is  tan  RPT,  and 

~PR~MN 

Now,  suppose  that  as  x  increases  from  OM  to  ON  the 

ordinate  y  or  f(x)  increases  uniformly  at  the  rate  f'(x) 
or  tan  7^PT  ;  then  the  point  P  will  move,  not  along  the 
arc  PQ  but  along  the  tangent  PT,  and  the  increment  that  y 
on  this  supposition  will  take  will  be,  not  RQ  but  RT. 

This  hypothetical  increment  of  y  is  called  the  differential 
of  the  function  y  or  f(x)  and  is  denoted  by  dy  or  df(x). 
The  actual  increment  of  T/,  denoted  by  Sy  or  $/(#),  is  not 
RT  but  ̂ Q.  Writing  as  usual  Sx  for  the  increment  MN 
of  a?  we  have 

dy  =  RT=f(x)Sx  •  Sy  =  RQ  =  (f(x)  +  a 
where  a  is  used  in  the  same  meaning  as  in  §  52. 
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If  f(x)  is  the  function  x,  then/'(#)=l,  and  we  have 
df(x)  =  dx  =  I.  Sx, 

so  that  for  the  independent  variable  Sx  and  dx  may  be  con- 
sidered to  be  the  same  lining.     We  may  therefore  write 

dy  =  ET=  f(x)dx  ;  Sy  =  RQ  =  (f(x)  +  a)dx. 
The  first  of  these  equations  gives  a  new  notation  for  the 

derivative,  namely 

dx       dx 

This  notation,  which  is  perhaps  the  most  common,  has  the 
advantage  that  its  form  recalls  the  process  by  which  the 
derivative  is  obtained.  Again,  we  have  another  advantage. 

For  Sy-dy  =  (f(x)  +  a)dx  -  f(x)dx  =  adx, 
and  (see  §  52)  when  dx  or  MN  is  very  small  a  is  also  very 
small,  and  therefore  Sy  is  very  approximately  equal  to  dy. 

The  notation  of  differentials  is  due  to  Leibniz  ;  the  above  mode  of 
defining  a  differential  is  usually  attributed  to  Cauchy,  but  the 
differential  is  equivalent  to  Newton's  "  moment,"  which  is  explained 
in  exactly  the  same  way  by  Benjamin  Robins  (see  his  Mathematical 
Tracts,  London,  1761).  A  reading  of  Robins'  Tracts  would  well  repay 
the  student  who  is  fortunate  enough  to  get  hold  of  a  copy  ;  the  book 
is  now  somewhat  rare. 

The  notation  of  differentials  is  practically  a  necessity 
in  the  integral  calculus,  and  the  student  should  accustom 
himself  to  it.  In  practical  work  dx  and  therefore  dy  are 
usually  supposed  to  be  very  small  quantities  ;  but  it  is  only 
their  ratio  that  is  of  importance. 

The  symbol  --  is  often  written  as     -y,  but  when  used 

in  this  way  the  symbol  -^-  is  to  be  taken  as  a  whole  and  as ct/x 

meaning  exactly  the  same  thing  as  Dx. 
Since  du  =  Dxu  dx,  dv  =  Dxv  dx,  etc.,  when  the  independent 

variable  is  x,  we  have 

d(u  +  v  —  w)  =  du  +  dv  •—  dwy 
d(uv)  =  vdu  +  udv, 

and  so  on.     We  may,  in  fact,  replace  D  in  the  theorems 
of  §  58  by  d. 
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Again,  since  T—  means  Dxu  we  have 

—  w}        d  ,  du     dv or  -(u+v-w)  =  ̂ +Tx dx 

dx'
 

d(uv)_   du       , 
dx         dx       dx 

dy  _  dy  du    dy  _    1 
dx     du  dx'    dx     dx 

dy 

and  
so  on. 

Ex.  l. 

Ex.    2.       (*  .  VV*~  ~~  U>~)==^\-JU   u'~)     ~  •  ~A&Vbiiu  =     .,    2   2V 

«H    "V          ̂   'V  ft  /Y*         -  /"y  i  J^  /VIA  \     •  I  sy*a  __      |    \/y  /yi        -  (~m  I  _-l    /V»O        /y»  \ 
_i_^  A.,      t/«  tA/   \Ju\\f  *•  ~™  C^\  O  *^      /    »  \  *^  A>  /Cvt€/  — •  vvl  o  tv  *A^  !• 

Ex.  4.     State  in  the  form  of  differentials  Ex.  IX.  1-6. 

§  61.  Geometrical  Applications.  Let  OM  be  the  abscissa 
and  HP  the  ordinate  of  the  point  P  on  the  curve  whose 
equation  is  y=f(x);  and  let  the  tangent  at  P  meet  the 
axes  at  Z,  K  (Fig.  30). 

The  line  GPG  drawn  through  P  perpendicular  to  the 
tangent  is  called  the 
normal  to  the  curve 
at  P. 
When  the  tangent 

and  the  normal  are 

spoken  of  as  finite 
segments  the  portions 
LP,  GP,  intercepted 
between  P  and  the 

&-axis,  are  the  seg- 
ments referred  to. 

In  the  same  way 

the  projections  of 
these  segments  on  the 

#-axis,  namely  LM  and  MG,  are  called  the  subtangent  and 
the  subnormal  respectively. 
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These  segments  can  be  expressed  in  terms  of  the  values 

of  a?,  y,  y'  at  P. 

Subtangent  =  LM=  J—  =  -^  ; 

Subnormal  =  M  G  =  y  tan  0  =  y  y'  • 

Tangent  =  LP  =  y  cosec  0  = 

Normal  =  £P=  ?/  sec  0  =  y*J(l  +  y'2)  ; 

y      y 

=  -  OL  tan  0  =  «^^^  =  2/ 

These  expressions  are  true  for  all  positions  of  P,  provided  the  signs 
of  the  segments  be  attended  to.  Thus,  if  L  M  is  expressed  by  a  nega- 

tive number,  L  will  be  to  the  right  of  J/",  since,  in  the  above  diagram which  is  taken  as  the  standard,  LM  is  positive  when  L  is  to  the  left 
of  M.  There  is  no  need  to  commit  these  formulae  to  memory  ;  the 
values  can  at  once  be  obtained  in  any  given  case  by  drawing  a 
diagram. 

We  may  also  find  the  equations  of  the  tangent  and 

normal.  For  this  purpose  let  the  values  of  x,  y,  y'  at  P  be 
denoted  by  xlt  yv  y^  in  order  to  distinguish  them  from  the 
coordinates  (x,  y)  of  a  point  on  the  tangent  LP  or  the 
normal  GP. 

The  equation  of  the  tangent  is 

y-y1  =  (x-xl)  tan0  or  y-yi  =  yi(x-xl), 
since  it  is  a  straight  line  passing  through  (xv  y^)  and  making 
an  angle  0  with  the  #-axis. 

The  acute  angle  that  the  normal  makes  with  the  #-axis 

is  0  —  ̂  and  tan  (  0  —  ~  )  =  —  cot  0  =  —  1/yf  ;  hence  the  equa- ^  \        ̂ / 
tion  of  the  normal  is 
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Ex.  1.     Find  the   subtangent   and   the   subnormal   in   the  ellipse 
x2    y2 

given  by  -2  +  p  =  l. 

If  we  suppose  y  to  be  positive,  then 

y=+^(«2-*2);   y'=--a        x      ' CL  Ct 

7/  QJ 

subtangent  =  — ,=  — 
* 

subnormal  =yy'  —  — a 

When  x  is  positive,  both  these  numbers  are  negative  ;  L  therefore  lies 
to  the  right  of  M  and  G  to  the  left  of  M ;  when  x  is  negative,  the 
positions  are  reversed. 

OL  =  x  —  subtangent  =  —  ; x 

:.    OL.  OM=-  .x=a\ x 

a  well-known  property  of  the  ellipse.  0  is  of  course  the  centre  of  the 
ellipse,  denoted  in  §  26  by  C. 

Ex.  2.  If  the  equation  of  the  curve  is  xy  —  cz,  find  the  ratio  of  KP 
toLP. 

„  KP    OM    an/        c2    c2 TTaT£*  —  —  _    —  —     «?    —  __         j:  __  —  _ 
J-J-Cl  O  7"    7J        "     7"    1^""~"  •  •*•• LP     LM      y          xx 

The  ratio  is  given  both  in  sign  and  in  magnitude  ;  hence  P  lies  between 
K  and  L,  and  KL  is  bisected  at  P.  The  curve  is  a  hyperbola  (§  27, 
II.,  ex.),  and  this  is  a  well-known  property. 

§  62.  Derivative  of  the  Arc.  Let  s  be  the  length  of  the 
arc  AP  measured  from  a  fixed  point  A  on  the  curve 
(Fig.  30)  ;  to  find  Dxs,  Dys. 

Proceeding  exactly  as  in  §  56  we  get  the  equation 

where  Ss  and  Sy  are  the  increments  of  the  arc  s  and  of  the 
ordinate  y  due  to  the  increment  Sx  of  x  ;  Ss  =  arc  PQ. 

The  average  rate  of  change  of  s  with  respect  to  x,  namely 
Ss/Sx,  is  determined  by  the  equation 

-  fchord  pQ\2(Ss\2 
A  arcPQ  /  W' 
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Since  the  limit  for  Sx  =  0  of  the  first  factor  on  the  right is  1  we^get 

or 
In  exactly  the  same  way  we  obtain 

. 
Again, 

cos0=   L '  —  =   L  (Sx .    arcj3@  \  =  j)x^.d® 
pQ=oPQ     PQ=O\SS  '  chord  PQ/  ~  ~  ds 

sin<*=   L  ̂ =   L  (^.^^-\-n.,-^ 
pQ=Q\os   chord 

Using   the  notation  of   differentials  we  take  PR  =  dx; 
then  RT=dy  and  PT=ds.     The  equation  in  differentials  is 

(A7) 

and  division  by  (dxf  or  (cfa/)2  at  once  gives  the  derivative 
of  s  with  respect  to  x  or  y. 

If  £  be  the  independent  variable  and  dt  its  differential, 
then,  since  x,  y,  s  are  all  functions  of  t,  we  shall  have 

dx  =  x  dt,    dy  =  y  dt,    ds  —  s  dt, 

and  the  substitution  of  these  values  in  (A')  gives,  ̂ as  in  §  56, 

We  also  have 

dx    dx  ds  dy     dy  ds 
x  —  ~    =     ~  ~    =  s  cos  d>  '  y  =  ̂ -  =  -f-  -5-  =8 Y  y     dt     ds  dt 

EXERCISES  X. 

1.  Show  that  in  the  parabola*  yz  =  ±ax  the  subnormal  is  constant. 

2.  If  the  subnormal  is   constant  (2<x)  show  that   the   curve   is   a 

parabola  y2  =  4cw?  +  C. 

3.  Find  the  equation  of  the  tangent  and  of  the  normal  at  the  point 
(#u  .Vi)  of  the  parabola  ?/2  =  4a.r. 

Show  that  the  subtangent  is  bisected  at  the  vertex. 

*  It  is  customary  to  abbreviate  the  phrase  "  the  curve  of  which  th? 
equation  is  y=f(x)n  to  "the  curve  y  =/(#)•" 
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4.  If  the  tangent  at  P  in  the  ellipse  (Fig.  20,  §  26)  meet  the  major 
axis  at  T  and  the  minor  axis  at  t,  prove  that 

OM  .  CT=  CA\     Cm.Ct=  CB\ 

where  m  is  the  projection  of  P  on  B'B. 
5.  Show   that   the   equation   of    the    tangent    at   (x^  y^)    to    the 

hyperbola  #2/a2—  yi\W  —  \  is 

With  the  same  notation  as  in  ex.  4  show  that 

and  explain  the  meaning  of  the  minus  sign. 

6.  The  equation  of  the  normal  to  the  ellipse  at  (x-^  y^)  is 

(x  -  x^  a2/^  =  (y-  yd  b2/^. 
7.  If  the  normal  at  P  to  the  ellipse  (Fig.  20)  meets  the  major  axis 

at  G  show  that  CG=e2CM  in  magnitude  and  in  sign. 
Prove  also  that 

The  last  equation  shows  (Euc.  vi.  3)  that  the  normal  at  P  bisects 
the  interior  angle  and  that  the  tangent  at  P  bisects  the  exterior  angle 
between  the  focal  distances  of  P. 

8.  State  and  prove  for  the  hyperbola  the  results  corresponding  to 
those  of  ex.  7  for  the  ellipse. 

9.  If  SZ,  S'Z'  are  the  perpendiculars  from  the  foci  S,  S'  on  the 
tangent  at  P  to  a  central  conic  (Figs.  20,  21)  show  that 

For  the  ellipse 

where  Z)2=^-+^4-=^4 

since  (#1}  y^)  is  on  the  ellipse.     A  little  reduction  shows  that 

n9     I/.,     #x-f\      .          o     a2-b2 D*=TO\  1   -y-  li  since  ej  = — 5 — • 
O^V         a2   /  a-^ 

(See  Exercises  VI.  18.) 

10.  If  P  is  the  point  (a  cos  6,  b  sin  0)  show  that  the  equations  of  the 
tangent  and  normal  at  P  are  (see  Exercises  V.  5) 

-cos<9+f  sin  (9=1  ;          a  °     70 -  r  — -^ at  b  cos  9 
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11.  If  P  is  the  point  (at2,  2at)  on  the  parabola  y2  =  ±ax  show  that 
the  equations  of  the  tangent  and  normal  at  P  are  (see  Exercises  V.  6) 

x 
y  =  -  +  at;      y=  —  tx+2at+at3. v 

12.  From  the  result  of  ex.  3  or  otherwise  show  that  if  the  tangent 
at  P  to  the  parabola  (Fig.  1  9)  meets  the  axis  at  T 

TS=AS+AM=SP. 

If  NP  is  produced  to  Q  show  that  TP  bisects  the  angle  SPN  and 
PG  bisects  the  angle  SPQ.  Also  that,  if  SN  cuts  the  tangent 
at  the  vertex  at  Z,  SZ  is  perpendicular  to  and  bisects  TP  and 

13.  In  the  notation  of  §  61  show  that  for  the  curves  x™yn=cmJfn 
KP'.LP=-m\n. 

Sketch  the  curve  (i)  if  m  =  7,  n  =  5  ;   (ii)  if  m  =  10,  n  =  9. 
These  are  Adidbatic  Curves. 

14.  Show  that  for  the  parabola  y2= 
ds        I.     a\         ds 

15.  In  the  semi-cubical  parabola  ay*=x*  show  that 
9  ^  9 

=#;     MG=±a*i    MG=- 3  2a  8a 

Show  also  that  T=\ dx      \  \       4a 

and  verify  that  if  the  arc  s  is  measured  from  the  origin 

8a 

-27' 

^ 

16.  Show  that  the  tangents  at  the  points  where  the  straight  line 
=Q  meets  the  ellipse 

ax2  +  Shxy  +  by2  =  1 
are  parallel  to  the  .r-axis,  and  that  the  tangents  at  the  points  where 
the  straight  line  hx+by  =  Q  meets  the  ellipse  are  parallel  to  the 
y-axis. 

17.  Show   that   the   tangents  at    the    points   where    the   parabola 
ay  —  x2  meets  the  folium   of   Descartes,  whose  equation  is  (compare 
Exercises  VI.,  13) 

are  parallel  to  the  .r-axis,  and  that  the  tangents  at  the  points  where 
the  parabola  y2=ax  meets  the  folium  are  parallel  to  the  y-axis, 
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The  origin  (0,  0)  is  one  of  the  points,  and  the  coordinate  axes  are 
tangents,  though  this  is  one  of  the  exceptional  cases  referred  to  in 
§  59,  ex.  7.  The  other  points  are  (a  ̂/2,  a  2/4),  (a  ̂4,  a  iv/2). 

18.  Show  that  for  the  ellipse  #2/a2+y2/62  = 
ds 

and  that  for  the  hyperbola  x2/a2—y2/b2  = 
ds 

19.  Show  that  for  the  curve    —  cxm 

f7<t 
™ 

2 

20.  Show  that  for  the  curve  x5 

ds 3 

the  arc  being  measured  from  the  point  (o,  a). 

Y7V  * 

& 

*  ,- 



CHAPTER  VII. 

DIFFERENTIATION  (continued).     TRANSCENDENTAL 
FUNCTIONS.     HIGHER  DERIVATIVES. 

§  63.  Derivatives  of  the  Trigonometric  Functions.  The 
fundamental  limit  is  that  proved  in  §  39  (iv.),  the  angle 
being  measured  in  radians,  namely 

(i) ,-, 
For 

A 

0=0     " 
sin  x  =  cos  x. 

T 
D~smx=  L 

T  sin  0  _ ~~ 

+  Sx)  —  sin  x 

Sx 

Sx 
&K 

sm(x  -4-  Sx)  —  sin  x 

N°W'    -^ fe   - 

\ 

/ 

Sx :.>\ 

\     2      / 

The  limit  for  &c  =  0  of  the  first  factor  is  1,  and  of  the 
second  factor  is  cos  x.     Hence 

Dx  sin  x  =  cos  x. 

(ii)  Dx  cos  x  =  —  sin  x.  &  (07  *  «•.  .  A  v**  *  ̂> "\  —  cos  & 

Por T =  L 

Sx _    .    &e   .    /    .  Sx\ 
cos(x  +  ̂ )  —  cos  x  =  —  2  sin  -~-  sin  (  ̂  +  -a-y- 

The  rest  of  the  work  is  the  same  as  in  (i). 
i 
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(iii)  D 

i  Q  Y\I  /y  _ J_  Jv^y  i       _  T  o  vi  /v* 
ini  T\     t  T      bcllJA  i*;  T^  Ot//  /         Ldll  *// l^or  i)*tan#=  L 

sin^ic 
—  •   -      •  • 

x      Sx 

The  result  may,  of  course,  be  obtained  by  writing  tan  x 
in  the  form  sin  cc/cos  x,  and  applying  the  rule  for  differen- 

tiating a  quotient. 
Directly  from  the  definition  or  by  applying  the  rule  for 

differentiating  a  quotient  we  obtain 

(iv)  Dx  cosec  x  =  —  cosec  x  cot  x  ; 

(v)        Dx  sec  x  =  sec  x  tan  x  ; 

(  vi)      Dx  cot  x—  —  r-s-  =  —  cosec2#. 2 

The  knowledge  of  the  derivatives  makes  it  easier  to 
graph  the  functions,  and  the  student  should  test  such 
graphs  as  he  has  already  drawn  by  examining  the  gradient 
in  the  light  of  the  derivative. 

The  derivatives  of  the  sine  and  cosine  are  continuous  for 
all  values  of  the  argument.  The  derivatives  of  the  other 
functions  become  discontinuous  for  the  values  for  which 
the  functions  become  discontinuous. 

The  rule  for  differentiating  a  function  of  a  function  has  often  to  be 
applied,  for  it  is  very  seldom  that  the  argument  is  x  simply.  The 
most  important  case  is  that  in  which  the  argument  is  a  linear  function 

Put  ax+b  =  u,  and  we  have 
Dx  sin  (ax  +  b)=Du  sin  u  x  Dx(ax  +  b) 

=  cos  uy.a=a  cos  (ax-\-  b). 
In  the  same  way  we  find 

Dx  cos  (ax  4-  6)  =  -  a  sin  (ax  +  b)  ;     Dx  tan  (ax  +b)  =  a  sec2  (ax  +  5), 
and  so  on.     In  fact  the  student  should  from  the  first  accustom  himself 
to  these  forms. 

Again,  to   find   the   derivative   of   sin2  («#+£>),   let   sm(ax  +  b)  be 
denoted  by  u  ;  then 
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Dx[sin2(ax  +  b)]  =  Du  u2  x  Dx  sin  (ax  +  b) 
=  2u  x  a  cos  (ax  +  b) 

=  2a  sin  (ax  4-  ft)  cos  (ax  +  6). 

With  a  little  practice,  and  the  application  of  common  sense,  even 
this  substitution  will  not  be  necessary. 

NOTE.  —  If  the  angle  is  measured  in  degrees,  then  Dxsinoc 

is  not  cos  a;  but  r—  —  cos  a?,  because  x  degrees  make  7T&/180 
180  ' 

radians,  and 

j      \      •  i       1 
deg.)  =  sm(  r-on 

Dx  sin(#  deg.)  =  Dx  sinf  y^r  rad.  J 

7T  /  7TX  -,  \  7T 

=  180  COSVl80  ̂ V  =  T80 

EXERCISES  XI. 

Differentiate  with  respect  to  #,  ex.  1  -9  : 

1.  sin3#  +  cos3.r.  2.  sin  --(ar  +b).  3.  sin  w#  cos  nx. a 

4.  ̂   sin  x+  cos  ̂ 7.  5.  sin  x  —  x  cos  ̂ 7.  6.  5^  —  ;|sin2.r. 

7.        +sin2^.  8.     sin  x  +     sin  3x       9.    - 

Write  down  for  each  of  the  functions  10-15  a  function  of  which  it 
is  the  ̂ -derivative. 

10.  cos  3.r  -  sin  3.r.         11.  cos(a#  +  6).  12. 

13.  cos2.r.  14.  sin2#.  15.  sin  4^7  cos 

Differentiate  with  respect  to  x,  ex.  16-22. 

16.  cos2  («#  +  £).  17.  tan2+l).  18. 

19.  sin^/cos3^.  20.       -1-  21.    — — * 1  +  cos.r  14-costf 
22.  _EE^_. 

1  +  tan  x 

23.  Show  that  L 
"l+cos^' 
X 

and  that  Dx  \x  tan  £#]  =  r- 
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24.  Show  that  steadily  decreases  as  x  increases  from  0  to 
JU 

7T 

-  ;   graph  the  function  from  #=0  to  X=TT  (see  also  ex.  34). 23 

To  prove  the  theorem,  show  that  the  derivative  of  sin  x\x  is  negative, 
and  therefore  sinx/a:  a  decreasing  function.  Since  sin#/#=2/7r  when 
#=7r/2  and  sin#<#  we  get  the  inequalities 

2 
-x  <  sin.*'  <  x, 
7T 

which  hold  for  the  range  0  to  ir/2. 

25.  A  point  moves  on  a  straight  line  and  at  time  t  its  distance  s 
from  a  fixed  point  on  the  line  is  given  by  the  equation  s=acoa(nt  —  e). 
Find  for  what  values  of  t  its  velocity  is  greatest  and  state  where  the 
point  then  is.     For  what  values  of  t  is  its  velocity  zero  and  where  is 
the  point  at  these  instants  ? 

26.  The  coordinates  #,  y  of  a  point  at  time  t  are  given  by  the 
equations  x=  a  cos  t,  y  =  bsint.     Show  that  as  t  varies  from  0  to  2?r 
(or  from  ̂   to  tv  +  2ir)  the  point  describes  an  ellipse,  and  find  the 
components  of  the  velocity  and  the  direction  of  motion  at  time  t. 

27.  The  coordinates  of  a  point  are  given  by 

x=a(6  —  sin  0),    y=o(l  —  cos  #), 
where  0^0==  2?r.     Show  that  the  tangent  to  the  locus  of  the  point 

TT     9 
makes  with  the  #-axis  the  angle  ~  —  „  and  that  if  the  arc  s  is  measured —  •     — 

from  the  origin,  s  =  4a(  1  -cos-  j.     The  locus  of  the  point  is  called  a 

cycloid  (§  146). 

28.  Find  the  subtangent  and  the  subnormal  of  the  curve  of  sines 
whose  equation  is  y  =  asin  (#/&). 

29.  If  Dxy  =  >J(a?  —  x2')  and  x—asm  0,  show  that  Dey=a2cos2@. 
In  the  notation  of  differentials,  we  may  write 

dy  =fj(a2  —  x2}dx  ;     dx=a  cos  6  d6  ;     dy=a2  cos2  QdO. 

30.  If  dy  =  */(x2  +  a?)dx  and  #=atan  0,  show  that 

dx 
31.  If  dy=   .,  2  -  2\  and  ̂   =  «sin  6,  show  that  dy  = — 

2\ 

x  ) 

32.  If  c?y  =-.->•_—  -  —  -2x  and  x=a(\  +sin  0),  show  that  dy  =  dO. 
i>J  \2tCLX  —  X  ) 

33.  If  f(x)  =  1  —  \z?  —  cos  x,  show  that  when  x  is  positive  /'(#)  is 
negative.     Hence  show  that  for  positive  values  of  x 

1  —  ̂x2  <  cos  x  <  1. 
f(x}  is  a  decreasing  function.     Since  f(x)  =  0  when  #=0,  it  must 

therefore  be  negative  for  every  positive  value  of  x. 
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34.  Show  that  when  x  is  positive 

x  —  \x*  <  sin  x  <  x. 

Take  <$>(%)=  x  —  ̂x3  —  sin.r  ;  then  (by  ex.  33)  4>'(x)  is  negative,  since 

35.  Prove  in  the  same  way  that  when  x  is  positive 

1  -  -x2  <  cos  x  <  1  -  -x*  +  -r-.x*  ; ^  _          4! 

X       rt  .1x7    ̂ ^  Sin  *.v  ̂ >  &       *^T       ~t~  ~^~\A'  . o!  «3!          5! 

These  inequalities  may  be  carried  out  to  any  number  of  terms. 

36.  How  should  the  inequalities  of  examples  33,  34,  35  be  stated  for 
negative  values  of  x  ? 

37.  Show  that  if  x  is  positive  and  less  than  ?r/2 
x  <  \  tan  #+§  sin  x. 

§  64.  Inverse  Trigonometric  Functions.  The  direct  trigo- 
nometric functions  are  single-valued  but  the  angle  has  to 

be  restricted  to  a  certain  range  in  order  that  the  inverse 
functions  may  be  single-valued  (see  §  28).  The  range  is 
from  —  7T/2  to  7r/2  for  the  functions  inverse  to  the  sine,  the 
cosecant,  the  tangent,  and  the  cotangent,  but  from  0  to  TT 
for  those  inverse  to  the  cosine  and  the  secant. 

In  finding  the  derivatives  the  theorem  expressed  in  the 
equation  Dxy  =  l/DyX  is  used  (§  59). 

(i)  D: 

Let  y  =  sin  ~  lx ;  then  x  =  sin  y  and 

DyX  =  cos  y  =  +  x/(l  ~~  #2)> 
because  cosy  is  positive,  y  lying  between  —  ?r/2  and  ?r/2. 

Hence  Dx  sin  ~  ̂  =  D^y  =  ̂ r  = 

(ii)  Dx   —   sr. 

x/(l— x2) 
Let  y  =  cos  "  lx ;  then  x  =  cos  y,  and 

J/ —  «7  L     '     'V    > 

because  sin  y  is  positive,  y  lying  between  0  and  TT.     Hence 

Dx  cos  ~  ̂  =  Dxy  =  -f^ —  =   TT--      -o  ;• 
•^2^  V(1-  ̂ ) 
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This  result  may  also  be  obtained  from  the  equation 

cos  ~  lx  =  g-  —  sin  "  lx. 

25 

In  the  same  way  the  following  results  are  established  : 

(iii)    Da-tan-^-;  (iv)  Dxcot~lx=  -- 

(v)  DaJcosec-1x=  ---  77-0  —  ̂ ',  (vi)  DXSQQ-IX  =  -  -77-r,  —  r-r. 
x  V  (#  —  1  )  xfj(x2'  —  1  ) 

Of  the  above  results  (i),  (iii)  are  the  most  important. 
The  root  is  a  positive  number,  so  that,  for  example,  *J(x2) 
means  +x  when  x  is  positive,  but  —x  when  x  is  negative. 
The  results  (v),  (vi)  hold  so  long  as  x  is  positive  ;  when  x  is 
negative  the  sign  of  each  must  be  changed. 

It  is  worth  noting  that  the  derivatives  of  the  inverse 
trigonometric  functions  are  not  transcendental  but  are 
algebraic  functions. 

The  derivatives  (i),  (ii),  (v),  (vi)  become  discontinuous  for 
x  =  ±  1  ;  (iii),  (iv)  are  continuous  for  every  finite  value  of  x. 

In  the  case  of  the  inverse  functions  also  the  student 
should  accustom  himself  to  the  form  in  which  the  argument 
is  not  x  but  a  linear  function  of  x,  specially  x/a  or  x/^/k, 
Thus,  if  x/a  —  u 

x  •  x  111 •       i 
sin-1  --  = 

i  / 1 

—  u     a 

T%  I  •*'•! 

x  D~  -  -  = W  W     i  +  w  a    w 
/     <Y    \  1  T  /If 

-i(_±..l=_  _•  n_t.n.Ti-i-£g.  =  V/c 

EXERCISES  XII. 

Differentiate  with  respect  to  x,  ex.  1-6  : 

1.  sin-1^.  2.  sin-f.  3. \      o      /  \ 

4.  sin"1  (1—  ̂ ?).  5.  x  sin"1  #.  6.  #  tan"1  ̂ 7. 
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Write  down  for  each  of  the  functions  7-9  a  function  of  which  it  is 
the  ̂ -derivative : 

7  8  9 
"          //O  *2\*  *"*    *        *** 

;^/  I  O  w     y 

10.   Prove  that 

11.  Show  that* 
. 

\a-t-bcosxj     a  +  bcosx 

If  a2  is  less  than  b2  the  derivative  is  imaginary  ;  explain  this. 
12.  Show  that 

r,  (    a  sin  x  b  ,  /  b  +  a  cos  x\  "1      (a2  —  b2)  cos  x j\    J   __  „  ___   ^  __  PO^~~      I    -  1    y  —  —  _  _  / 

*\a  +  6cos^    ̂ (a2  —  6s)          \a  +  6cos#/J      (a  -f  6  cos  ̂   ' 
13.  Show  that 

A,  tan-1
 14.  Show  that 

7)        -1    6  +  a  sin  ̂ 
^^3, 

—  z  -  ;  --  . 

a  +  bsmx 

15.  If  .r=rcos#,   i/  =  rsmO,  and  ̂ ,  y,  r,   ̂   are  all  functions  of  t, 
prove t  • 

(i)  ̂ =rcos  6  —  rsin  ̂   Q.  (ii)  y  =  f  sin  ̂   +  rcos  66. 
(iii) 

§  65.  Exponential  and  Logarithmic  Functions.  The  funda- 
mental limit  is  now  that  discussed  in  §  48,  namely, 

/        1  \m 
L  (!+--)   =e Wl=00\       m/ 

and  that  stated  in  the  corollary  to  §  49,  which  may  be  put 
in  the  form 

^_1 
T       f  _  *         1 LJ    —  5  -  —  JL. 

8x=0      OX 

^Tlie  value  of  the  derivative  given  in  ex.  11  is  only  true  if  a  is 
positive  and  x  lies  in  the  first  or  second  positive  quadrant.  If  a,  is 
negative,  or  if  x  lies  in  the  first  or  second  negative  quadrant,  the  sign 
of  the  result  must  be  changed.  A  similar  remark  applies  to  ex.  12. 
In  ex.  14  the  result  holds  if  a  is  positive  and  if  x  lies  in  the  first 
positive  or  in  the  first  negative  quadrant. 
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*  aX+Sx  __  f,X  p&X          1 

For  Dxex=L( 

COR.  Dxax  =  log  a  .  ax. 

For  if  /£  =  loga,  ax  =  ekxy  so  that  putting  kx  =  u 

Dxax  =  Dueu  x  Z^fec)  =  ekx  X  A;  =  log  a  x  a21. 
1 

II.   DaclOg'X  =  —  • X 

IT"         r>    i  T    log  (#  +  &&)  —  log#         T      1    i       /-,       &C\ 
For  Dxlogx=  L  -^-          -=  L-r-log(l+- 

Sx     1 
Put  -  -  =  — ,  so  that  if  #=1=0,  as  Sx  converges  to  0,  m  con- X  lib 

verges  to  oo  .     Now 

-Llog(l  +  — )  =  -log(l  +  -)  =  ilogr(l+-Y*]; Sx      >\       x/      x  mJ     x     3L\       m/  J 
T  x  o    \  i  r^  /  i  \  /wi"~i 

and  L  -±.log(l+—  )  =  -    L  log    (l+— ) .          ..A/y>         O    V  /yt   /          /vi  O        \  '     ̂ jo  / 
5a?=0*-'i^/  *  M?/       »*/m=<»          L.N          //e//     _| 

IT      F  T   /Y,    !\ml =  -log     L  (1  +  --J 
#  I— m=oo  >          97i/     J 

=  -  los;  e. 
x 

Since  the  base  of  the  logarithms  is  supposed  to  be  e  the 
result  is  established. 

COR.  D  " 

Assuming  the  derivative  of  log  x  the  derivative  of  ex  may 
be  obtained  by  the  rule  for  the  derivative  of  inverse  func- 

tions ;  and  conversely  that  of  log  x  may  be  obtained  from 
that  of  ex.     Thus, 

Let  y  =  ex]  then  x  =  log  y,  and  Dyx  =  l/y, 

Again,  Dx  log  (ax  +  b)  =  - 
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For,  put  ax  +  b  =  u  and  we  get 

Dx  log  (ax  +  b)  =  Du  log  u  x  Dx(ax  -f  6  )  =  -  x  a  =  -  T. u          ax+o 
Since  logx  is  a  real  number  only  when  x  is  positive, 

log  (  —  x)  will  be  real  only  if  x  is  negative.  The  ̂ -derivative 
of  log(  —  x)  is  however  I/a;,  as  may  be  seen  by  putting 
a=  —  1,  6  =  0.  Hence  the  function  whose  as-derivative  is  I/a; 
is  log  a?  or  log  (  —  x),  according  as  x  is  positive  or  negative. 

It  will  be  noticed  that  the  derivative  of  logx  is  an  algebraic 
function,  discontinuous  for  x  =  0  like  the  function  itself. 

Ex.  l.  D,  log  (x  +  V^2  +k)= 
Let  u  =  x 

:  log(#  +  A/2?2  +  fc)  =  AJoer  U  X  DXU  =  -  X  ̂ W w 

j  r»  ..       i.ixo.    7\— IT       ̂ .  *y\«^    ~ri^l~T-^ 

and  the  result  follows  at  once. 
The  student  should  note  that 

-  ~r£\=  -^-derivative  of  log  (x  +  \fx2  +  k), 

but          -JTT  --  ~r=  ...................  of  sin"1  (  -77)  or  of  -cos"1  (-77  )• 
*J(k-3C?)  \ijkj  \ljK/ 

These  results  are  frequently  required  in  the  Integral  Calculus. 

Ex.  2.     Find  the  derivative  of  ea*  sin  (&#+<?)  and  of  ea*cos(6#+c). 
These  functions  are  of  very  frequent  occurrence  in  certain  branches 

of  physics. 

Dx  {  e?*  sin  (bx  +  c)}=  aeax  sin  (bx  +  c)  4-  beax  cos  (bx  +  c) 

=  eax{a  sin  (bx  +c)  +  b  cos  (bx  +  c)  }  . 
This  result  can  be  put  into  a  form  that  is  very  convenient.     What- 

ever be  the  values  of  a  and  b,  it  is  always  possible  to  find  R  and  0,  so 
Rcos$  =  a,     Rsin6=b; 

for  these  equations  give 

5=N/(a2+62),    tan<9=-- & 
Replacing  a  and  b  by  R  cos  0  and  ̂   sin  6,  we  get 

sin  (bx+c)}  =Reax{cos  0  sin  (6#  +  c)  +  sin 

In  the  same  way  we  find 

Dx  {  en*  cos  (bx  +  c)  }  =  /&"*  cos  (6j7  +  c  +  0), 
where  ̂   and  9  have  the  same  meaning  as  before. 
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Some  care  is  necessary  however  in  making  the  transformation, 
because  6  is  not  uniquely  determined  by  its  tangent  ;  the  quadrant  in 
which  9  lies  is  determined  by  the  signs  of  a  and  b.  Thus,  R  being 
taken  positive,  if  a  and  b  are  both  positive,  tan  Q  is  positive  and  0  is  in 
the  first  quadrant  ;  but  if  a  and  b  are  both  negative,  tan  6  is  also 
positive,  but  6  is  now  in  the  third  quadrant.  Similar  observations  hold 
when  a  and  b  have  opposite  signs. 

In  practice  it  is  usually  simplest  to  choose  R  positive  when  a  is 
positive,  but  negative  when  a  is  negative  ;  then  to  choose  B  as  a 
positive  or  negative  acute  angle.  When  numbers  are  given  it  is  best 
to  work  the  example  without  reference  to  the  general  formula.  Thus, 

Choose   .#0080  =  3,    ̂ sin^  =  4,  and  therefore  72  =  5,  tan#=f.     Now 
|  =  tan  53°  8'  and  53°  8'  =  '9274  radian,  so  that 

Dx{e-**  cos  (4^+1)}  =  -  5e~3x{cos  0  cos  (4#  +  l)  +  sin  0  sin  (4#+  1)} 
=  -  5e-3*  cos  (4a?+  1  -  B) 
=  -  5e~Sx  cos  (4#+  -0726). 

Ex.  3.     Find  the  ̂ -derivative  of  *J(x  -\)(x-  2)/V(^-  3)(#  -~4). In  this  and  in  similar  cases  where  the  function  is  a  product,  it  is 
often  simplest  first  to  take  the  logarithm  of  the  function  and  then 
differentiate.  Denote  the  function  by  y  ;  then 

Now  Dx  log  y  =  Dy\ogyx  Dxy  =  -Dxy  ; 

\n        i     _ u*y*      -- 

_ 
—3—     —3 

(x  -  l)2(.r  -  2)^(^7  -  3)2(^  -  4)2 
In  the  same  way,  if  the  function  be  uvwjUVW,  where  u...  W  are 

all  functions  of  x,  we  should  get,  denoting  the  function  by  y  and 
taking  logarithms  (see  §  58  Th.  IV.), 

_  Dw    DU    DV    DW 

y  '     *"     t>  "    *P  "  ~ZT       V        W 
Ex.  4.     If  u,  v  are  both  functions  of  #,  we  may  find  the  derivative 

of  uv  as  follows  :  Put  y=uv  and  take  logarithms  ;  then 
logy  =v  log  u, 

U  U 

For  example,  Dx*  =  of(log  x  +  1  ). 
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EXERCISES  XIII. 

Differentiate  with  respect  to  #,  examples  1-13  : 

1.  #  log  .r.  2.  xn\ogx.  3.  log  sin  x.  4.  log  cos  x. 

5.  log  tan  i*.  6.  log  f  ̂±™f  Y  7. Vl-smay 

8.  log.  9. 

11.  a»#.  12.  ̂ -^(sin^  +  cos^).  13.  — 

1-f  # 

Write  down  for  each  of  the  functions  14-18  a  function  of  which  it 
is  the  ̂ -derivative  : 

14  j_        15 *  ' 
-—    - 

3^+4*  '  a?-a*        Zax-a    x  +  a 
Ifi  _*  _  17  1  10      ,>ax AU.     —  n  —  —  .  ±/.  —  —  r.  lo. 

19.  If  y 

show  that          Z)^  =  J(x2  +  k). 
Compare  Exercises  XII.  10. 

20.  If  y 

show  that          Z)x?/ 

21    If  v  —  log    +  a  COS 

show  that          Z^y  . a  +  6  cos  # 

Compare  Exercises  XII.  11. 
^ 

22.  In  the  exponential  curve,  the  equation  being  3/  =  ce«,  find  the 
subtangent  and  the  subnormal. 

— 

23.  The    curve    whose    equation  'is    7/=|a(e«+e~S")    is    called  a 
"  catenary  "  ;   find  the  subtangent,  the  subnormal,  and  the   normal. 
Show  that  the  perpendicular  drawn  from  the  foot  of  the  ordinate  at 
any  point  to  the  tangent  at  that  point  is  of  constant  length.     Graph 
the  curve. 

24.  In  the  catenary,  show  that,  the  arc  5  being  measured  from  #=0, 
ds  xx  a    x      —— 

~a)  and  s=-(e«-e~«). 

§  66.  Hyperbolic  Functions.  In  recent  years  certain  func- 
tions called  Hyperbolic  Functions  have  been  introduced; 

these  have  many  analogies  with  the  trigonometric  or 
circular  functions,  and  in  some  respects  have  the  same 
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relation  to  the  rectangular  hyperbola  as  the  trigonometric 
functions  to  the  circle.  We  shall  not  make  much  use  of 

them,  but  it  seems  proper  to  define  them,  so  that  the 
student  may  not  be  altogether  at  a  loss  should  he  fall  in 
with  them  in  his  reading.  They  are  called  the  hyperbolic 
sine,  cosine,  etc.,  and  are  defined  as  follows,  the  symbol 

sink  meaning  hyperbolic  sine  of  ';  cosh,  hyperbolic  cosine  of, and  so  on. 

sinh  x  =  ̂ (ex  —  e~x)  ;  cosh  x  =  \(ex+e~x)  ; 

sinh  x     ex  —  e~x tanh  x  =  -        -  =  -          -  ;  coth  x  =  .  , 
cosh  x     ex+e~  sinh  x 

cosech  x  =  -r-i  —  ;  sech#  = •          ••  •         kJV/V^J-A    W    —  i sinh  x  cosh  x 

Identities.  The  following  identities,  similar  to  those  for 
the  trigonometric  functions,  are  readily  established  by  sub- 

stituting the  values  of  the  functions  in  terms  of  x. 

(i)  cosh2  x  —  sinh2  x  =  1 ;   (ii)  1  —  tanh2  x  —  sech2  x ; 

(iii)  coth2  x  —  l=  cosech2  a?, 

where  cosh2  x  means  (cosh  x)2,  etc. 

Addition  Theorem.  Again,  corresponding  to  the  addition 
theorem  in  trigonometry,  we  have 

(iv)    sinh  (x±y)  =  sinh  x  cosh  y  ±  cosh  x  sinh  y ; 

( v)     cosh  (x±y)  =  cosh  x  cosh  y  ±  sinh  x  sinh  y ; 

By  putting  y  =  x  we  get 

(vi)    sinh  2x  =  2  sinh  x  cosh  x ; 

(vii)  cosh  2a?  =  cosh2  x + sinh2  x ; 
=  2  cosh2^-  1  =  1  +2  sinh2cc. 

In  drawing  the  graphs  of  these  functions  it  should  be 
noted  that  the  sine,  the  tangent,  and  their  reciprocals  are 
odd  functions,  but  that  the  cosine  and  its  reciprocal  are  even 
functions.  The  sine  may  take  any  value  from  —  oo  to  +  <x> : 
the  cosine  is  never  less  than  1  and  is  always  positive; 
the  tangent  may  take  any  value  between  —  1  and  1,  and  the 
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lines  whose  equations  are  y  =  ±  1  are  asymptotes  to  the 
graph  of  tanho;. 

Derivatives.     The  derivatives  are  readily  found  : 

Dx  sinh  x  =  cosh  x  ;   Dx  cosh  x  =  sinh  x  ; 

Dx  tanh  x  =  sech2  a?  ;  Dx  coth  #  =  —  cosech2  x  ; 

A;  cosech  x  =  —  cosech  a?  coth  #  ; 

A,  sech  a;  =  —  sech  #  tanh  x. 

Inverse  Functions.  The  inverse  functions  can  be  ex- 
pressed by  means  of  the  logarithm. 

If  y  —  sinh  ~  l  x,  then  x  =  sinh  y,  just  as  when  y  =  sin  ~  l  x, 
x  =  smy.  To  find  the  logarithmic  form  of  y  we  have  to 
solve  the  equation 

x  =  l(ey-e~y)  or  e2*/  -  2xev  -  1  =  0, 
which  gives  e^  =  ,T  ±  ̂ /(x2  +  1). 

Since  ey  is  always  positive  the  +  sign  can  alone  be  taken; 
therefore 

ey  =  x-\-/J(xz  +  \\  and  sinh  ~  1  #  =  y  =  log  ( 
In  the  same  way  we  find 

cosh  ~  l  x  =  log  (x  ±  *Jx2  —  1). 

Since        (x  —  */x*-  1)  =  l/(x  4-  /v/#2  —  1)  we  have 

log  (x  -     tf^T)  =  -  log  (x 

In  this  case  the  inverse  function  is  not  single-valued  ;  to 
each  value  of  x  greater  than  1  there  are  two  values  of 

cosh'1^,  equal  numerically  but  of  opposite  sign.  The 
graph  of  cosh  a?  is  in  general  appearance  like  that  of  1+a;2; 
by  rotating  the  graph  of  l+#2  about  the  bisector  of  the 
angle  XOY  we  should  get  a  curve  resembling  that  of 
cosh'1^,  and  the  curve  would  be  symmetrical  about  the 
ic-axis  as  the  graph  of  cosha?  is  symmetrical  about  the 
y-axis. 1  -4-<r 

If .  ̂~  x 

if  OJ2>1,  coth  -1a;  =  J  log  ̂±* X  "™  A 
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Derivatives  of  Inverse  Functions.  The  derivatives  of 
the  inverse  functions,  taking  for  greater  convenience  x/a 
instead  of  x,  are  1 

D-sinh"1— = 

a      ~  ̂/(x2  —  a2) 

2  ' 
a     a  —  x 

a     x  — x 

For  the  positive  ordinate  of  cosh~     '-  the  +  sign  must  be taken. 
It  should  be  noticed  that 

1- 

a 

rf 

so  that  the  derivative  of  sinh*1-  is  the  same  as  that  of a 

log  (x  +  xa?2  +  a*),   the   constant  log  a  disappearing  in  the differentiation.      The  occurrence  of   the  divisor  a  in  the 
x 

logarithmic  form  of  sinh~    -  has  to  be  borne  in  mind  when 
comparing  the  same  result  expressed  in  logarithms  and  in 
inverse  hyperbolic  sines  (or  cosines). 

§  67.  Higher  Derivatives.  The  derivative  of  f(x)  is 
usually  itself  a  function  of  x  and  may  therefore  be  differ- 

entiated with  respect  to  x.  Thus  the  derivative  of  x8  is 
3#2  and  the  derivative  of  3x2  is  6x.  6x  is  therefore  called 
the  second  derivative  of  x8,  while  3x2,  which  has  hitherto 
been  called  simply  the  derivative  of  XB,  may  be  called  for 
distinction  the  first  derivative  of  xs. 

The  notation  for  derivatives  higher  than  the  first  is 
modelled  on  the  analogy  of  indices.  Thus 

the  first  ̂ -derivative  of  y  is  Dxy, 
the  second         „  „       Dx(Dxy)  written  D^y, 
the  third  „  „      Dx(D*y)      „       D/y, 
the  7ith  „  „      Dx(Dxn-ly)  „       Dxny. 
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When  the  derivative  is  written  in  the  form  ~  the  higher 

d         dx 

derivatives
  

are  written  by  considering
  

-j-  as  the  equivalent 

d2 

of 
   

Dx 
  

and
   

 
D^
y 
  

bec
ome

s  
  

-r-|
  

.  y,  
  
usu

all
y  

 

wri
tte

n 

dn    ̂         dn/u 
generally  Dxny  becomes  -,  —  .  y  or  -*-?. dxn  9        dxn 

The  accent  notation  is  also  used;  thus  f"(x),  f'"(x), 
fiv(x)  ...f(n)(x)  mean  the  2nd,  3rd,  4th...?ith  derivatives 
of  f(x),  n  being  enclosed  in  brackets  to  distinguish  the  nth 

derivative  from  the  71th  power.  In  the  same  way  y"y 
y"e  ...  x,  x  ...  are  used,  but  the  notation  is  rather  cumbrous when  more  than  two  accents  are  used. 

Ex.  1  .     If  f(x)  =  ax*  +  bx?  +  ex*  +  dx  +  e,  find  f"(x\  f"(x\  f*(x). 

f(x)  =  lax?  +  36^2  +  Zcx  +  d 
f'(x)  = 

Since  /*v(#)  is  a  constant,  the  fifth  and  all  higher  derivatives  will be  zero. 

It  will  be  readily  seen  that  the  nih  derivative  of  xn  is  n\  and  all 
derivatives  of  higher  order  than  n  are  zero. 

Ex.  2.     If  x=acosnt,  find  x. 

x  =  —  na  sin  nt  ;     x  =  —  n2a  cos  nt  =  —  n*x. 

Ex.  3.     If  y  =  ertz,  prove  Dny  =  aneax  =  any. 

Dy=aeax;     D*y  =  aDeax  =  a?<rx,     etc. 
Each  differentiation  in  this  case  is  equivalent  to  the  multiplication 

of  the  function  by  a. 

Ex.  4.     If  y  =  eax  sin  (bx  +  c)  find  £2y  and 

Dy  =  Reax$m(bx  +  c+0)  (§  65,  ex.  2), 
D2y  =  RReax  sin  (bx  +  c  +  6  +  6} 

It  is  easy  now  to  see,  and  the  result  may  be  strictly  proved  by  the 
method  of  induction,  that 

Dny  =  Rneax  sin  (bx  +  c  +  nO). 
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Ex.  5.     Prove  Dn  sin  (ax  +  b)  =  an  sin  (  ax  +  b  +  -t  -  ), \  2i  / 

Z)  sin  («#+&)  =  a  cos  («#+&)  =  a  sin  f  ax  +  b  +  -  j,  etc.  ; 
and  in  the  same  way  it  may  be  shown  that 

Z)wcos(a#+&)=ancos  f  ax+b  +  -  - 

Ex.  6.     Prove  Z)Mlog#=(  -  l)n~l(n  -  1)  !  #~M. 

§  68.  Leibniz's  Theorem.  Examples.  The  calculation  of 
higher  derivatives  is,  as  a  rule,  a  laborious  process,  and 
there  are  only  a  few  functions  such  as  xn  or  eax  of  which 
the  7ith  derivative  can  be  stated  explicitly.  The  following 
theorem,  named  after  its  discoverer,  is  useful  in  finding 
the  7ith  derivative  of  a  product. 

LEIBNIZ'S  THEOREM.  //  y  is  the  product  of  two  functions, 
u  and  v,  of  x  then 

Dny  =  vDnu  +  nCvDvDn  ~  lu  +  nC2D*vDn  -  zu  +  .  .  . 

+  »Cy)B  -  2vD*u  +  nCfl"  ~  lvDu  +  Wv  .  u  .  .  .  (i) 
where  nCv  nC2,  .  .  .  are  the  binomial  coefficients. 

The  proof  is  obtained  by  repeated  application  of  Th.  IV., 
§  58.  Using  the  accent  notation  we  have,  since  y  =  uv, 

"         "       ''       ''       "  "         '' 
y  =  vu      vu     vu  +  vu  =  vu        vu 

y'"  =  VU'"  +  V'U"  +  Wu"  +  2  V'u'  +  V'U'  +  V'"U 

These  expressions  for  #"  ,  y'"  clearly  obey  the  law  given  by  (i).  The 
general  theorem  may  now  be  proved  by  induction.  The  Vth  and  the 
(r+  l)th  terms  in  (i)  are 

and  if  (i)  is  differentiated  the  coefficient  of  v(r)u(n~r+l)  in  the  expression 
thus  obtained  for  Dn+1y  will  be 

nCr-\  +  WCV)  that  is,  n+it>. 
Hence 

so  that  the  expression  for  Z)w+1y  obeys  the  law  given  by  (i).  But  the 
theorem  has  been  proved  to  be  true  when  n  =  2  or  3  ;  therefore  it  is 
true  when  n  is  any  positive  integer. 
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The  theorem  will  be  found  very  useful  at  a  later  stage 
when  the  expansion  of  functions  in  series  is  taken  up 
(Chapter  XVIII.);  meantime  the  student  will  find  among 
the  exercises  a  number  of  examples  to  which  the  theorem 
may  be  applied. 

Geometrical  and  physical  interpretations  of  the  higher 
derivatives  will  be  given  in  the  next  and  following  chapters. 
The  student  may  however  try  to  interpret  the  geometrical 

signification  of  the  second  derivative  /"(#)  as  measuring  the 
rate  of  change  of  the  gradient  /'(#)  ;  for  example,  if  /"(#) 
is  positive  how  will  the  tangent  at  the  point  P  (x,f(x))  turn 
about  its  point  of  contact  as  x  moves  to  the  right  ? 

We  will  conclude  the  chapter  with  one  or  two  examples. 

Ex.  1.     Find  the  derivative  of  (Dyf,  the  argument  being  x. 
(Dy)2  means  the  square  of  the  derivative  of  y  ;  D2y  means  the  second 

derivative  of  y.  The  derivative  of  y2  should  be  written  D(y2)  or  D  .  yz. 
These  three  forms  (Dy)2,  IPy,  ̂ (#2)  mean  quite  different  things,  and 

must  be  carefully  distinguished  ;   (  -^  )  ,    -r-C   -^-'  or  —  '^    mean \dasJ  '    dx*     dx  dx 

respectively  (Dy)\  D2y,  D(y2)  or  D  .  y2. 
Now  put  u  for  Dy  ;  then 

D  .  (Dy)2  =  Dx(u2)  =  Du(u2)  x  Dxu  =  2uDxu. 

But  Dxu  =  D  .  Dy  =  D2y,  and  therefore 

This  equation  may  also  be  written  in  such  forms  as 

In  the  same  way  it  may  be  shown  that 

Ex.  2.     If  x  and  y  are  functions  of  t,  find  Dx2y  in  terms  of  deriva- 
tives with  respect  to  t. 

Here  Dxy  =  DtylDtx=ylx  ; 

therefore  D2y  =  Dx(y/x)  =  Dt(y\x)\Dtx. 

But  n  (y\  _xDty-yDtx_xy-yx  . 
Mt  \    ~          —  -  /    .xo  -    -  -  /  .xo  -   > 

\x)  (x)z  (x)2 
therefore  Dx2y  =  (xy  -  yx}\&, 
where  .r3  means  £3. 

O.C. 
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Ex.  3.     If  y  —  Ax*  +  B/.VJ  prove  x^y"  =  2y. We  have 

\x  ;    y'  =  2  Ax  -  B/x2  ;     y"  =  2  A 
Eliminate  A  and  5  between  the  three  equations  ;  in  this  case  the 

second  equation  is  not  really  needed  because  if  we  multiply  the  third 

equation  by  x2  we  get 

In  general,  however,  all  three  equations  would  be  required  for  the 
elimination  of  the  two  constants  A,  B.  The  equation  obtained  is 
called  a  differential  equation. 

Ex.  4.     If  y  =  x2u  where  u  is  a  function  of  #,  find  Dny. 

By  Leibniz's  theorem 
n 

25 

since  every  derivative  of  #2  above  the  second  is  zero      Thus 

-  l 

EXERCISES  XIV. 

1.  If    y  =  Ix4  -  Zx3  +  4,  find  /,'  /',  /",  y  v. 

2.  If    3/  =  V(^2  +  l),  find/'. 

3.  If    y=x\a-xf,  find  y"  and  y'". 
T.  ^2  +  4<;r+1  j 

4.  It    3/=  o  ,  0  2        -=,  showthaty=  -  ,- ^  +  2^2-^-2  ^7-1 

and  then  find  y',  y",  yw). 

5.  If    y  =  sin2  a?,  find  y"  ,  and  yw)    sin2#  =  -  -  -  cos  %x  I 

6.  If    #=#2cos.r,  find?/"  and  y(w). 

7.  If    y  =  sin  #  cos3  #,  find  ;y"  and  y  n). 

8.  If    y  =x  log  x,  find  y  and  yw). 

9.  If    y=xe*>  find  y(n\  10.  If  y=x*ex,  find  yn). 
11.  If  y  is  a  rational  integral  function  of  x  of  degree  n,  say 

prove    yn)=?i  !  a,  yM+1)=0,  yw+2)=0.... 

12.  Find  the  turning  values  of  the  functions  in  examples  1  and  2, 
and  graph  the  functions. 

13.  If  y=-  --  2  find  the  turning  points  of  the  graph.      Find  also A  ~T"  *v 

where  y"  is  zero,  and  show  that  at  these  points  the  tangent  changes its  direction  of  rotation. 
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14.  If  y  =  o#M+1  +  &#-w,  prove  that  x*y"=n(n+l)y. 

15.  If  y  =  aenx  +  be-nx,  prove  that  /'  -n2y=Q. 

16.  If  y  =  a  cos  nx+b  sin  ?u?,  prove  that  y"  +  w2^  =  0. 

17.  If  y  =  e~  ***  (a  cos  nx  -f-  b  sin  %#),  prove  that 

18.  If  f(x}  =  (x  —  a)2  <f>  (x\  where  <£  (#)  is  a  rational  integral  function 
that  does  not  vanish  when  x=  a,  show  that 

19.  If  f(x)=(x-a}r(^(x)  where  r  is  a  positive  integer  and  <£(#)  as in  Ex.  18,  show  that 

/(a)=0,    /»  =  0, 

20.  If  x  is  positive,  show  that 

x  - 
Take    /(^)  =  #  -  ̂   -  log  (  1  +  x\    $  (x)  =  x  -  log  (1  +  x)  ;    then     see Exercises  XL  33. 

21.  If  x  is  positive  and  less  than  1,  show  that 

—  log  (1  —  x)  >x. 

22.  Show  that  the  limit  for  n  =  oo  of  slt  -  log  ra,  where 

is  a  finite  quantity  (called  Euler's  Constant)  lying  between  0  and  1. 
From  the  inequalities  of  examples  20,  21, 

or 

/£• 

nj     n 
1 

Hence          log  {  (*  -  !)/(»  -  2)}>-iT>log{*/(fi  -  1)}, 
/'  I 

By  addition,  1  +  log  n  >  sn  >  log  (w  + 1 ), 

therefore  1  >  s.n  -  log  n  >  log  -!  1  +  -  k 

from  which  the  result  follows  at  once.     The  value  of  the  constant  is 
•57721566490   

23.  If  x=aP,  y  =  Zat,  find  Dxzy  in  terms  of  t. 
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24.  If  #=acos£,  y  =  &sin£,  find  Dx2y  in  terms  of  t. 

25.  If  vz=a?+y2,  show  that  in  the  notation  of  §  62 
v — x  cos  <f>  +y  sin  <J>. 

26.  If  ax2  +  2h.vy  +  by2  —  l,  show  that 
D*y  =  (h2  -  ab}l(hx + by)3. 

27.  If  ax2  +  %hxy  +  by2  +  Vgx + 2fy  +  c  =  0,  show  that 

where  A  =  abc  +  Zfgh  -  af2  -  bg2  -  ch2. 

28.  If  ̂ +3/3-3a^=0,  show  that 

29.  If  u  is  a  function  of  x,  show  that 

Z)n(eaa:w)  =  eaa!(aMM  +  wc1aM-iZ)^+wc2aw-2Z)2w+  ...  +Dnu). 

30.  If  ?/  =  tan~1.r,  show  that 

(i)  %  =  cos2y;  (ii)  D2y 

(iii)  Z)3fy  =  2  cos  f  3y  +  2^  cos3^  ; 

(iv)  /)^  =  (w-l)!cos(^+^ \  2 



CHAPTEE   VIII. 

PHYSICAL   APPLICATIONS. 

§  69.  Applications  of  Derivatives  in  Dynamics.  We  give 
in  this  chapter  a  few  simple  examples  of  the  use  of 
derivatives  in  physical  problems. 

Take  first  the  case  of  the  rectilinear  motion  of  a  particle 
and  let  the  units  of  time,  length,  and  mass  be  the  second, 
the  foot,  and  the  pound  respectively,  and  the  units  of  force 
and  work  the  poundal  and  the  foot-poundal. 

At  time  t,  that  is,  t  seconds  from  some  chosen  instant,  let 
the  particle  be  at  P,  distant  x  feet  from  a  fixed  point  0  on 
the  line  of  motion  and  let  the  mass  of  the  particle  be 
m  pounds.  Denote  the  velocity  at  time  t  by  v,  the  accelera- 

tion by  a,  the  momentum  by  M,  the  force  by  F,  the  kinetic 
energy  by  E;  these  quantities  may  be  expressed  in  terms 
of  t,  x,  m. 

—  .  -  LH  -  1  -  1  - 

X'  O  P     Q  X 
FIG.  31. 

When  t  increases  by  St  let  x  increase  by  Sx  =  PQ  ;  then 
the  average  velocity  during  the  interval  St  in  the  direction 
in  which  x  increases,  namely,  in  the  direction  OX,  is  Sx/St, 
and  the  velocity  at  time  t  is  the  limit  of  this  quotient  for 
St  =  0.  Therefore 

T   Sx_dx     • 
V—    L   --  — 6t=0 

v  is  in  general  a  function  of  t.  The  average  acceleration 
during  an  interval  St  in  the  direction  in  which  x  increases 
is  8v/St,  where  Sv  is  the  increment  of  v  in  time  St;  the 
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acceleration  at  time  t  is  the  limit  of  this  quotient  for  St  =  0. 
Hence  Svdvd    dxc!?x.. 

~ae=o  St  ~  dt~dt  dt 
The  momentum  in  the  direction  in  which  x  increases  is 

M  =  mv  = 

By  the  second  law  of  motion  the  force  F  in  the  direction 
in  which  x  increases  is  the  time-rate  of  change  of  the 
momentum  in  that  direction.  Hence 

^    dM V  —  -TT  =  mv  =  mx. 
dt 

We  may  express  F  in  another  form,  by  considering  v  as 
a  function  of  x}  and  a?  as  a  function  of  t,  so  that  (see  §  59, 

Ex-  5)  dv  =  dvdx^dv   _dL(]L  2. 
dt     dx  dt  '  dx    ~dx 

Now  E=^mv2  and  therefore 
-         dv     d  ..      9N     dE 

=-   (iwt,2\_ dt     dx^'  dx 

Hence  the  force  may  be  defined  either  as  the  time-rate  of 
change  of  momentum  dM/dt  or  as  the  space-rate  of  change 
of  kinetic  energy  dE/dx. 

Let  W  denote  the  work  done  on  the  particle  by  the  force 
F  in  moving  it  from  some  standard  position,  say  from  the 
position  at  which  x=a,  to  the  position  P;  SW  the  work 
done  in  moving  it  from  P  to  Q.  At  Q  the  force  is  F+SF; 
hence  when  &e  is  small  the  work  done  will  lie  between 
FSx  and  (F+SF)Sx.  For  FSx  is  the  work  done  on  the 
supposition  that  the  force  is  constant  over  PQ  and  equal  to 
its  value  at  P,  while  (F+SF}Sx  is  the  work  done  on  the 
supposition  that  the  force  is  constant  over  PQ  and  equal  to 
its  value  at  Q;  evidently  the  work  will  lie  between  these 
two  values.  Hence  SW/Sx  lies  between  Pand  F+SF  and 
therefore  j  -or _=# 

dx 

Since  dE/dx  is  also  equal  to  F,  E  and  W  differ  only  by  a 
constant. 
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Again,  the  time-rate  at  which  the  force  works  is  dW/dt, 
and  W  may  be  considered  as  a  function  of  x  and  x,  a  func- 

tion of  t. 
rn,  -  dW      dWdx        „ 
ihereiore  —  rr  =  -,  --  JT  =  I'v. at       dx  dt 

The  student  should  note  the  dimensional  formula  for 
these  magnitudes  (§  34).  If  x  is  the  measure  of  a  length 

so  is  dx,  and  the  dimensional  formula  for  v  or  dx/dt  is  LT'1] 
similar  observations  hold  for  the  other  quantities. 

Ex.  1.  Suppose  F  constant  ;  then  the  acceleration  will  be  constant, 
equal  to  /  say.  Hence  v=f,  and  therefore 

v=ft  +  const. 

Let  the  motion  be  such  that  when  t=Q,  v—  V  and  x  —  a\  these  are 
called  the  initial  conditions.  The  constant  in  the  value  of  v  is 
therefore  V.  We  can  now  find  x  ;  for 

x=v=ft+  V\    x=%ft2+  T^  +  const. 
as  may  be  tested  by  differentiation.     The  constant  is  a,  since  when 
£=0,  x=  a,  so  that  finally 

x=%ftz  +  Vt  +  a. 

To  get  E  in  terms  of  t  we  have  JE=fynv2=%m(ft+  F)2.  Using  the 
value  found  for  x  and  putting  EQ  for  fym  V2  we  get 

E-  EQ  =  mf(x  -a}  =  F(x-  a). 

This  form   may   be   obtained   at  once  from   the   energy   equation 

Finally  since  dWldx=F  we  have  W=F(x  —  a\  W  being  zero  when 
x=a.  Hence  E—E0  =  W  ;  that  is,  the  gain  in  kinetic  energy  is  equal 
to  the  work  done  by  the  force. 

Ex.  2.  Suppose  F  to  be  an  attraction  proportional  to  the  distance 
of  the  particle  from  0. 

Let  the  intensity  of  the  attraction,  that  is,  the  force  on  unit  mass 
at  unit  distance  from  0,  be  p.  If  x  be  positive,  that  is,  if  the  particle 
be  to  the  right  of  0,  the  force  towards  0  is  ̂ mx  ;  if  x  be  negative,  that 
is,  if  the  particle  be  to  the  left  of  0,  the  force  towards  0  is  mp(  —  x). 
In  both  cases  therefore  the  force  in  the  direction  in  which  x  increases 

is  -pmx.  But  the  force  in  the  direction  in  which  x  increases  is 

always  m'x.  Hence or 

This  equation  is  called  the  differential  equation  of  the  motion  of  the 
particle,  the  word  "differential"  being  used  because  the  equation 
contains  the  differential  coefficient  'x. 
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The  student  will  easily  verify  that  the  equation  will  be  satisfied  (see 
Exercises  XIV.,  16)  by 

x  =  A  cos  Jpt  +  B  sin  x/ju,f, 

where  A,  B  are  any  constants  whatever.  The  motion  becomes  definite 
when  in  addition  to  the  law  of  force  we  are  told  the  position  and  the 
velocity  of  the  particle  at  any  one  instant.  Suppose  for  example  that 
when  £=0,  x=a,  v=0.  Putting  £=0  and  #=a  in  the  equation  for  x 
we  find  A=a.  . 

Again  v  is  found  by  differentiating  x  with  respect  to  t  ;  therefore 
-=x  —  —  •J'    sn 

But  when  £=0,  v=0  ;  therefore  we  get  0  =  ̂ 1?)  that  is,  .5=0,  and  we 
find  that  x=a  cos 

Simple  Harmonic  Motion.  When  the  law  of  force  is  that  stated  in 
the  example  the  motion  is  called  simple  harmonic  motion,  and  the 
form  x=  a  cos  ̂ ^t  is  the  simplest  way  of  stating  the  relation  between 
x  and  t.  Obviously  the  motion  is  periodic,  the  period  being  2?r/  *Jfj, 
because  while  t  increases  from  a  value  ̂   to  the  value  ̂   +  STT/V/"-  both 
x  and  x  go  through  their  complete  range  of  values,  a  is  called  the 
amplitude  of  the  motion. 

The  student  may  show  that  if  #=c,  v=  Fwhen  £=0,  then 

x=c  cos  ft  -\  —  T-  sn  **,t  =  a  cos 

//         F2\  V 
where  a=^l(cz-\  ---  ),    acos#=c,    asin#=-r-. 

a  is  again  the  amplitude  and  2?r/vV  the  period. 

Ex.  3.  A  rod  is  stretched  from  its  natural  length  a  to  the  length 

:  assuming  Hooke's  Law  to  hold,  find  the  work  done. 
The  ratio  x\a  is  called  the  extension,  and  by  Hooke's  Law  the  force 

required  to  produce  that  extension  is  proportional  to  it.  Denoting 
this  force  by  F^  we  have  F=Ex\a,  where  E  is  a  constant.  When  the 
extension  is  (#  +  &£)/«,  the  force  will  be  F+8F=E(x  +  8x)ja.  If  the 
work  done  in  producing  the  extension  xja  is  TT,  and  if  8  W  is  the  work 
done  in  producing  the  further  extension,  then  8  W  will  lie  between 
F8x  and  (F+8F)8x,  so  that  8W/8x  will  lie  between  F  and  F+8F. 
Taking  the  limit  for  8x  converging  to  zero,  we  get 

. 
dx  a 

Hence  W  =  \E—  +  const. a 

Since  W  =0  when  #=0,  the  constant  is  zero,  so  that 

-.x 

a          a 
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Ex.  4.  A  fluid  is  in  communication  with  a  cylinder  in  which 
a  piston  is  free  to  slide,  the  cross  section  of  the  cylinder  being  $, 
a  constant.  Let  W  be  the  work  done  by  the  fluid  in  pushing  out  the 
piston  a  distance  #,  and  let  the  intensity  of  pressure  on  the  piston 
be  p.  Show  that  d  Wjdx=pS. 

The  force  on  the  piston  due  to  pressure  is  pS  ;  when  the  piston  is 
pushed  out  the  further  distance  §x,  let  the  intensity  of  pressure  be 
p  +  8p  so  that  the  force  on  the  piston  is  (  p  +  8p)S.  The  work  8  W  done 
in  pushing  out  the  piston  through  the  distance  8x  will  lie  between 
pSox  and  (p  +  8p)Sox,  and  therefore  8W/8x  will  lie  between  pS 
and  pS  +  8pS.  Hence  d  Wjdx  =pS. 

The  result  may  be  put  in  another  form.  If  v  be  the  volume  of  the 
fluid,  then  S8x  is  the  increment  of  volume  which  may  be  called  8v. 
Hence  8  W/8v  lies  between^  and  p  +  8p,  and  we  get 

dW 

Ex.  5.  A  body  is  rotating  about  an  axis;  a  line  fixed  in  the 
body  and  perpendicular  to  the  axis  makes  at  time  t  an  angle  6  with 
another  line  fixed  in  space  and  perpendicular  to  the  axis.  What  do 
0  and  0  measure  ? 

0  is  the  time-rate  of  increase  of  0,  that  is,  0  is  the  angular  velocity 
of  the  body  about  the  axis.     In  the  same  way  we  see  that  0  is  the 
angular  acceleration. 

If  a  point  P  is  moving  in  a  plane,  and  if  6  is  the  angle  which  the 
line  joining  the  point  P  to  a  fixed  point  0  in  the  plane  makes  with  a 

fixed  line  through  0,  6  and  &  are  sometimes  called  the  angular  velocity 
and  the  angular  acceleration  of  the  point  P  about  0. 

r 

Ex.  6.  A  positive  charge  m  of  electricity  is  concentrated  at  a 

point  0  ;  the  repulsion  on  unit  charge  at  P  (Fig.  31)  is  m\x*  where 
x=OP.  Find  the  work  done  as  unit  charge  moves  from  A  to  B 
where  OA  =  a,  OB—  I). 

Let  W  be  the  work  done  from  A  to  P  ;  then 

dW    m  m        m 
-=—  =  -5     and      W  =  ---  h  const. dx     x1  x 

When  x  =  a,   TP=0,  and  the  constant  is  therefore  m/a.     Hence  at  P 
the  work  is 

W=™--. a     x 

The  work  in  moving  from  A  to  B  is  therefore 

w  -m    m ''  1  —  ~~      "  T"" a      o 

Potential  When  B  is  so  far  off  that  m/b  is  negligible  in 
comparison  with  m/a  then  IV^m/a.  Hence  in  this  case 
the  work  clone  as  unit  charge  moves  from  A  out  of  the 
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field  is  m/OA.     This  function  m/OA  is  called  the  potential 
of  the  charge  m  at  A. 

At  P  the  potential  is  m/OP.     Denoting  it  by  V  we  have 
dV    m 

a? 

so  that  the  force  at  P  is  the  space-rate  of  diminution  of 
the  potential  V  at  P,  and  the  direction  of  the  force  is  from 
that  of  higher  to  that  of  lower  potential. 

For  gravitational  forces  the  attraction  between  two 

particles,  m,  m'  (grammes)  at  a  distance  from  each  other 
of  x  cm.  is  kmm'/x2  dynes  where  k  is  the  constant  of 
gravitation  (equal  to  6  '6  x  10  ~8).  See  Gray's  Treatise  on 
Physics,  §  195.  [London:  J.  &  A.  Churchill.]  The  potential 
V  of  m  at  the  point  x  is  km/x  and  the  attraction  towards 
m  is  —  DXV  \  the  force  outwards  from  m  is  {-DXV. 

It  is  proved  in  works  on  Dynamics  (e.g.  Gray,  §  484  ;  see 
also  Exercises  XXX.,  24)  that  the  potential  at  the  point  x 
of  a  sphere  of  radius  a  and  uniform  density  p  is 

V=  2,7rkp(a2  —  ̂ x2)  for  an  internal  point  (x<a)  ........  (i) 

V=  —&-*-  —  for  an  external  point  (x>a)  ........  ......  (ii) 

Since  the  field  is  symmetrical  the  force  is  radial  at  every 
point  and  the  attraction  at  the  point  x  is  therefore 

O? 

The  functions  V  and  DXV  have  each  different  analytical 
expressions  according  as  x  is  less  or  greater  than  a,  but 
they  are  each  continuous  functions  near  x  =  a  ;  for  we  see 
from  (i)  and  (ii)  that  whether  x  tends  to  a  through  values 

less  or  through  values  greater  than  a,  V  tends  to  47rkpa2/'3 
and  Dx  V  to  -  4>7rkpa/3}  and  these  are  the  values  of  V  and 
Dx  V  when  x  =  a. 

On  the  other  hand  the  function  DX2V  is  discontinuous 
at  a;  for  when  x  tends  to  a  through  values  less  than  a 
we  find  from  (i)  that  DX2V  tends  to  —4<r-kp/3  and  when 
x  tends  to  a  through  values  greater  than  a  we  find  from 

(ii)  that  DJV  tends  to  +8xfy>/3.  The  function  DX*V  has 
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therefore  no  value  when  x  =  a,  but  has  one  definite  limit 
for  x  approaching  a  from  one  side,  and  another  definite 
limit  for  x  approaching  a  from  the  other  side  (see  §  44). 
To  graph  the  functions  F,  DXV,  D^V  suppose  for 

simplicity  a  =  l,  4^/0/3  =  1;  the  graphs  for  other  values 
can  be  derived  in  the  usual  way  (Fig.  32). 

FIG.  32. 

ABC'D  is  the  graph  of  V\  the  part  AB  is  a  parabola,  the 
part  BCD  a  rectangular  hyperbola. 

The  dotted  curve  OEF  is  the  graph  of  DXV\  the  part 
OE  is  straight. 

The  graph  of  D£V  is  the  straight  line  GE  parallel  to 
OX  and  the  curve  HGK. 

The  parts  to  the  left  of  the  vertical  dotted  line  represent 
the  functions  for  x<a,  the  parts  to  the  right  for  x>a. 
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§  70.  Coefficients  of  Elasticity  and  Expansion.  Let  p  be 
the  intensity  of  pressure  and  v  the  volume  of  unit  mass  of 
fluid,  p  being  a  definite  function  of  v.  When  p  increases 
by  Sp  let  v  increase  by  Sv ;  if  we  suppose  dp  positive  then 
Sv  will  be  negative.  The  quotient  —  Sv/v,  that  is,  the  ratio 
of  the  diminution  of  the  volume  to  the  volume  at  pressure  p, 
is  called  the  compression  or  the  mean  compression,  and  the 
limit  of  the  increment  of  pressure,  Sp,  to  the  compression 
produced,  —  Sv/v,  is  called  the  coefficient  of  the  elasticity  of 
volume,  or  simply  the  elasticity  of  volume,  or  sometimes  the 
coefficient  of  the  resilience  of  volume.  Hence  the  elasticity 
of  volume  is 

Sp          dp 

•*n'n     \      .i.-sr-'x-    H.'  v  . 0       nV!Q              -^  \ 
For  a  gas  expanding  at  constant  temperature  pv  =  k,  a 

constant,  so  that  the  elasticity  of  volume  is 

*       d(klv)             -k  VCV    V 
~V~^T =="V'^==P- 

For  a  gas  expanding  adiabatically  pv'y=c)  a  constant,  and in  this  case  the  elasticity  is  yp. 
A  rod  whose  length  at  a  standard  temperature,  say  at 

0°C.,  is  the  unit  of  length  expands  when  heated  to  a 
temperature  0  so  that  its  length  becomes  !+/($);  denote 
!+/($)  by  x,  and  when  the  temperature  becomes  0  +  SO  let 
the  length  become  x+Sx.  The  quotient  Sx/SO  is  called  the 
mean  coefficient  of  linear  expansion  as  the  temperature 
increases  from  0  to  0  +  SO,  and  dx/dO  is  called  the  coefficient 
of  linear  expansion  at  the  temperature  0. 

Usually  f(0)  is  of  the  form  aO  or  aO  +  bO2  where  a,  b  are 
very  small  constants.  When  x  =  ~L  +  aO,  the  coefficient 
dx/dO  is  a  and  is  independent  of  0;  if  f(0)  =  aO  +  b92 
and  x  =  l  +  aO  +  b02,  the  coefficient  is  a  +  2bO  and  depends 
on  0. 

If  a  solid  expand  equally  in  all  directions,  the  area 

and  the  volume  which  are  unity  at  0°C.  would  become 
2/  =  (l+/(0))2  and  z  =  (l+/(0))3  at  temperature  0.  The 
numbers  dy/dO,  dz/dO  are  called  the  coefficients  of  super- 
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ficial  and  of  cubical  expansion  respectively  at  temperature 
0.     Iff(0)  =  aO,  then 

Since  a  is  very  small  a2  and  a3  will  be  much  smaller  and 
the  coefficients  will  be  very  approximately  2a  and  3a. 
Ex.  The  volume  at  temperature  0  of  the  water  which  occupies 

unit  volume  at  4°  is  approximately  l+a(0  —  4)2  where  a  =  8'38  x  10~6  ; 
find  the  coefficients  of  cubical  expansion  at  temperatures  0°  and  10°. 

§  71  Conduction  of  Heat.  A  slab  of  thickness  d  whose 
opposite  faces  are  parallel  planes  has  one  face  maintained 
at  constant  temperature  v  and  the  opposite  face  at  constant 

temperature  vl  (v>vl)',  the  quantity  Q  of  heat  which  in 
time  t  crosses  an  area  A  forming  a  part  of  a  section  parallel 
to  the  faces  and  lying  between  them  is 

where  &  is  a  constant,  called  the  conductivity,  depending  on 
the  material  of  the  slab.  This  equation  expresses  the  law 
of  steady  flow  of  heat  in  a  conducting  solid  and  is  a  result 
of  experiment. 

If  the  temperature  v  of  a  solid  vary  from  point  to  point 
of  the  body  at  the  same  instant,  and  from  one  instant  to 
another  at  the  same  point  in  the  body,  v  will  be  a  func- 

tion of  more  than  one  variable,  namely  of  t  and  of  the 
coordinates  of  the  point. 

At  a  given  point  in  the  solid  the  time-rate  of  change  of  v  is 
T 
L      = 

In  forming  this  derivative  the  coordinates  of  the  point  do 
not  change  ;  v  changes  through  lapse  of  time  at  a  given 
point. 
On  the  other  hand,  let  P  be  a  point  in  the  body  whose 

distance  from  a  fixed  plane  is  MP  —  s,  and  R  a  point  in  MP 
produced  such  that  PR  =  8s  ;  then  at  the  same  instant  the 
temperature  v  at  P  will  be  different  from  that  at  R,  which 
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may  be  denoted  by  v  +  Sv.     At  the  time  t  the  space-rate  of 
variation  of  v  at  the  point  P  in  the  direction  PR  will  be 

T  n 
L  ̂ -  —  Dsv. 

&t=OOS Let  us  assume  that  at  any  given  time  t  the  temperature 
is  the  same  at  every  point  in  any  plane  perpendicular  to 
MP  though  different  for  different  planes.  We  may  assume 
therefore  that  the  heat  flows  in  straight  lines  parallel  to 
MP  ;  let  v  be  the  temperature  at  P,  v  +  Sv  the  temperature 
at  R  where  PR  =  Ss,  and  let  SQ  be  the  amount  of  heat 
which  in  time  St  crosses  unit  area  of  a  plane  perpendicular 
to  PR  and  lying  between  P  and  R.  The  formula  given 
above  for  Q  is  assumed  to  give  the  average  value  of  the 
amount  of  heat  crossing  a  section  when  the  flow  is  not 
steady,  St  and  Ss  being  small.  In  that  formula,  therefore,  put 
SQ  for  Q,  1  for  A,  v+Sv  for  vv  St  for  t,  Ss  for  d,  and  we  get 

SQ  =  k{v-(v+Sv)}St/Ss, 

SQ        7Sv 
and  •*•*-*& 

Take  the  limit  for  St  and  Ss  converging  to  zero,  and  we  get 
DtQ=-kD,v; 

in  words,  the  time-rate  at  which  heat  crosses  the  section  of 
unit  area  at  P  is  k  times  the  space-rate  of  diminution  of 
temperature  in  the  direction  perpendicular  to  the  area. 

DtQ  or  its  equal  —  kDsv  is  called  the  flux  in  the  direction 
in  which  s  increases  ;  obviously  the  flux  is  from  places  of 
higher  to  places  of  lower  temperature,  and  this  is  shown  by 
the  form  —kD8v  since  if  v  decreases  as  s  increases  Dsv  is 
negative  and  —  Dsv  is  positive. 

ja 

Ex. 
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When  #=7r/2,  DtQ  =  0  whatever  t  may  be;  that  is,  there  is  no  flow 
of  heat  across  this  plane  ;  when  #<7r/2,  the  flow  is  towards  the  left, 
when  #>7r/2  it  is  towards  the  right,  the  positive  direction  of  x  being 
towards  the  right. 

This  problem  gives  an  example  of  a  function  of  more 
than  one  variable  ;  such  functions  will  be  taken  up  later. 
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EXERCISES  XV. 

1.  A  point  P  moves  with  uniform  velocity  V  along  a  straight  line 
AB  ;  OA  is  perpendicular  to  AB  and  equal  to  a.     Find  the  angular 
velocity  of  P  about  0. 

2.  A  point  P  moves  with  uniform  velocity  u  along  a  straight  line 
AB,  and  another  point  Q  with  uniform  velocity  v  along  an  intersecting 
straight  line  A  C.    Find  the  rate  at  which  the  distance  between  P  and  Q 
increases. 

3.  If  p  is  the  density  and  p  the  intensity  of  pressure  of  the  atmo- 
sphere at  a  height  of  x  feet  above  sea-level,  express  in  symbols  the 

statement  that  the  rate  of  increase  of  pressure  per  unit  of  length 
downwards  is  equal  to  the  density  multiplied  by  the  acceleration  due 
to  gravity.     Assuming  that  p  =  kp  where  k  is  a  constant,  and  that  at 
sea-level/>=£>0,  show  that 

4.  If  N  be  the  number  of  lines  of  force  passing  through  a  circuit, 
state  in  words  the  meaning  of  -  dNjdt. 

5.  Express  in  symbols  the  statement  that  the  electromotive  force  E 
is  the  sum  of  two  terms  of  which  the  first  is  the  product  of  the  resist- 

ance R  and  the  current  (7,  and  the  second  is  the  product  of  the  self- 
inductance  L  and  the  time-rate  of  increase  of  C. 

6.  Express  in  symbols  the  statement  that  the  force  X  acting  on  a 
magnetic  shell  in  the  direction  x  is  equal  to  the  space-rate  of  diminu- 

tion in  that  direction  of  the  energy  E. 

7.  If  in  ex.  4,  §  69,  W1  is  the  work  done  as  the  fluid  expands  from 

volume  Vj  to  volume  v^  find  W\  (i)  if  pv  =  k,  (ii)  if  pvY=k,  k  being constant. 

8.  The  potential  of  a  long  uniform  rod  of  linear  density  o-  at  a  point P  whose  distance  PC  from  the  rod  is  x  is 

V—  2k<r  log  (cjx). 

Show  that  the  attraction  of  the  rod  on  a  unit  particle  at  P  is  towards 
C  and  equal  to  Zkvjx. 

9.  The  potential  of  a  thin  circular  disc,  of  surface  density  o-,  at  a 
point  P  on  the  normal  to  the  disc  through  its  centre  0  is 

where  a  is  the  radius  of  the  disc  and  OP—x.     Show  that  the  attraction 
on  unit  mass  at  P  is 

--  - l 1 

Show  that  if  x  is  small  compared  with  a,  the  attraction  is   %irko- 
approximately. 
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10.  The  coordinates  of  a  point  at  time  t  are  given  by 

x=acos(2nt  —  a),    y  —  bcosnt. 
Show  that  the  equation  of  the  path  of  the  point  is 

The  ̂ -coordinate  is  a  simple  harmonic  function  of  amplitude  a  and 
period  TT/TI,  while  the  y-coordinate  is  a  simple  harmonic  function  of 
amplitude  b  and  period  STT/TI,  double  that  of  the  ̂ -coordinate.  The 
motion  is  therefore  said  to  be  compounded  of  two  simple  harmonic 
motions  in  rectangular  directions  and  of  periods  in  the  ratio  1  :  2. 
When  a  =  0,  the  path  is  a  parabola.  Figures  of  the  curves  for 

different  values  of  a  will  be  found  in  Gray's  Physics,  Vol.  I.,  p.  70, and  in  various  other  books. 

11.  Show  that  two  simple  harmonic  motions  of  the  same  period  and 
in  the  same  straight  line  compound  into  a  simple  harmonic  motion  of 
the  same  period  and  in  the  same  straight  line. 

12.  If  in  ex.  1  1  the  motions  are  in  rectangular  directions,  show  that 
the  curve  compounded  of  the  motions  will  be  an  ellipse. 

7 



CHAPTEE   IX. 

MEAN  VALUE  THEOEEMS.     MAXIMA  AND  MINIMA. 
POINTS  OF  INFLEXION. 

§  72.  Rolle's  Theorem  and  the  Theorems  of  Mean  Value. 
The  following  theorems  are  of  constant  application. 

THEOREM  I.  //  F(x)  and  F'(x)  are  continuous  as  x 
varies  from  a  to  b,  and  if  F(x)  is  zero  when  x  =  a  and 

when  x  =  b,  then  Ff(x)  will  be  zero  for  at  least  one  value  of 
x  between  a  and  b.  (Rolle's  Theorem.) 

In  geometrical  language,  the  theorem  simply  states  that 
at  one  point  at  least  on  the  graph  of  F(x)  the  tangent  is 
parallel  to  the  cc-axis.  There  may  be  more  points  than 
one ;  if  there  are  more  than  one  there  must  be  an  odd 

FIG.  33. 

number  of  such  points,  as  <7,  D,  E  (Fig.  33).  The  student 
should  show  by  a  graph  that  the  theorem  is  not  necessarily 
true  if  either  F(x)  or  F'(x)  becomes  discontinuous  at  a 
point  in  the  range  from  a  to  b. 

G.C. 
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The  theorem  is  otherwise  obvious,  because  F(x)  cannot 
either  always  increase  or  always  decrease  as  x  increases 
from  a  to  6,  since  F(a)  =  0  and  F(b)  —  0.  Hence  for  at  least 
one  value  of  x  between  a  and  6,  F(x)  must  cease  increasing 
and  begin  to  decrease,  or  else  cease  decreasing  and  begin  to 

increase  ;  for  that  value  of  x,  F'(x)  will  be  zero.  Obviously 
a  may  be  either  less  or  greater  than  b. 
THEOREM  II.  If  f(x)  and  f  (x)  are  continuous  as  x 

varies  from  a  to  b,  then  there  is  at  least  one  value  of  x, 
#!  say,  between  a  and  b  such  that 

'     /(6j!l{(a)=//(a1)  or  f(b)=f(a)+(b-a)f(Xl)  ......  (1) 
(Theorem  of  Mean  Value). 

In  Fig.  34  let  A  be  the  point  (a,  f(a)),  B  the  point 

(b,  /(&))  ;  the  gradient  of the  chord  AB  is 

FIG.  34. 

x 

and  the  theorem  simply 
asserts  that  there  is  at 
least  one  point,  as  P,  on 
the  graph  between  A 
and  B  such  that  the 

tangent  at  P  is  parallel 
to  the  chord  AB.  If  the 
abscissa  of  P  is  xl  the 

gradient  at  P  is  /'(#i)  and  the  equation  is  established.  The student  should  draw  graphs  to  show  that  there  may  be 
more  than  one  point  such  as  P,  and  that  on  the  other  hand 

the  theorem  may  not  be  true  if  either  f(x)  or  f'(x)  becomes discontinuous  for  a  value  of  x  between  a  and  b. 
The  theorem  may  however  be  deduced  from  Th.  I.,  and 

the  method  of  deduction  is  important  as  it  leads  to  the 

theorem  known  as  Taylor's  Theorem,  one  of  the  most 
far  reaching  in  the  Calculus]  indeed  the  present  theorem 

is  only  a  special  case  of  Taylor's. Consider  the  quantity  Q  defined  by  the  equation 

or/(6)-/(a)-(&-a)Q  = 

(2) 
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Let  F(x)  denote  the  function 

/(»)-/(«)-(#  -a)  Q 
formed  by  replacing  b  by  x  in  the  expression 

By  (2)  F(b)  is  zero;  also  F(a)  is  zero.  Hence  the  con- 

ditions of  Th.  I.  hold  for  F(x)  since  F(x\  F'(x)  are 
continuous.  Therefore  F'(x)  will  be  zero  for  at  least  one 
value  of  x,  xl  say,  between  a  and  6.  But 

F'(x)  =/(»)-  Q; 

and  therefore      /'(o^)  —  Q  =  0  or  Q=f'(xl) 
so  that  the  theorem  is  established. 

THEOREM  III.  //  f(x),  f(x),  f'(x)  are  continuous  as  x 
varies  from  a  to  6,  then  there  is  at  least  one  value  of  x, 
x2  say,  between  a  and  b  such  that 

This  theorem  is  an  extension  of  Th.  II.     To  prove  it 
consider  the  quantity  R  defined  by  the  equation 

f(b)  -/(a)  -(b-  a)  f(a)  -  K&  -  «02  R  =  0  ..........  (3) 
As  before,  take  the  function  F(x),  such  that 

,    F(x)=f(x}-f(a)-(x-a)f(a}-\(x-a?R. 
Here,  F(a)  =  0,  F(b)  =  Q  (by  (3)),  and  F(x)  satisfies  the  con- 

ditions of  Th.  I.     Now, 

F'(x)=f(x)-f(a)-(x-a)R, 
and  therefore  for  at  least  one  value  of  x,  xl  say,  between 
a  and  b 

Hence  F'(x)  vanishes  when  x  =  xl  ;  obviously  it  also  vanishes 
when  x  =  a;  the  conditions  of  Th.  I.  apply  therefore  to 

F'(x)  so  that  its  derivative  must  vanish  for  at  least  one 
value  of  x,  x2  say,  between  a  and  xv  and  therefore  between 

a  and  b.  But  the  derivative  of  F'(x)  is  F"(x)  and 

and  therefore 

F"(^}  =  />2)  -  R  =  0  ;  or  R  =  /"(as,) and  we  get 

which  establishes  the  theorem. 
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The  theorem  has  the  following  geometrical  interpretation. 
If  the  tangent  at  A  (Fig.  34)  meet  DB  at  R,  then 

DR=f(a)  +  (b-a)f(a)-,  DB=f(b), 
and  therefore,  both  in  sign  and  in  magnitude, 

Hence  the  deviation  of  the  curve  at  B  from  the  tangent  at 
A,  that  deviation  being  measured  along  the  ordinate  at  B; 

is  equal  to  J(6  —  a)2  f'(xz). 
§  73.  Other  Forms  of  the  Theorems  of  Mean  Value.  The 

following  forms  may  be  given  to  Theorems  II.,  III. 
If  x  be  any  number  lying  between  a  and  6,  then  x  —  a  and 

b  —  a  are  of  the  same  sign  whether  a  is  less  or  greater  than 
6;  therefore  (x  —  a)/(b  —  a)  is  a  positive  proper  fraction, 
0  say,  and  we  can  write  x  =  a  +  0(b  —  a),  so  that  any  number 
between  a  and  b  is  of  the  form  a  +  0(b  —  a)  where  6  is  a 
positive  proper  fraction. 

Now  let  b  =  a  +  h,  b  —  a  =  li\  Th.  II.  will  become 

and  Th.  III.  will  become 

f(a+h)=f(a)+hf\a)  +  %h*f(a+QJi)  ......  (Ilia) 
The  0  of  Th.  III.  is  not  necessarily  the  same  as  the  6  of 
Th.  II.  and  0X  is  used  for  distinction.  All  that  is  known  of 
0  is  that  it  is  a  positive  proper  fraction  ;  it  depends  in 
general  both  on  a  and  h.  In  special  cases  its  value  may  be 
found.  Thus,  if  f(x)  =  x2 

f'(x)  =  2x  •  f(a  +  Oh)  =  2  (a  +  Oh). 
But       (a  +  hy2  =  a?  +  2ah  +  h2  =  a2  +  h  .  2(a  +  %h), 

and  (a  +  h)2  =  f(a)  +  hf'(a  +  0h)  =  a?+h.2(a  +  Oh), 
so  that  in  this  case  0=  J.  In  Fig.  34  if  APB  is  an  arc  of 
a  parabola,  M  is  the  mid  point  of  CD,  and  MP  bisects  the 
chord  AB. 

If  we  replace  a  by  x  the  above  forms  become 

f(x  +  h)=f(x)  +  hf(x  +  0h)  .....................  (II.6) 

f(x  +  h)  =f(x)  +  h  f(x)  +  \h*f(x  +  OJi)  ......  (III.6) 
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If  we  make  a  zero  and  then  put  x  for  h  we  get 

/(«)=/(<>)  +  a;  /(fte)  ........................  (II.c) 

/(«)=/(0)+a;/'(0)  +  ̂ 2/"(^)  .........  (IH.c) 
Theorem  II.  affords  another  proof,  though  really  at  bottom 

it  is  not  different,  of  Theorem  VI.  §  58.  For  if  f(x)  is  zero 
for  every  value  of  x,  then  f(x^)  is  zero,  and  we  get 
/(&)  =/(a),  that  is,  any  two  values  /(a),  f(b)  of  /(#)  are  equal  ; 
in  other  words  f(x)  is  a  constant.  Hence  if  </>'(x)  —  F'(x)  is 
zero,  the  function  <j>(x)  —  F(x)  is  a  constant. 

Ex.  1.     If  x  is  positive,  show  that  log(l+#)  is  less  than  x  but 
greater  than  x  — 

x)  =  log  (1  +  x)  ; 

=  logl=0; 

By  Th.  II.c,        log(l  +^)= 

By  Th.  IIl.c,      log  (1  +x)= 

Ex.  2.     Show  that  cos  x  is  greater  than  1  -  \x'i, 
f(x)  =  cos  x  ;    /(#)  =  -  sin  x  ;    /'(#)  =  -  cos  x  ; 
/(O)  =  1  ;          /(O)  =  0  ;  f(0yx)  =  -  cos  (0.x). 

By  Th.  IILc,  cos  x  =  I  -  ̂   cos  (0^)  >  1  -  ̂ 2, 
since  cos(Ojx)  is  numerically  less  than  unity.     It  is  easy  to  deduce  that 
cos#=l  -  #r2  where  6  is  a  positive  proper  fraction  less  than  ̂ . 

Ex.  3.     The  student  may  try  to  prove  by  assuming 

AV  -/(«)  -  (6  -  «)/(«)  -  i(6  -  «)2/'(«)  -  J(6  -  «)3^=  0 
that  if  f(x)  and  its  first  three  derivatives  are  continuous,  S  will  be 

equal  to  f"(x3\  where  x3  lies  between  a  and  6.     By  putting  0  for  a and  #  for  6  we  should  get 

where  03  is  a  positive  proper  fraction. 

Ex.  4.     By  using  the  theorem  of  ex.  3,  show  that  if  x  lies  between 
x 

How  would  the  inequalities  be  stated  if  x  lay  between  -  Tr/2  and  0  ? 

Ex.  5.     If  f(x)  —  (x-  1)$  -  1,  f(x)  is  zero  when  #  =  0  and  when  #=2. 
Does  f(x)  vanish  for  any  value  of  x  between  0  and  2  ? 
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§  74.  Maxima  and  Minima.  In  §§  17,  52  attention  has 
been  called  to  the  turning  values  of  a  function ;  a  turning 
value  may  be  either  a  maximum  or  a  minimum  value  of 
the  function.  A  formal  definition  of  such  values  may  be 

given. 
DEFINITION,  /(a)  is  defined  to  be  a  maximum  value  of 

f(x)  if  f(a)  is  (algebraically)  greater  both  than  f(a  —  h)  and 
than  /(a  +  h)  for  every  positive  value  of  h  less  than  a  small 
but  finite  positive  quantity  rj.  f(a)  is  defined  to  be  a 
minimum  value  of  f(x)  if  f(a)  is  (algebraically)  less  both 
than  f(a  —  h)  and  than  f(a  +  h)  for  every  positive  value  of 
h  less  than  rj. 

It  is  to  be  noticed  that  a  maximum  value  is  not 

necessarily  the  greatest  value  the  function  can  have  nor 
a  minimum  the  least ;  f(a)  is  a  maximum  if  it  be  greater 
than  any  other  value  of  jftx)  near  /(a)  and  on  either  side 
of  it. 

The  condition  for  a  maximum  or  a  minimum  value  is 

easily  obtained.  If  f(a)  is  a  maximum  value  of  f(x),  then 
as  x  increases  from  a  —  h  to  a,  f(x)  is  increasing,  and 
therefore  f\x)  is  positive  (§  52) ;  on  the  other  hand  as  x 
increases  from  a  to  a-f-  h,  f(x)  is  decreasing,  and  therefore 

f(x)  is  negative.  Hence  as  x  increases  through  a,  f'(x) 
must  change  from  a  positive  to  a  negative  value.  Con- 

versely, if  as  x  increases  through  a,  f(x)  changes  from  a 
positive  to  a  negative  value,  /(a)  will  be  a  maximum  value 
off(x). 

Hence  f(a)  will  be  a  maximum  value  of  f(x)  if  and  only 
if  f(x)  changes  from  a  positive  to  a  negative  value  as  x 
increases  through  a. 

In  the  same  way  it  will  be  seen  that  /(a)  will  be  a 
minimum  value  of  f(x)  if  and  only  if  f(x)  changes  from 
a  negative  to  a  positive  value  as  x  increases  through  a. 

This  condition  may  be  called  the  fundamental  condition 
or  test. 

For  ordinary  cases  a  simpler  form  may  be  given  to  the 
condition.  Usually  f\x)  will  be  continuous ;  now  a  con- 

tinuous function  can  only  change  sign  by  passing  through 
the  value  zero  (§  45,  Th.  II.).  Therefore,  if  f(a)  is  a  turning 

value  of  /(#),  f'(a)  will  be  zero. 
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Again,  if  f(a)  is  a  maximum  value  of  f(x),  f'(x)  changes 
from  a  positive  to  a  negative  value  as  x  increases  through 

a\  therefore  near  a,  f'(x)  is  a  decreasing  function,  and 
therefore  its  derivative,  namely  f(x),  must  be  negative 

near  a.  But  if  f'(a)  is  not  zero,  then  near  a  the  sign  of 
f'(x)  is  that  of /"(a).  Hence  f'(a),  if  it  is  not  zero,  will  be 
negative  when  f(a)  is  a  maximum  value  of  f(x).  In  the 

same  way  we  see  that  f"(a),  if  it  is  not  zero,  will  be 
positive  when  f(a)  is  a  minimum  value  of  f(x).  Conversely, 
/(a)  will  be  a  maximum  or  a  minimum  value  of  f(x) 

according  as  f"(a)  is  negative  or  positive. Hence  the  rule  for  determining  the  maxima  and  minima 

values  of  f(x)  when  f(x),  f'(x)  are  continuous : 
The  roots  of  the  equation  /'(x)  =  0  are,  in  general,  the 

values  of  x  which  make  /(x)  a  maxi/mwm  or  a  minimum. 

Let  &  be  a  root  of  /'(x)  =  0 ;  then  /(a)  will  be  a  maximum 
value  o//(x)  if  f'(&)  is  negative  but  a  minimum  if  f"(&)  is 
positive. 

When  f'(a)  is  zero  this  rule  for  testing  whether  f(a)  is  a 
turning  value  fails ;  f(a)  may  be  zero  and  yet  f(a)  neither 

a  maximum  nor  a  minimum.  When  f'(a)  =  Q  and  also 
f(a)  =  Qt  recourse  may  be  had  to  the  fundamental  test  that 

f'(x)  must  change  sign.  It  will  be  seen  in  §  78  that,  in 
general,  the  point  on  the  graph  of  f(x)  for  which  both  f(x) 

and  f'(x)  are  zero  is  a  point  of  inflexion. We  leave  it  as  an  exercise  to  the  student  to  show  that 
maxima  and  minima  values  occur  alternately.  Thus  in 
Fig.  33,  §  72,  which  is  the  graph  of  F(x),  the  function  is  a 
maximum  at  C,  then  a  minimum  at  D,  then  a  maximum 
at  E.  At  F  and  H  on  that  graph  the  function  turns 

though  F'(x)  is  not  zero  at  these  points;  however  F'(x) 
has  opposite  signs  on  opposite  sides  of  F  and  H.  Again 

at  0,  F'(x)  is  zero,  yet  the  graph  has  no  turning  point 
there ;  F'(x)  has  the  same  sign  on  opposite  sides  of  G,  and 
G  is  a  point  of  inflexion. 

The  above  conclusions,  when  f(x)  and  its  derivatives  are  continuous 
at  a,  may  also  be  deduced  from  the  Theorem  of  Mean  Value.  For  if 
f(a)  is  a  turning  value  of  f(x)  the  differences 

A  =/(«+A)  -/(«),    D2  =/(«-/<)  -/(«), 
must  have  the  same  sign  for  small  values  of  /* :    the  negative  sign 
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when  f(a)  is   a   maximum,   but   the   positive   sign   when  /(a)  is  a 
minimum. 

Now,  by  §  73  (Ilia), 

h{f(a)+  W"(a+  ̂ )}, 
(a-  &h}=h{  -f(a)  +  %hf(a-e'h)}. 

When  h  is  a  very  small  positive  number  the  signs  of  Dl  and  Z)2  will, 

if  f(a)  is  not  zero,  be  the  same  as  the  signs  of   f(a)  and    -/'(a) 
respectively  (compare  §  45,  Th.  I.)  ;  therefore  Dl  and  Z)2  cannot  have 
the  same  sign,  and  therefore  /(a)  cannot  be  a  turning  value  unless 

Again,  if  f'(a}  is  not  zero  the  sign  of  f'(a-}-6h)  and  of  f"(a-&h)  is 
the  same  as  that  of  /"(a)  ;  therefore  if  f(a}=0  both  Dv  and  D2  will  be 
negative  when  f"(a)  is  negative,  but  positive  when  f'(a)  is  positive. 
We  thus  get  the  same  rule  as  before. 

By  Taylor's  Theorem  (chapter  xvm.)  Dl  and  D2  can  be  expressed  in 
a  series  of  ascending  powers  of  h  ;  the  same  line  of  argument  as  that 

just  followed  leads  to  the  conclusion  that  if  /'(a),  /"(a),  .  .  .  ,  /  (l  1}(a)  all 
vanish,  but  f{n\a)  does  not  vanish,  then  /(«)  will  be  a  turning  value 
of  f(x\  provided  that  n  (the  order  of  the  first  of  the  derivatives  that 
is  not  zero)  is  an  even  integer,  but  not  a  turning  value  when  n  is  an 
odd  integer  :  the  turning  value  will  be  a  maximum  or  a  minimum 

according  as  /(w)(«)  is  negative  or  positive.  It  will  be  a  good  exercise 
to  deduce  this  conclusion  by  examining  the  signs  of  the  derivatives 

near  a  ;  for  example,  show  that  if  f(a)  and  f"(a)  are  zero  but  f"(a) 
not  zero,  /"(#)  changes  sign,  and  therefore  f'(x)  does  not  change  sign 
as  x  increases  through  a,  but  that  if  f"(a)  is  zero  and  /iv(a)  not  zero 
f"(x)  does,  f'(x)  does  not  and  f(x)  does  change  sign  as  x  increases 
through  a. 

§  75.  Examples. 

Ex.  1.     Find  the  turning  values  of  3#4  - 
Denote  the  function  by  f(x)  ;  then 

=  12-r*  -l&c2; 

—  1),  and  is  therefore  zero  if  x=Q  or  1. 

/'(I)  =  36  -  24  =  12  =  positive  number. 

Since  /"(I)  is  positive,  /(I)  =0  is  a  minimum  value  of  f(x). 
Again  /"(0)=0  ;  in  this  case  consider  the  sign  of  f'(x)  near  0.     Let be  a  small  positive  number  ;  then 

A-  !)  =  (  +  )(-)=- 

where  only  the  sign  of  each  factor  and  of  the  product  needs  to  be 
written.  f(x)  is  therefore  negative  both  when  x  is  a  little  less  and 
when  x  is  a  little  greater  than  0  ;  that  is,  f(x)  decreases  as  x  increases 
from  -A  to  0  and  continues  to  decrease  as  x  increases  from  0  to  h. 
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Hence  /(O)  is  not  a  turning  value  of  f(x)  ;  on  the  graph  of  f(x)  there 
is  a  point  of  inflexion  where  #=0. 
We  may  prove  otherwise  that  /(O)  is  not  a  turning  value  ;  for 

y'"(0)=  -24,  that  is,  the  first  of  the  derivatives  which  does  not  vanish when  #  =  0  is  of  odd  order. 

As  x  increases  from  -co  to  1,  f(x)  is  negative,  and  therefore  f(x) 
is  a  decreasing  function  ;  as  x  increases  from  1  to  +  oo ,  f(x)  is  positive, 
and  therefore  f(x)  is  an  increasing  function.  Hence  j^l)  is  not  only 
a  minimum  value  of/(#),  but  it  is  also  the  least  value  f(oc)  can  take  for 
any  value  of  x  ;  f(x)  is  not  negative  for  any  value  of  x.  The  student 
should  graph  the  function. 

Ex.  2.  Given  the  total  surface,  2?ra2,  of  a  right  circular  cylinder, 
find  the  cylinder  of  maximum  volume. 

Denote  the  radius  of  the  base  by  x,  and  the  height  by  y  ;  then 

volume  =  Trx2y  ;     surface  =  %Trxy  +  2;r^2  =  27ra2. 

From  the  second  equation  xy  =  a?-x2  ;  therefore  denoting  the  volume 
by  f(x\  we  get 
^  /•/     \  /     9  TV 

j\x)  =  TTX  .  xy = ir(arx  —  x?). 
Therefore  • 

f(x)  =  7r(a2  -  3^2)  ;    f(x)  =  -  GTTX  ;    f(x)  =  0  if  x  =  ±  a/^/3  ; 

the  negative  root  may  be  discarded  as  irrelevant.  Now  /"(a/v/3)  is 
negative,  and  therefore  /(a/^Z)  is  a  maximum  ;  the  maximum  volume 
is  27ra3/3x/3. 

The  height  is  given  by  y  =  (a?-x2)/x,  and  when  #=a/v/3,  y  =  2a/v/3, 
so  that  the  height  of  the  cylinder  of  maximum  volume  is  equal  to  the 
diameter  of  its  base. 

The  student  should  observe  how  the  given  condition  enables  us  to 

express  Trx2y  as  a  function  of  the  one  argument  x. 

Ex.  3.  If  r  =  acos20  +  6sin2^,  find  the  maximum  and  minimum 
values  of  r,  where  a,  b  are  positive  constants. 

Examples  of  this  type  are  most  simply  solved  without  the  use  of 
derivatives.  Thus, 

Now  obviously  r  will  be  a  maximum  or  a  minimum  according  as 

vv'a-&)cos2#  is  so.  If  a>6,  the  greatest  and  .least  values  of 
J(a-6)cos  20  are  %(a-V)  and  -|(a-6),  so  that  the  greatest  and 
least  values  of  r  are  a  and  6.  These  values  are  reversed  if  a<b, 

since  in  that  case  the  greatest  and  least  values  of  %(a-  b)  cos  26 
are  -  \(a  —  b)  and  ̂ (a  -  b). 

In  a"  similar  way  we  can  find  the  maximum  and  minimum  values  of 
x2+y2  when  x  and  y  are  connected  by  the  equation  ax2  +  Zhxy  +  by2=\. 
For  put  .r=rcos  0,  #  =  rsin  0,  and  then  x2+y2  becomes  r2,  where 

r\a  cos2<9  +  2A  sin  0  cos  0 + 6  sin20)  =  1 . 

Now  r3  will  be  a  maximum  or  minimum  according  as  1/r2  is  a 
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minimum  or  maximum,  and  we  may  write,  from  the  equation  between 
r  and  0, 

=  a  cos20  +  2A  sin  0  cos  0  +  b  sin2(9 
«-&)  cos  20+  A  sin  20 

cos(20-0'). 
where  flcos  0'  =  |(a-6),  flsin  0'  =  A,  and  ̂ =  +  A^        + 

The  maximum  and  minimum  values  of  1/r2  are  given  by 

Geometrically,  this  example  is  the  problem  of  finding  the  semi-axes 
of  the  conic  whose  equation  is  cur5  +  2A.ry  +  &ty2  =  l.  The  values  of  0 
that  give  -the  axes  are  determined  by 

cos  (20-6>')=  ±1,     20=0'  or  7T+0',     0=|0'  or  Jir+Jfl', 
so  that  the  two  axes  are  at  right  angles.     The  value  of  0'  is  uniquely 
determined  by  the  two  equations  .flcos  0'  =  |(a-  6)  and  R  sin  0'  =  A. 

The  solution  of  problems  of  this  kind  by  use  of  derivatives  is  much 
more  tedious. 

Ex.  4.  If  f(x)  =  e'ax  sin  (bx  +  c)  where  a,  b  are  positive,  find  the 
turning  values  of  /(#). 

/'(#)  =  —  e~ax{a  sin  (6^  +  c)  —  6  cos  (bx + c) } 
=  -  /?e-a*  sin  (6^  +  c  -  0), 

where  R  cos  0  =  a,     J?  sin  0  =  6,     /2  =  +  v/(a2  +  62), 

f"(x) = R2e~ax  sin  (&#  +  c  -  20). 
Since  e~ax  is  not  zero  for  any  finite  value  of  x,  the  roots  of  /'(#)  =  0 

are  those  of  sin  (bx+c—  0)  =  0  ;  therefore /'(.#)  is  zero  when 
OOO  ~T"  C  ~~"  C/  ~~  ivTT      ( 7&  — —  \/«    nr  -I «    rt  ̂ 5  •  •  •  )• 

Denoting  by  #M  the  value  of  a;  corresponding  to  any  n,  we  have 

f'(xn) = R?e~axn  sin  (6^M  +  c  -  0  -  0)  =  R2e~axn  sin  (^TT  -  0). 

Now  sin  (MTT  —  0)  =  —  cos  wr  sin  0  ;  and  sin  0  and  R2e~axn  are  positive, 
so  that  the  sign  of  f'(xn)  is  the  same  as  that  of  -COSWTT,  that  is, 
of  (-l)n+1. 
Hence  f(x)  is  a  maximum  for  ̂   =  0,  2,  4  ...,  but  a  minimum  for 

%  =  1,  3,  5  ...,  limiting  consideration  to  zero  and  positive  values  of  n. 

,T  mr-c+0  TT Ix  O"W  *y     ~~    ^y*       •«  —  'Y*    ~rr   

and  /(^«)  =  e~rti*n  sin  (6^M  +  c)  =  e~axn  sin  (?i?r  +  0), 
which  may  be  put  in  the  form 

n-jj-a      ac  -aft 

•H  T*    \  —  /   _     1  \*10          it          00  ci  Ti    r/ 
J  \       tl  J     V  /  »V  .    OUA    \J t 

Thus  the  values  of  x  for  which  _/(#)  turns  form  an  arithmetic 
progression  with  common  difference  irjb ;  the  values  of  x  for  which 

f(x)  is  a  maximum  (or  a  minimum)  have  the  common  difference  2?r  'b. 
If  e~axn  be  called  the  amplitude  of  /(#„),  the  amplitudes  of  the  maxima 
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and  minima  values  of  f(x)  form  a  geometric  progression  with  common "2TTO. 

ratio  e     b  . 

Since  Dxe~ax=  -ae~ax,  the  gradient  of  e~ax  is  equal  to  that  of  /(#) for  those  values  of  x,  for  which 
-  ae~ax  =  -  Re~ax  sin  (bx  +  c  -  0), 

that  is,  for  which 

sin  (bx+ c- 
that  is,  for  which 

TT 

Now  when  bx  +  c  -  9 — (2m  +  I)TT  -  5  -  6,  sin  (bx  +  c)  =  1 ,  and  therefore 

for  these  values  of  x,  e~ax=f(x). 
Therefore  when  bx  +  c  =  SLimr  +  Tr/2,  e~rt*  andy(^)  have  the  same  value 

and  the  same  gradient,  and  therefore  their  graphs  touch  at  the  points 
whose  abscissae  are  given  by  these  values  of  x. 

The    discussion    of    e~axcos(bx+c')    can    be    reduced    to    that    of 

by  putting  c'  equal  to  c  -  -• 2i 

FIG.  35. 

Fig.   35  shows  the  graph  for  a='l,  6  =  1,  c=0.     The  dotted  line* 

is  the  graph  of  e~wx  . 

§  76.  Elementary  Methods.  Certain  types  of  problems  can 
be  solved  very  simply  by  elementary  algebra  or  trigonometry. 

The  discussion  of  the  quadratic  function  or  the  quotient 
of  two  quadratic  functions  will  be  found  in  any  book  on 
algebra  ;  the  turning  values  of  y  where 

=  (ax 
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found  by  writing  the  equation  in  the  form 

(Ay-a)  x 
and  determining  the  values  of  y  that  make  the  discriminant, 
that  is, 

vanish.  A  little  consideration  distinguishes  the  maximum 
from  the  minimum  if  there  are  two  values  of  y,  and  shows 
whether  the  solution  is  a  maximum  or  a  minimum  when 

there  is  only  one. 
A  more  general  case  occurs  when  there  are  more  variables 

than  one  and  these  are  connected  by  a  relation,  all  the 
quantities  being  positive.  For  two  variables  the  5th,  8th, 

and  9th  propositions  of  Euclid's  second  book  or  their 
algebraic  equivalents  are  fundamental. 

(ii) 
(iii) 

When  the  sum  (x  +  y)  of  two  quantities  is  given,  we  see 
by  (i)  that  their  product  is  greatest  and  by  (iii)  that  the 
sum  of  their  squares  is  least  when  the  two  quantities  are 
equal.  When  the  product  xy  of  two  quantities  is  given  we 
see  by  (ii)  that  their  sum  is  least  when  they  are  equal. 

These  theorems  may  easily  be  extended.  Thus  let  x,  y, 
0,  w  ...  be  n  positive  quantities  and  let  their  sum  (a)  be 
given  ;  then  their  product  xyzw  .  .  .  will  be  greatest  when 
they  are  all  equal.  For  let  xv  yv  zv  wv  ...  be  a  set  of  simul- 

taneous values  of  these  variables  ;  then  if  any  two  of  these, 
say  xv  yv  are  unequal  it  will  be  possible,  without  altering 
the  sum  of  the  n  quantities,  to  get  a  greater  product  than 
x^^w^...  by  replacing  both  xl  and  yl  by  K^i  +  2/i)  and 
leaving  zlt  wv  .  .  .  unaltered,  because  the  product  of  the  two 

equal  quantities  K^i  +  2/i)>  that  ig  i(xi  +  yi)2>  *s  greater  than 
x^yv  So  long,  therefore,  as  any  two  are  unequal  the  pro- 

duct has  not  reached  its  greatest  value.  When  they  are  all 
equal  each  is  equal  to  a/n,  so  that 
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/d\n xyzw  ...  is  less  than  (  —  )  , \nJ 
• 

.     !  /X  +  V  +  Z  +  W  ...\n or  xyzw  ...  is  less  than  (  -    -*-  )  , \  n  / 

unless  x  =  y  =  z=w  ...  =  a/n. 

If  we  suppose  p  of  the  quantities  equal  to  x,  q  of  them 
equal  to  y,  r  of  them  equal  to  z,  where  p  +  q  +  r  =  n  then  we 
may  write  the  last  inequality 

p+q+r    / except  when  x  =  y  =  z,  and  then  the  inequality  becomes  an 
equality.  It  is  easy  to  see  that  this  inequality  is  true  even 
if  p,  q,  r  are  positive  fractions. 

In  the  same  way  it  may  be  seen  that  when  the  sum  of 
the  quantities  is  given  the  sum  of  their  squares  will  be 
least  when  they  are  all  equal,  and  when  the  product  of  the 
quantities  is  given  their  sum  will  be  least  when  they  are 
all  equal. 

These  theorems  may  be  again  extended.  For  suppose 
x,  y,  z,  w  .  .  .  connected  by  the  linear  equation, 

ax+by  +  cz+dw+  ...  =k,  a  constant, 

the  quantities  being  all  positive.     Then  we  may  put 

,  .    —  -  —  7  -  T  — abed  .  .  . 

and  xyzw  .  .  .  will  be  greatest  when  the  numerator  of  the 

fraction  is  greatest.  But  if  we  put  x'  for  ax,  y'  for  by  ... 
we  reduce  the  case  to  that  in  which  x'  +  y'+z'+w'+  ...is 
given.  Hence  the  product  is  greatest  when  x',  y',  z',  w'  ... are  all  equal,  that  is  when 

By  means  of  the  above  theorems  a  large  number  of 
the  simpler  problems  of  maxima  and  minima  of  functions 
of  more  than  one  variable  may  be  solved.  For  a  full  dis- 

cussion of  the  algebraic  treatment,  see  Chrystal's  Algebra, Vol.  II.  chap.  xxiv. 
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Ex.  1.     The   equilateral    triangle   has   maximum   area   for   given 
perimeter. 

In  the  usual  notation  for  triangles, 

where        M=s  —  a,    y—s  —  b^     z—s  —  c^     2s  being  constant. 
Now 

Hence  xyz,  and  therefore  sxyz,  and  therefore  A  ig  greatest  when 
x=y=z,  that  is,  when  a  =  b  =  c. 

Ex.  2.     From  the  identity 

(\2     (mcz    nby\2     (nax    lcz\2     flby Ix+my+nz)  +(—.  ---  -  )  +1  -)+l  — /       \  b         c  /       \    c        a  J       \  a r"> 
b    / 

deduce 

(i)  a2,v2  +  b2y2  +  c2z2  =  minimum,  if  lx+my  +  nz  =  const., 

(ii)         Iv  +  my  +  nz  =  maximum,  if  a*x2  +  b2y2  +  c%2  =  const.  , 

when  a2^jl  =  b2y/m  =  c2z/n. 
These  results  are  obvious.     We  might  write  A,  B,  C  instead  of 

a2,  62,  c2,  but  A,  JB,  C  must  be  positive.     The  student  may  prove  a 
/  \  /  12     m2    n2    p2\ 

similar  theorem   for    1  a2x2  +  b2y2  +  c2z2  +  d2w2  )(  -9  +  10-  +  -5+  v>  ),  and V  )\al     o2      c2     cP/ 
extend  to  any  number  of  variables. 

§  77.  Variation  near  a  Turning  Value.     When  a  function 
f(x)  and  its  first  two  derivatives  are  continuous  near  a  we 

have  ' 

+  0h)  will  be  nearly  equal  to  f"(a)  when  h  is  small, 
and  we  may  write  as  a  very  approximate  equation 

Hence  when  /(a)  is  a  turning  value,  so  that  /'(«)  =  0,  we have  ' 

Thus  when  /(a)  is  a  turning  value  the  change  /(a-fA)—  /(a) 
as  x  changes  from  a  to  a  +  h  is,  approximately,  proportional 
to  h2  ;  if  /(a)  is  not  a  turning  value  the  change  is,  approxi- 

mately, proportional  to  h.  Near  a  turning  value  therefore 
a  function  changes  much  more  slowly  than  near  a  value 



•> 

VARIATION  NEAR  A  TURNING  VALUE.  175 

for  which  it  does  not  turn,  since  when  h  is  small  k2  is  much 
smaller  than  h. 

If  therefore  in  a  physical  application  of  the  theory  of 
maxima  and  minima  it  is  not  possible  to  make  the  arrange- 

ment that  which  corresponds  to  the  exact  solution,  there 
will  frequently  be  no  great  disadvantage  in  a  slight 
departure  from  the  theoretically  best  arrangement.  Thus 
when  a  battery  of  mn  cells  is  joined  up  so  that  m  rows 
of  n  cells  each,  connected  in  series,  are  joined  in  parallel, 
the  current  y  is 

mnE 

mR+nr' where  E  is  the  electromotive  force  of  each  cell,  r  the 
internal  resistance  of  each  cell  and  R  the  external  resist- 

ance. Since  mn  is  constant  y  will  be  a  maximum  when 
m-R  +  Tir  is  a  minimum,  that  is,  when  mR  =  nr  or  when 
R  =  nr/m,  that  is,  when  the  total  external  resistance  is  equal 
to  the  internal  resistance  of  the  battery.  It  may  not  be 
possible  to  join  up  the  battery  so  as  exactly  to  satisfy  this 
condition ;  but  if  the  condition  be  very  nearly  satisfied  the 
current  will  not  fall  far  short  of  the  maximum.  In  any 
case  the  nearer  the  arrangement  can  be  brought  to  satisfy 
the  condition  the  stronger  will  be  the  current. 

Again  in  applying  the  theory  of  maxima  and  minima 
to  physical  problems  great  care  is  necessary  in  drawing 
conclusions ;  an  arrangement  that  best  satisfies  one  set  of 
conditions  may  conflict  with  that  which  best  satisfies 
another  set  of  equally  important  conditions.  Thus  the 
above  arrangement  of  cells  gives  the  highest  rate  of 
working  in  the  external  part  of  the  circuit  but  it  is  not 
the  most  economical.  The  student  may  with  advantage 

read  the  remarks  on  pp.  85,  86  and  chap.  ix.  of  Gray's Absolute  Measurements  in  Electricity  and  Magnetism. 
(London :  Macmillan.)  The  theory  of  maxima  and  minima 
is  of  great  value  as  a  guide  in  all  such  investigations,  but 
has  to  be  applied  with  caution  and  not  blindly. 
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EXEECISES   XVI.  a. 

The  cones  and  cylinders  referred  to  in  the  examples  are  right 
circular  cones  and  cylinders.  For  the  mensuration  of  various  solids 
see  chap.  iv. 

Investigate  the  maxima  and  minima  values  of  the  functions  in 
examples  1-12. 

2.  3*-5x*  +  5x?-l.  3. 

4.  x(a+xY(a-xf.       5.  #/(l+.r2).  6. 

7.  xl(ax*  +  2bx  +  a).       8.  x(x2  +  l)l(x^-x2-\-\).     9. 

10.  xl(\+xrf.  11.  a  +  l(x-cf.  12.  a 

13.  Find  the  maximum  value  of  xmyn  if  x+y=k,  a  constant,  the 
quantities  being  all  positive.     Hence  show  that 

+  nb\m+n 

ambn<( 
m  +  n  / 

except  when  a  =  b. 

14.  From  the  inequality  in  example  13  deduce  that  (l-fl/z)2 
constantly  increases  when  z  is  positive  and  increases,  but  decreases 
when  z  is  negative  and  increases  numerically.  Hence  show  that  the 

limit  of  (l  +  l/2)z  for  z—  ±00  is  a  finite  number  greater  than  2'5  but 
r  1  1  ~1 less  than  3.       Puta  =  lH  —  ,  6  =  1;  then  a  =  l,  6  =  1  —  . L  in  n  J 

15.  If  ajx  +  bly  =  c,  find  the  least  value  of  a#  +  6y,  the  quantities 
being  all  positive.     Find  also  the  minimum  value  of  xy. 

16.  For  what  value  of  x  is 

ml  (x  —  x-^f  +  m2(x  —  #2)2  +>..+inn(x  —  xn)2 
a  minimum,  m1?  w2,...wn  being  all  positive. 

In  the  following  examples  the  methods  of  §  76  may  be  used;  the 
quantities  are  understood  to  be  all  positive. 

17.  The  equilateral  triangle  has  minimum  perimeter  for  given  area. 

18.  The  cube  is  the  rectangular  parallelepiped  of  maximum  volume 
for  given  surface  and  of  minimum  surface  for  given  volume. 

19.  Find  the  minimum  value  of  box  +  cay  +  dbz  if  xyz  —  abc. 

20.  Find  the  maximum  value  of  xyz  when 

and  the  minimum  value  of  #2/«2+;y2/&2  +  22/c2  when  xyz  =  d*. 

21.  If    xyz  =  a^(x-\-y  +  z\    then    yz+zx  +  xy    is    a   minimum   when 

22.  The  electric  time-constant  of  a  cylindric  coil  of  wire  is 
approximately  u=mxyz/(ax  +  by  +  cz)  where  x  is  the  mean  radius,  y  the 
difference  between  the  internal  and  external  radii,  z  the  axial 
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length,  and  m,  a,  6,  c  known  constants;  the  volume  of  the  coil  is 
nxyz.  Show  that  when  the  volume  V  is  given,  u  will  be  a  maximum 
when  ax=by=cz  —  \J(abcVln). 

23.  If  u  =  (ax2  +  by*)/J(a23?  +  b2y2)  where  x*+y2  =  l  show  that  the 
minimum  value  of  u  is  2^/(ab)j(a 

2 
24.  If  P  is  a  point  within  a  triangle  ABC  such  that  AP2+EP2  +  CP2 

is  a  minimum,  show  that  P  is  the  centroid. 

25.  In  any  triangle  the  maximum  value  of  cos  A  cos  B  cos  C  is  |. 

26.  Find  the  greatest  rectangle  that  can  be  inscribed  in  an  ellipse 
whose  semi-axes  are  a,  b. 

EXERCISES  XVI.  b. 

1.  ABCD  is  a  rectangle,  and  APQ  meets  BC  in  P  and  DC  produced 
in  Q.     Find  the  position  of  APQ  when  the  sum  of  the  areas  ABP, 
PCQ  is  a  minimum. 

2.  Given  one  of  the  two  parallel  sides  (a)  and  the  two  non-  parallel 
sides1  (b)  of  an  isosceles  trapezium,  find  the  length  of  the  fourth  side  so 
that  the  area  of  the  trapezium  may  be  a  maximum. 

3.  From  a  rectangular  sheet  of  tin,  the  sides  being  a  and  6,  equal 
squares  are  cut  off  at  each  corner,  and  a  box  with  open  top  formed 
by  turning  up  the  sides.     Find  the  side  of  the  square  so  that  the  box 
may  have  maximum  content. 

4.  An  open  tank  is  to  be  constructed  with  a  square  base  and 
vertical   sides   to   hold  a   given   quantity  of   water;    show  that  the 
expense  of  lining  the  tank  with  lead  will  be  least  if  the  depth  be  half 
the  width. 

If  the  tank  be  cylindrical  show  that  the  depth  will  be  equal  to  the 
radius  of  the  base.  If  the  section  of  the  cylinder  is  not  circular 
but  if  its  shape  is  given  show  that  the  curved  surface  will  be  twice 
the  base. 

5.  Show  that  the  altitude  of  the  cone  of  maximum  volume  that  can 
be  inscribed  in  a  sphere  of  radius  R  is  4/2/3. 

Show  that  the  curved  surface  of  the  cone  is  a  maximum  for  the 
same  value  of  R. 

6.  A  cone  is  circumscribed  about  a  sphere  of  radius  R;  show  that 
when  the  volume  of  the  cone  is  a  minimum  its  altitude  is  4/2  and  its 
semi-vertical  angle 

7.  Show  that  the  altitude  of  the  cylinder  of  maximum  volume  that 
can  be  inscribed  in  a  sphere  of  radius  R  is  2/2/^3. 

Show  that  when  the  curved  surface  is  a  maximum  the  altitude 
is  /2v/2. 

Show  that  when  the  whole  surface  is  a  maximum  that  surface  is  to 
the  surface  of  the  sphere  in  the  ratio  of  *J5  +  1  to  4, 
o.c,  M 
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8.  A  cylinder  is  inscribed  in  a  cone  ;  show  that,  its  volume  is  a 
maximum  when  its  altitude  is  one-third  that  of  the  cone. 

Show  that  the  curved  surface  is  a  maximum  when  the  altitude  is 
half  that  of  the  cone.  Show  also  that  the  total  surface  cannot  have 

a  maximum  unless  the  semi-  vertical  angle  of  the  cone  is  less  than 

9.  Given  the  total  surface  of  a  cone  show  that  when  the  volume  of 

the  cone  is  a  maximum  the  semi-vertical  angle  will  be  sin"1^. Given  the  volume  of  the  cone  show  that  the  total  surface  will  be  a 

minimum  for  the  same  value  of  the  semi-vertical  angle. 

10.  PP'  is   a  double   ordinate   of    the    ellipse   whose   equation    is 
+y2lb2=l  and  A  is  one  end  of  the  major  axis;  find  when  the 

triangle  APP'  has  maximum  area. 
Find  also  when  the  cone  formed  by  the  revolution  of  the  triangle 

about  the  major  axis  has  maximum  volume. 

11.  The  strength  of  a  rectangular  beam  varies  as  the  product  of  the 
breadth  and  the  square  of  the  depth  ;  find  the  breadth  and  the  depth 
of  the  strongest  rectangular  beam  that  can  be  cut  from  a  cylindrical 
log,  the  diameter  of  the  cross-section  being  d  inches. 

12.  The  stiffness  of  a  rectangular  beam  varies  as  the  product  of  the 
breadth  and  the  cube  of  the  depth  ;  find  the  breadth  and  the  depth  of 
the  stiffest  rectangular  beam  that  can  be  cut  from  a  cylindrical  log, 
the  diameter  of  the  cross-section  being  d  inches. 

13.  A  person  in  a  boat  a  miles  from  the  nearest  point  A  of  the 
beach  wishes  to  reach  in  the  shortest  time  a  place  b  miles  from  A 
along  the  beach  ;  if  he  can  row  at  u  miles  an  hour  and  walk  at  v  miles 
an  hour  (u<v)  find  how  far  from  A  he  must  land.     Consider  the 
cases  in  which  the  ratio  of  u  to  v  is  equal  to  or  greater  than  that  of  b 
to 

14.  Assuming  that  the  brightness  of  a  small  surface  A  varies  in- 
versely as  the  square  of  the  distance  r  from  the  source  of  light  and 

directly  as  the  cosine  of  the  angle  between  r  and  the  normal  to  the 
surface  at  A,  find  at  what  height  above  the  centre  of  a  circle  of  radius 
a  an  electric  light  should  be  placed  so  that  the  brightness  at  the 
circumference  should  be  greatest. 

15.  If  the   intensities   of    two   sources  A,   B    of    light   be   «3,   b3 
respectively  find  the  point  on  the  line  AB  at  which  the  brightness 
is  least. 

16.  A,  B  are  two  points  on  opposite  sides  of  a  plane  L  and  P  a 
point  in  the  plane;  a  particle  travels  from  A  to  B  by  the  path  AP, 
PB  its  velocity  along  AP  being  constant  (u)  and  its  velocity  along 
PB  also  constant  (v)  but  the  two  velocities  being  different.     Show 
that  when  the  time  of  travelling  from  A  to  B  is  a  minimum  the  plane 
th  rough  APB  is  normal  to  L  and  the  sines  of  the  angles  that  AP,  PB 
make  with  the  normal  to  L  at  P  are  in  the  ratio  of  u  to  v, 



MAXIMA  AND  MINIMA.     EXERCISES  XVI.   b,  c.        179 

EXERCISES  XVI.   c. 

1.  Show  that  xj(  \-\-x  tan  x)  will  be  a  maximum  when  .r=cos.r; 
verify  that  x  is  very  nearly  '739. 

2.  Show   that  sin  x  sin  2#   is   a   maximum   or  a   minimum   when 
sin  x  =  \/(2/3)  according  as  the  angle  \x  is  in  the  first  or  the  second 
quadrant. 

3.  Show  that  sin  XI  -fcos.r)  is  a  maximum  when  %  =  —. 

a2         b2 
4.  Show  that  the  minimum  value  of  -=—  s-  H  ---  «-  is  (a  +  b)2. *  2 

5.  If  a  sec  0  +  b  sec  ̂ >  =  c,  show  that  a  cos  0+bcos<f>  is  a  'minimum 
when  #  =  </>,  #,  b,  c  being  positive  and  the  angles  0,  <$>  acute.     (Com- 

pare ex.  15a.) 
6.  Given  the  length  (a)  of  an  arc  of  a  circle,  show  that  the  segment 

of  which  a  is  the  arc  will  be  a  maximum  when  a  is  the  diameter  of  the 
circle. 

7.  A  circular  sector  has  a  given  perimeter  ;  show  that  when  the 
area  is  a  maximum  the  arc  is  double  the  radius,  and  that  the  maximum 
area  is  equal  to  the  square  on  the  radius. 

8.  From  a  given  circular  sheet  of  metal  it  is  required  to  cut  out  a 
sector  so  that  the  remainder  can  be  formed  into  a  conical  vessel  of 

maximum  capacity  ;  show  that  the  angle  removed  must  be  2(1  -l,*J$)ir 
radians  (66°  4'). 

9.  Draw  a  line  through  the  vertex  of  a  given  triangle  such  that 
the  sum  of  the  projections  upon  it  of  the  two  sides  which  meet  at  that 
vertex  may  be  a  maximum. 

10.  The  lower  corner  of  a  leaf,  whose  width  is  a,  is  folded  over  so  as 
just  to  reach  the  inner  edge  of  the  page  ;  find  the  width  of  the  part 
folded  over  when  the  length  of  the  crease  is  a  minimum. 

11.  A  ship  sails  from  a  given  place  A  in  a  given  direction  AB  at 
the  same  time  that  a  boat  sails  from  a  given  place  C  ;  supposing  the 
speed  of  the  ship  to  be  u  and  that  of  the  boat  v  (u,  v  constant),  find  in 
what  direction  the  boat  must  sail  so  as  to  meet  the  ship.     Discuss 
the  condition  that  it  shall  be  possible  to  meet.     The  course  of  the  boat 
is  understood  to  be  rectilinear. 

12.  The  distance  between  the  centres  of  two  spheres  of  radii  «,  b 
respectively  is  c  ;  find  at  what  point  P  on  the  line  of  centres  AB  the 
greatest  amount  of  spherical  surface  is  visible.     Note.  —  The  superficial 
area  of  a  segment  of  height  h  is  Zirah.  a  being  the  radius  of  the  sphere 
(§  85,  ex.  2). 

13.  A  straight  line  is  drawn  through  a  fixed  point  (a,  6),  meeting 
the  axis  OX  at  P  and  the  axis  OF  at  (?,  the  axes  being  rectangular 
and  #,  b  positive  ;  if  the  angle  OPQ  is  equal  to  0,  find  0, 

(i)  when  PQ,       (ii)  when  OP+OQ,      (iii)  when  OP.  OQ 
is  a  minimum. 
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, such 14.  A  tangent  is  drawn  to  an  ellipse,  whose  axes  are  2<z,  26, 
that  the  part  intercepted  between  the  axes  is  a  minimum  ;  show  that 
its  length  is  a  +  b. 

15.  If  D  =  (f>  —  <j)'  and  sin(£=/xsin<£'  where  p  is  greater  than  1,  and 
</>,   </>'  not  greater  than  Tr/2,  show  that  D  increases  as  <£  increases. 
Show  also  that  the  second  and  third  derivatives  of  D  with  respect  to 
<£  are  positive. 

16.  A  ray  of  light  travels  in  a  plane  perpendicular  to  the  edge  of  a 
prism  of  angle  i ;   if  the  angle  of  incidence  is  <£  and  the  angle  of 

emergence  <£',  show  that  the  deviation  </>  +  <f>  -  i  is  a  minimum  when 

17.  Find  the  maximum  value  of  xe~x  and  graph  the  function. 
18.  Find  the  minimum  value  of  x  log  x  and  graph  the  function. 

19.  For  what  value  of  x  is  the  ratio  of  log  x  to  x  greatest  ? 

20.  Find  the  maximum  value  of  x2  log  -. 

0  x 

21.  If  a,  b  are   positive   and  a<6,   find  the  maximum  value   of 

§  78.  Concavity  and  Convexity.  Points  of  Inflexion.  A 
curve  is  said  to  be  concave  upwards  at  or  near  A  when 
(Fig.  36,  a,  b)  at  all  points  near  A  it  lies  above  the  tangent 

at  A  ;  a  curve  is  said  to  be 
convex  upwards  at  or  near 
A  when  (Fig.  36,  c,  d)  at  all 
points  near  A  it  lies  below 
the  tangent  at  A. 

Let  y=f(x)  be  the  equa- tion of  the  curve  and  let  k 
be  a  small  positive  number, 
a  the  abscissa  of  A.  Then 
as  a;  increases  from  a  —  hto 

a+h,  the  gradient  f'(x)  in 
the  cases  a,  b  steadily  increases ;  as  the  graphic  point  moves 
to  the  right  (the  direction  of  the  arrows)  the  tangent  turns 
about  its  point  of  contact  counter-clockwise,  and  therefore 
the  angle  it  makes  with  the  #-axis  increases.  But  if  f'(x)  is 
an  increasing  function  its  derivative  f'(x)  must  be  positive ; 
if  f(a)  is  not  zero  then  near  a  f"(x)  has  the  same  sign  as 
f'(a).  Hence  the  curve  is  concave  upwards  near  A  if  f(a) is  positive  (not  zero). 
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In  the  same  way  we  see  that  the  curve  will  be  convex 

upwards  near  A  if  f'(a)  is  negative  (not  zero). 
Again,  if  A  be  a  point  of  inflexion  (§  23)  the  gradient 

either  increases  as  x  increases  from  a  —  h  to  a  and  then 
decreases  as  x  increases  from  a  to  a+h  (Fig.  37,  a)  or 
else  it  decreases  as  x  in- 

creases from  a  —  h  to  a 
and  then  increases  as  x 
increases  from  a  to  a-f  h 
(Fig.  37,  b).  In  both  cases 

therefore  f(x)  turns  for  '  a  FIG  37 the  value  a  of  x.  Hence 

A  will  be  a  point  of  inflexion  if  and  only  if  f'(a)  is  a 
turning  value  of  f(x)  ;  therefore,  if  f'(x)  and  f"(x)  are 
continuous,  /"(&)  mTtst  be  zero  in  order  that  A  may  be  a 
point  of  inflexion. 

Conversely,  if  f'(a)  is  zero  A  will,  in  general,  be  a  point 
of  inflexion  ;  but,  to  make  certain,  the  test  that  f'(a)  is  a 
turning  value  of  f(x)  should  be  applied. 

Ex.  1. 

f(x)  = /"(#)  =  0,  if  *  =  0  or  |  ;    /"(O)  =  -  24,  /"(§  )  =  24. 

Therefore  /'(O),  /'(§)  are  maximum  and  minimum  values  of 
and  therefore  the  points  (0,  1),  (J,  £if)  are  points  of  inflexion.     The 
gradients  at  these  points  are  0  and  —  16/9  respectively. 

Since  /"(#)=  36#(#  -§),  we  see  that  from  x=  -  oo  to  #  =  0,  /"(^')  is 
positive,  and  therefore  the  graph  is  concave  upwards  for  that  range 

of  x\  from  #=0  to  #=2/3,  f'(x)  is  negative  and  the  graph  convex 
upwards;  from  #  =  2/3  to  #  =00  ,/"(#)  is  positive  and  the  graph 
again  concave  upwards. 

Ex.2.  a? 

/"(#)  =  24(3*  -2). 
There  are  points  of  inflexion  where  #=^(2  ±  >/7).  From  x=  -  oo  to 

#=£(2-^/7),  and  again  from  #  =  ̂ (2  +  v/7)  to  #=+co,  the  graph  is 
concave  upwards;  from  #  =  ̂ (2-^/7)  to  #=^(2  +  ̂ /7)  it  is  convex 
upwards. 

Ex.  3. 
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When  #=4,  ?/  =  2,  but  y'  and  y"  are  both  infinite.  When  #  =  4  -A, 
y"  is  positive,  but  when  37=44-  h,  y"  is  negative.  We  may  conclude 
therefore  that  the  tangent  at  (4,  2)  is  perpendicular  to  the  #-axis,  that 
to  the  left  of  (4,  2)  the  curve  is  concave  upwards,  and  that  to  the  right 
of  (4,  2)  it  is  convex  upwards.  The  point  (4,  2)  therefore  must  be 
considered  a  point  of  inflexion. 

EXERCISES  XVII. 

1.  Determine  the  points  of  inflexion  of  the  graphs  of  the  following 
functions,  and  state  for  what  range  of  values  of  x  they  are  concave 
upwards  or  convex  upwards. 

(i)^3;       '(ii)a4;         (iii)  a6;         (iv)*2**1;         (v)  a3"; n  being  a  positive  integer. 

2.  Find  the  points  of  inflexion  on  the  curve  whose  equation  is 

y=(#2-l)2.     Graph  the  curve. 

3.  Find  the  points  of  inflexion  and  graph  the  functions 

4.  Show  that  the  curve  whose  equation  is  y(x*+a?'}  =  a?(a-x)  has 
three  points  of  inflexion  which  lie  on  a  straight  line. 

5.  Find  the  points  of  inflexion  on  the  curve  whose  equation  is 
a?i/2=.v2(a2  —  a?2),  and  trace  the  curve. 

6.  Show  that  the  curve  whose   equation   is  (a-x)y2=x3  has  no 
point  of  inflexion,  and  trace  the  curve. 

7.  Find  the  points  of  inflexion  for  values  of  x  between  0  and  2?r 
(0  included,  2?r  excluded)  on  the  graphs  of 

(i)  sin  #;  (ii)  cos#;  (iii)  tan#. 

8.  Show  that  the  graphs  of  e*  and  of  log  .27  have  no  points  of inflexion. 

9.  Find  the  points2of  inflexion  on  the  graphs  of  (i)  xe~x,  (ii)  e~xl- 
Trace  the  graph  of  e~x  . 

10.  Find  the  point  of  inflexion  on  the  graph  of  e~ax-e~bx  where 
a,  b  are  positive  and  a  less  than  b. 

11.  Find  the  points  of  inflexion  on  the  graph  of  e~axsm(bx  +  c). 
12.  When  the  equation  of  a  curve  is  given  in  the  form 

*=/(')>  $  =  <!>(*} 
show  that  the  points  of  inflexion  will  be  determined  by  the  equation 

Show  that  the  curve  whose  equations  are 

x  —  a(t-  sintf),        y  =  a(l-cosf) 
is  everywhere  convex  upwards.     (See  §  68.,  ex.  2.) 

13.  Show  that  no  conic  section  can  have  a  point  of  inflexion. 
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§  79.  Derived  Curves.  It  is  of  some  service  in  tracing 
the  variation  of  a  function  f(x)  to  draw  the  graph  of.  the 
derived  function  f(x).  The  graph  of  f(x)  may  be  called 
the  derived  graph  or  curve  of  f(x),  while  in  relation  to  the 

graph  of  /'(&)  that  of  f(x)  may  be  called  the  primitive  curve 
or  for  a  reason  given  in  §  83,  the  integral  curve  of  f'(x). 

It  is  usually  most  convenient  to  take  a  common  axis 
of  ordinates  for  the  two  curves,  but  to  take  the  axis  of 
abscissae  of  the  derived  curve  at  a  convenient  distance 

below  that  of  the  primitive  curve.  Assuming  the  unit  seg- 
ment for  abscissae  to  be  the  same  for  both  curves,  but  that 

for  the  ordinates  to  be  the  same  or  different  as  is  most  con- 
venient, we  may  call  those  points  and  ordinates  of  the  two 

curves  which  have  the  same  abscissa  "  corresponding  points 
and  ordinates."  Corresponding  points  on  the  two  graphs 
may  be  denoted  by  unaccented  and  accented  letters. 

The  student  will  easily  prove  that  in  general  the  follow- 
ing theorems  hold : — 

(i)  To  the  turning  points  (T)  of  the  primitive  curve  cor- 
respond points  (T)  at  which  the  derived  curve  not  only 

meets  but  crosses  its  axis  of  abscissae ;  and  conversely. 
(ii)  To  the  points  of  inflexion  (/)  of  the  primitive  curve 

correspond  turning  points  (/')  of  the  derived  curve;  and 
conversely. 
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The  following  geometrical  construction  may  be  given  for 
the  graphing  of  the  derived  curve  when  the  functions 
f(x),  f(x)  are  not  analytically  expressed. 

Let  U  (Fig.  38)  be  a  point  to  the  left  of  01  on  the  axis 

O^X'  of  the  derived  curve,  and  draw  Up  parallel  to  the 
tangent  PT  meeting  the  common  axis  of  ordinates  at  p. 
Draw  PR  and  RT  parallel  and  perpendicular  respectively 
to  OX  ;  the  triangles  PRT,  UO-^p  will  be  similar.  Hence 

U01    PR 

where  OM=01M'  =  x,  MP=f(x)\  therefore 

OlP 

D 

E'
 

FIG.  38. 

.  UOV 

Draw  pP'  parallel  to '  to  meet  M  'P  at P';  then 

M'P'=OlP=f(x).  U0r 
If  we  take  the  unit 

segment  for  the  ordin- ates of  the  derived 
curve  equal  to  U0l  we 
shall  have M'F  =f(x), 

so  that  P'  is  the  point 
corresponding  to  P. 
Take  any  other  point 

Q;  draw  Uq  parallel  to 
the  tangent  QS,  and 

'  parallel  to  O^X'  to 
meet  the  ordinate  through  Q  at  Q'.  Q'  will  correspond  to  Q, 
and  in  the  same  way  any  number  of  points  may  be  found. 

If  the  unit  segment  for  the  ordinates  be  not  equal  to  U0l 
the  ordinates  will  still  be  proportional  to  f(x). 

To  the  turning  points  B,  C  correspond  B',  (7;  to  the  point 
of  inflexion  7  corresponds  /'  which  is  a  turning  point  of the  derived  curve. 

At  D  the  derivative  f(x)  is  discontinuous.  As  a  point 

moves  along  the  primitive  curve  from  C  to  D  the  corre- 
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spending  point  moves  from  (7  to  D';  as  the  first  point, 
however,  changes  from  CD  to  DE  the  corresponding  point 

passes  abruptly  from  D'  to  D".  As  x  increases  through  the 
value  OL  or  0-Jj',  f'(x)  suddenly  changes  from  L'D'  to  L'D". 
LD  is  a  maximum  value  of  f(x),  but  owing  to  the  dis- 

continuity of  f(x)  the  derived  curve  does  not  (as  at  B'  or  6y/) meet  the  oj-axis. 

In  a  similar  way  the  derived  curve  of  f'(x),  that  is  the 
second  derived  curve  of  /(«),  may  be  formed,  and  so  on. 

§  80.  Derivative  of  an  Area.     Let  CPD  (Fig.  39)  be  the 
graph  of  a  continuous  function  of  x,  F(x)  ;  • 

=  a,AC=F(a);  OM=x,  MP  =  F(x). 
(i)  Suppose  the  ordinates  positive  and  AC  to  the  left  of 

MP.  Let  AC  be  fixed, 
MP  variable,  and  let  z  be 
the  measure  of  the  area 

AM  PC.  We  may  consider 
the  area  as  generated  by 
a  variable  ordinate  setting 
out  from  AC  and  moving 
to  the  right;  z  will  be  a 
function  of  x  which  is 
zero  when  x  =  a.  Let  us 
find  the  ̂ -derivative  of 
z,  that  is  the  os-rate  of 
change  of  the  area. 

Let  x  take  the  increment  Sx  or  MN  ;  z  therefore  will  take 

an  increment  8z,  the  area  MNQP.  Complete  the  rect- 
angles MNRP,  MNQS]  the  area  MNQP  will  be  greater 

than  MNRP  but  less  than  MNQS,  therefore 

M  N 
FIG.  39. 

MP.Sx  <  Sz  <  NQ.  Sx-9  MP  <      <  NQ. 

In  the  figure  MP  is  less  than  NQ  ;  if  MP  is  greater  than 
NQ  the  signs  of  inequality  will  need  to  be  reversed.  As  Sx 
converges  to  zero  MP  remains  fixed  and  NQ  converges  to 
MP.  Hence 

Dxz  = 
=  F(x)  =  ordinate  at  M, 



FIG.  39a. 
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or  in  the  notation  of  differentials 

dz  =  MP .  dx  =  F(x)  dx. 

(ii)  Suppose  the  ordinates  negative  (Fig.  39ct)  and  let  z' be  the  numerical  value  of  the  area. 

In  this  case  the  rectangle  MNRP  is  equal  to  —  MP.  Sx, 
since  MP  is  negative, 
and  we  get  by  the  same 
reasoning  as  before 
Dxz' =  -  MP  =  -  F(x). 

It  gives  greater  flexi- 
bility to  the  formulae 

to  consider  an  area  as  a 

magnitude  that,  like  a 
segment  of  a  line,  may 
be  either  positive  or 
negative.  If,  therefore, 
the  measure  of  the  area 
be  taken  as  negative, 

when  the  fixed  ordinate  is  to  the  left  of  the  variable  one 

and  the  ordinates  all  negative,  we  may  put  z  equal  to  —  z', 
the  measure  z  being  now  negative ;  hence  Dxz  —  F(x)  as  in 
case  (i). 

(iii)  Lastly,  suppose  the  fixed  ordinate  to  the  right  of 
MP,  say  at  ED.  The  area  BMPD  may  be  considered  to  be 
generated  by  a  variable  ordinate  setting  out  from  BD  and 
moving  to  the  left. 

Let  z'  be  the  numerical  value  of  the  area  BMPD ;  then  'z' 
is  a  decreasing  function  of  x.  By  the  same  reasoning  as 

before  we  see  that  the  numerical  value  of  Dxz'  is  F(x)  for 
Fig.  39  but  —  F(x)  for  Fig.  39a.  Since  z'  is  a  decreasing 
function  Dxz'  is  algebraically  negative,  so  that  in  sign  and 
magnitude 

Dxz'  =  -  F(x)  (Fig.  39) ;  Dxz  =  F(x)  (Fig.  39a). 
If  we  take  the  measure  z  of  the  area  BMPD  to  be  nega- 

tive for  Fig.  39,  positive  for  Fig.  39a,  we  shall  get  for  both 
cases  I>xz  —  F(x).  The  same  formula  therefore  holds  for  all 
three  cases  (i),  (ii),  (iii). 

Examination  of  the  diagrams  will  show  the  truth  of  the 
following  rule  for  determining  the  sign  of  the  area. 



DERIVATIVE  OF  AN  AREA.  187 

Let  the  boundary  of  the  area  be  described  in  the  order, 
$-axis,  variable  ordinate,  curve,  fixed  ordinate ;  the  sign  will 
be  positive  or  negative  according  as  the  area  lies  to  the  left 
or  to  the  right  during  the  description  of  the  boundary. 

Ex.  1.     If  the  coordinate  axes  are  inclined  at  an  angle  co,  show  that 
Dxz •  =  F(x)  sin  w. 

Ex.  2.     If  CE,  PF  (Figs.  39,  39a)  are  perpendicular  to  OY,  and  if  w 
is  the  measure  of  the  area  EFPC,  snow  that 

Dyw  =  -  FP=  -OM;    dw=-  xdy, 
the  sign  of  w  being  positive  or  negative  according  as  the  area  is  to  the 
left  or  to  the  right  when  its  boundary  is  described  in  the  order  EFPCE. 

Consider  the  cases  in  which  the  abscissa  is  negative,  and  also  the 
cases  in  which  the  fixed  abscissa  is  on  the  opposite  side  of  FP  from 
that  in  the  figures. 

§  81.  Interpretation  of  Area.  The  interpretation  of  the 
number  z  considered  as  the  measure  of  an  area  will  depend 
on  the  unit  segments  chosen  for  the  abscissa  and  the 
ordinate.  If  the  value  1  of  x  represents  say  6  inches  and 
the  value  1  of  y  say  10  inches,  then  the  value  1  of  z  will 
represent  60  square  inches ;  if  on  the  graph  the  value  1  of  x 
is  half  an  inch  and  the  value  1  of  y  quarter  of  an  inch,  these 
representing  6  and  10  inches  respectively,  an  area  on  the 
graph  of  one-eighth  of  a  square  inch  will  represent  the 
area  of  60  square  inches. 

The  physical  interpretation  of  the  area  will  depend  on  the 
nature  of  the  quantities  represented  by  abscissa  and  ordinate. 

Suppose  that  the  ordinate  represents  the  speed  of  a 
moving  point  and  the  corresponding  abscissa  the  time  at 
which  the  point  has  that  speed;  the  graph  is  then  the 

speed-curve  of  the  motion.  The  speed  is  the  time-rate  of 
change  of  the  distance,  and  the  ordinate  (which  represents 
the  speed)  is  the  rate  of  change  of  the  area  with  respect  to 
the  abscissa  (which  represents  the  time);  hence  the  area 

A  MFC  will  represent  the  distance  gone  in  the  time  repre- 
sented by  A  M.  If  the  value  1  of  x  represents  2  seconds  and 

the  value  1  of  y  a  speed  of  16  feet  per  second,  then  the  value 
1  of  z  will  represent  a  distance  of  32  feet. 

If  the  ordinate  represents  a  force  that  acts  in  a  constant 
direction,  and  if  the  abscissa  represents  the  distance  through 
which  the  force  has  acted,  the  area  A  MFC  will  represent 
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the  work  done  by  the  force  acting  through  the  distance 
represented  by  AM.  If  the  force  is  not  constant  in  direc- 

tion the  result  holds  provided  the  ordinate  represents  the 
component  of  the  force  along  the  tangent  to  the  path  of  its 
point  of  application. 

Ex.  1.  If  the  ordinate  represents  acceleration  and  the  abscissa 
time,  what  does  the  area  represent  ? 

Ex.  2.  If  the  ordinate  represents  the  intensity  of  pressure  of  a  gas, 
and  the  abscissa  the  volume,  what  does  the  area  represent  ? 

§  82.  Integral  Function.  The  fact  that  z  in  §  80  is  a 
function  of  x  which  has  F(x\  the  ordinate  of  the  curve 
CPD,  as  its  derivative  at  once  suggests  the  problem  of 
finding  a  function  which  has  a  given  continuous  function 
as  its  derivative. 

Now,  if  the  derivative  of  f(x)  is  F(x)  so  is  the  derivative 
of  f(x)-\-G  where  G  is  any  constant;  further  (§  58,  Th.  VI.), 
every  function  which  has  F(x)  as  its  derivative  must  be  of 
the  form  f(x)  +  G.  The  problem,  therefore,  as  stated  above, 
is  indeterminate,  since  its  solution  involves  a  constant  G 
which  may  have  any  value  whatever;  it  becomes  deter- 

minate, however,  when  stated  in  the  form : — To  find  a 
function  of  x  which  shall  have  a  given  continuous  function 
F(x)  as  its  derivative  and  which  shall  take  a  given  value  A 
when  x  has  a  given  value  a. 

The  solution  is  as  follows : — Let  GPD  (§  80)  be  the  graph 
of  F(x)j  and  let  z  be  the  measure  of  the  area  A  MFC  where 
OA  =  a.  z  therefore  is  zero  when  x  =  a,  and  z  has  F(x)  as 
its  derivative ;  the  function  z  -f  A  gives  the  solution.  We 
may,  if  we  please,  consider  the  constant  A  as  the  measure 
of  an  area. 

It  does  not  follow,  however,  that  we  can  find  an  analytical  expression 
for  z  in  terms  of  known  functions  ;  thus,  if  F(x)  =  J(\+x*\  we  cannot 
find  in  the  ordinary  algebraic  or  transcendental  functions  one  which 
has  F(x)  as  its  derivative.  The  geometrical  discussion  shows,  however, 
that  in  so  far  as  we  consider  functions  as  being  adequately  represented 
by  graphs,  there  always  exists  a  function  which  is  the  solution  of  the 
problem,  and  it  is  possible  by  methods  of  approximation  to  get  an 
analytical  expression,  for  example,  in  the  form  of  a  series,  that  may  be 
considered  as  a  solution.  Or,  again,  it  may  be  possible  by  mechanical 
methods  to  get  an  approximate  value  of  the  area  A  MFC. 
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Any  function  f(x)  which  has  F(x)  for  its  derivative  is 
called  an  Integral  Function  or  simply  an  Integral  of  F(x\ 
If  f(x)  is  one  integral,  f(x)+C  is  called  the  General  Integral, 
C  being  called  the  constant  of  integration. 

To  find  f(x)  when  F(x)  is  given  we  fall  back  on  the 
known  results  of  differentiation.  In  the  Integral  Calculus 
the  search  for  integral  functions  is  systematically  carried 
out,  but  from  the  nature  of  the  case  the  process  is  largely 
tentative.  The  fundamental  test  that  f(x)  should  be  an 
integral  of  F(x)  is  that  Dxf(x)  should  be  equal  to  F(x). 

Just  as  sin"1^  means  a  function  whose  sine  is  x  so  we 
may  for  the  present  use  the  symbol  Dx~l  F(x)  or  D~lF(x) 
as  meaning  a  function  whose  derivative  is  F(x),  that  is 

Dx~1F(x)  is  an  integral  of  F(x).  We  will  suppose  that 
D~l  F(x)  contains  no  constant  of  integration,  so  that  the 
general  integral  is  D  ~  1  F(x)  +  (7.* 

We  may  now  express  the  area  AMPG  in  the  new  notation. 

Since  D~l  F(x)  is  an  integral  of  F(x),  the  area  z  or  AMPG is  a  function  of  x  of  the  form 

Now  when  x  =  a,  0  =  0;  denote  by  [D~lF(x)\^  the  value 
of  the  integral  when  x  =  a  ;  therefore, 

and  z  =  D  "  i  F(x)  -[D~l  F(x)]a. 
The  area  A  BCD  is  the  value  of  z  when  x  =  b\  therefore 

area  ABCD  =  [D  -  *  F(x)]b  -[D~l  F(x)]a. 
This  symbol  is  usually  contracted  into 

and  this  last  symbol  means  "  replace  x  by  6,  then  replace 
x  by  a  and  subtract  the  second  result  from  the  former." 

In  the  same  way  the  function  whose  derivative  is  F(x) 
and  which  is  equal  to  A  when  x  is  equal  to  a  is  denoted  by 

For  the  ordinary  notation  for  an  integral  see  §  110, 
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Ex.  1.     Find  the  area  between  the  graph  of  xz  —  3#  +  2,  the  .r-axis, 
and  the  ordinates  at  x=^  and  x=  1. 

as  may  be  tested  by  differentiation.     Hence  the  required  area  is 

[^-f^  +  2^  =  t-§  =  i 
Suppose  the  ordinates  to  be  those  at  x=\  and  #=2;    then  the 

area    s 

The  reason  for  this  apparently  strange  result  is  that  from  x=\  to 
x—\  the  ordinates  are  positive  while  from  #  =  1  to  #=2  they  are 
negative.  From  x=\  to  #=2  the  measure  of  the  area  is  negative; 
numerically  this  area  is  equal  to  that  for  which  the  ordinates  are 
positive. 

Ex.  2.  The  area  between  the  ̂ 7-axis  and  the  graph  of  sin  x  between 
the  points  .#  =  0,  X  =  TT  at  which  it  crosses  the  axis  is 

[D-lBin  #]*  =  [-  cos  #]"  =  ~  cos  TT  -  (  -  cos  0)=  +1  +  1  =2. 
Ex.  3.  A  point  moves  on  a  straight  line  so  that  its  velocity  at 

time  t  is  Fcos  nt  ft./sec.  ;  showl  that  the  space  described  from  time 
£  =  0  till  it  first  comes  to  rest  is  Vfn  ft. 

Let  x  ft.  be  the  distance  described  in  time  t  seconds  ;  then 
V 

Dtx  =  Fcos  nt  ;    x=  —  sin  nt  +  C. n 

When  t  =  0,  x=0  and  therefore  C=0.  The  point  first  comes  to  rest 
when  t  has  increased  from  0  to  7r/2?i  because  cos  nt  is  first  zero  when 
nt=Tr/2.  Hence  we  get  for  the  distance  required 

V   .     7T        V 
-sm-  =—  . 

n       2  '   n 

§  83.  Integral  Curve.  The  graph  of  an  integral  function 
is  called  an  integral  curve.  Since  any  two  integral  func- 

tions of  F(x)  differ  only  by  a  constant  C,  the  graph  of  the 
integral  function  f(x)  +  C  may  be  obtained  from  that  of 
f(x)  by  shifting  the  latter  parallel  to  the  ̂ -axis  through 
the  distance  C, 

A  geometrical  construction  may  be  given  for  graphing 
an  integral  curve  based  on  that  for  the  graphing  of  the 
derived  curve  (§  79). 

Divide  0-^K'  (Fig.  40)  into  equal  short  segments  at  the 
points  llf  21,  31?  .  .  .  and  draw  the  ordinates  through  these 
points.  Let  the  ordinates  at  2^,  4^,  ...  meet  the  graph  of 
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F(x)  at  2',  4', ...  and  let  2",  4", ...  be  the  projections  of  these 
points  on  0:  F,  1"  being  the  point  where  the  graph  cuts  Ol  F 

Let  us  take  the  integral 
curve  that  passes  through  0. 
Then  the  tangent  at  0  is 

parallel  to  Ul".  Let  this 
tangent  be  drawn  and  let  it 
cut  the  ordinate  drawn  from 

lj  at  1. 
The  tangent  at  the  point 

on  the  integral  curve  corre- 

sponding to  2'  is  parallel  to 
U2".  Draw  13  parallel  to 
U2"  cutting  2^'  at  2,  and 
the  ordinate  drawn  from  3X 
at  3 ;  2  is  the  point  corre- 

sponding to  2'. 
In  the  same  way  draw  35 

parallel  to  174"  cutting  4X4' 
at  4 ;  4  is  the  point  corre- 

sponding to  4'.  U  O, The  construction  may  be 
repeated  and  we  get  a  series 

1,2,3,4,5,6,7,  8,M' 

FIG.  40. 

X'
 

of  lines. 01,  13,  35, ...  which  may  be  considered  as,  approxi- 
mately, the  tangents  at  0,  2,  4, ...  to  the  integral  curve. 

That  curve  may  now  be  drawn  with  a  free  hand  through 
the  points  0,  2,  4  ....  The  point  0  from  which  the  con- 

struction begins  is,  of  course,  arbitrary,  but  when  that  is 
fixed  the  integral  curve  is  determinate.  The  position  of 
the  other  points  2,  4, ...  is  approximate ;  the  nature  of  the 
approximation  and  the  justification  of  the  construction  may 
be  seen  thus. 

Let  f(x)  be  the  integral  function;  the  equations  of  the 
tangents  at  the  points  on  the  graph  of  f(x)  at  which  x  is 
equal  to  a  and  b  respectively,  are 

y  =  (x  -  a)f(a) +/(«);   y  -  (*  -  b)f(b) + f(b). 
The  abscissa  of  the  point  of  intersection  of  these  tangents 

is  given  by 

=  bf(b)  -  af(a)  - 
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Now,  by  the  theorems  of  mean  value,  if  b  =±  a  +  h,  we  have 

f(b)  =  /(a  +  A)  =  /(a)  +  hf(a)  + 

where  ccl5  #2  are  each  greater  than  a  but  less  than  a  +  h. 
Substituting  these  values  in  the  equation  for  x  and 
reducing  we  get 

Assuming  the  derivatives  continuous,  then  if  h  is  small 

i)  and  f"(x2)  will  differ  very  little  from  each  other  and 
from  f"(a).  Therefore  approximately  x  =  a  +  ̂h',,  that  is, 
the  abscissa  of  the  point  of  intersection  of  the  tangents  is 
very  nearly  that  of  a  point  half  way  between  a  and  b. 

Hence,  in  the  figure  the  tangent  at  the  point  on  the 

integral  curve  corresponding  to  2'  passes  through  1  ;  the 
point  2,  which  must  lie  on  the  ordinate  212/,  is  therefore  got 
as  the  intersection  of  the  line  through  1  parallel  to  Z72". 
Similarly  for  the  other  points. 

It  may  be  noticed  that  if  F(x)  is  of  the  first  and,  there- 
fore, f(x)  of  the  second  degree,  the  construction  is  exact 

since  f'(x)  is  constant. 

§  84.  Graphical  Integration.  The  area  between  O-^X',  0XF, 
the  graph  of  F(x)  and  the  ordinate  M'P  (Fig.  40)  is  equal 
to  f(x)  where  f(x)  is  that  integral  of  F(x)  which  is  zero 
when  x  =  0.  But  the  ordinate  MP  of  the  integral  curve  is 

f(x).  Hence  the  area  0^'P'Y  is  equal  to  the  ordinate  of 
the  integral  curve  at  the  point  corresponding  to  Pf.  We 
thus  have  a  graphical  method  of  finding  the  measure  of  an 
area  and  also  of  constructing  an  integral  function  even 
when  the  analytical  form  of  the  function  F(x)  is  not 
assigned. 

The  integral  curve  can  be  drawn  with  considerably 
greater  accuracy  than  the  derived  curve.  It  is  also 
possible  to  trace  out  the  integral  curve  corresponding  to 
a  given  curve  by  means  of  an  instrument  called  an  Inte- 
graph.  For  detailed  description  of  the  Integraph  the 
reader  is  referred  to  the  work  of  M.  Abdank-Abakanowicz, 
Les  Inttyraphes  ;  la  courbe  integrate  et  ses  applications 
(Paris  :  Gauthier-Villars),  or  to  the  German  translation  by 
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Bitterli,  Die  Integraphen  (Leipzig  :  Teubner).  The  con- 
structions given  above  are  taken  from  this  work  ;  the  notes 

of  Bitterli  contain  several  investigations  on  the  properties 
of  the  integral  curve  and  also  numerous  references  to 
original  memoirs.  An  article  by  Prof.  W.  F.  Durand  in 
the  Sibley  Journal  of  Engineering,  January,  1897,  will 
also  be  found  serviceable. 

§  85.  Surfaces  of  Revolution.  Let  V  be  the  volume  of  the 
surface  traced  out  by  the  revolution  of  the  arc  CP  (Fig.  41) 
about  OX  ;  OM  =  x,MP  =  F(x)  =  y.  To  find  Dx  V. 
When  x  increases  by  MN  or  8x,  V  increases  by  SVt  the 

volume  traced  out  by  MNQP.  Clearly,  when  Sx  is  small, 
SV  is  greater  than  the  cylinder  of  height  MN  and  base  the 
circle  of  radius  MPt  but  less  than  the  cylinder  of  height  MN 
and  base  the  circle  of  radius  NQ  ;  therefore 

irMP*  .  MN<SV<7rNQ*  .  MN-, 
Hence  taking  the  limit  for  Sx  =  0 

Let  8  be  the  area  of  the  surface  traced  out  by  the  arc  CP, 
and  let  CP  be  s.  To  find  DXS. 

On  the  tangent  at  P  take  a  length 
PT  equal  to  the  arc  PQ,  and  let  L 
be  the  foot  of  the  ordinate  to  T. 
When  x  increases  by  MN  or  Sx,  GP 
increases  by  the  arc  PQ  or  8s  ;  we 
may  assume  that  the  area  traced 
out  by  the  arc  PQ  is,  when  8x  is 
small,  greater  than  that  traced  out 
by  the  chord  PQ  .but  less  than  that 
traced  out  by  the  tangent  PT.  If 
the  arc  PQ  lies  below  the  chord  PQ 
the  inequalities  will  be  reversed. 

The  curved  surface  of  the  conical  frustum  having  MP, 
NQ  as  the  radii  of  its  circular  ends  and  the  chord  PQ  for 
slant  side  is  7r(MP  +  NQ)PQ  ;  the  surface  traced  out  by  PT 
is  similarly  ir(MP  +  LT)PT.  Hence 

G.C. 

FIG.  41. 
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The  limit  for  <fo?  =  0  of  PQ/fa  and  of  PT/Sx  is  D^  (§  62) 
and  the  limit  of  MP+NQ  and  of  MP+LT  is  2MP\  hence 

or  =   -jr   --dx  —   -n-     s. 

The  volume  F  is  that  integral  of  -Try2  which  is  zero  when 
x=  OA,  and  the  surface  S  that  integral  of  %7ry  ds/dx,  which 
is  zero  when  x=  OA. 

Ex.  1.     If  the  curve  revolves  about  OF  show  that 

/7« 
d  F=  irx*dy  ;     dS  =  2wa?^  dW  = 

Ex.  2.     Show  that  the  volume  of  a  spherical  cap  of  height  h  is 
irh2(R-%fi)  and  that  the  area  of  the  surface  of  the  cap  is 
R  being  the  radius  of  the  sphere. 

The  equation  of  CPQ  is  y=x/(Jfl2-^2);  hence 

V=  0  when  x = OA  =R  —  h,  and  therefore 

The  volume  required  is  the  value  of  V  for  x=R  and  is  therefore 
7rk?(R  —  M). 

Again 

therefore 

So  that    S= 

and  when    x= 

Ex.  3.  If  the  area  of  a  section  of  a  surface  by  a  plane  perpendicular 
to  OX  is  a  known  function  of  x,  F(x\  and  if  V  is  the  volume 
contained  between  a  fixed  plane  perpendicular  to  OX  and  the  plane 
which  gives  the  section  of  area  F(x\  show  that 
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§  86.  Infinitesimals.  The  student  will  doubtless  have 
noticed  that  in  finding  derivatives  a  good  deal  of  work 
would  have  been  saved  had  it  been  possible  to  reject  at  the 
outset  those  parts  of  an  expression  that  had  zero  for  limit. 
Thus  in  §  80  Sz  consists  of  the  rectangle  MNRP  and  the 
curvilinear  triangle  PRQ,  which  is  less  than  the  rectangle 
PRQS.  Sz/Sx  is  therefore  the  sum  of  MP  and  of  a  line 
which  is  less  than  RQ.  Since  RQ  converges  to  zero  with 
Sx  we  may,  so  far  as  the  limit  is  concerned,  throw  aside 
RQ  from  the  outset  ;  we  should  thus  at  once  obtain  MP  as 
the  limit  of  Sz/Sx. 

Now  that  the  student  has  had  so  much  practice  in  finding 
derivatives  and  limits  generally,  he  will  be  ready  to  grasp 
the  method  which  enables  us  to  reject,  at  any  stage,  a 
quantity  which  we  can  see  will  not  occur  in  the  limit  ;  the 
method  is  that  of  Infinitesimals. 

DEFINITION.  A  variable  quantity  whose  limit  is  zero  is 
called  an  infinitesimal 

A  constant,  however  small,  is  not  an  infinitesimal  in  the 
sense  now  defined  ;  an  infinitesimal  is  a  variable  quantity. 

Let  a,  /3,  y  .  .  .  ,  be  infinitesimals,  and  let  /3,  y  .  .  .  ,  be  such 
that  when  «  converges  to  zero  /3,  y  ...  also  converge  to  zero  ; 
/3,  y  .  .  .  are  dependent  on  a  and  we  can  compare  them 
with  a  and  with  one  another.  When  a  is  taken  as  the 
standard  of  comparison  a  is  usually  called  the  principal 
infinitesimal. 

8  is  said  to  be  an  infinitesimal  of  the  same  order  as  a  when 

where  k  is  a  finite  number  not  zero.  When  k  is  zero  /3  is 
said  to  be  an  infinitesimal  of  a  higher  order  than  a  ;  when  k 
is  infinite  ft  is  said  to  be  an  infinitesimal  of  a  lower  order 
than  a. 

When  the  limit  of  /3/a  is  infinite  /3  is  sometimes  called  an 
infinite  with  respect  to  a. 

In  practice  one  infinitesimal  is  chosen  as  principal  infini- 
tesimal and  the  other  infinitesimals  are  said  to  be  of  a 

certain  order,  first,  second,  etc.,  the  principal  infinitesimal 
being  either  explicitly  stated  or  sufficiently  indicated  by 
the  context. 
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/3  is  defined  to  be  an  infinitesimal  of  order  n  with  respect 
to  a,  n  being  positive  but  not  necessarily  integral,  when 

where  k  is  a  finite  number,  not  zero. 
By  the  definition  of  a  limit  we  may  write 

)   or    8  =  kan-\ 
where  «  is  a  variable  that  converges  to  zero  with  a,  that  is 
co  is  an  infinitesimal.  The  difference  f$—kan  or  o>aw  is  an 
infinitesimal  of  a  higher  order  than  an  because  the  limit 
of  <joan/an,  that  is  of  CD,  is  zero. 

Jcan  is  called  the  principal  part  of  /3;  manifestly  the 
ratio  of  an  infinitesimal  to  its  principal  part  has  unity  as 
its  limit. 

If  L/3an  =  k, a  =  0 

where  k  is  finite,  not  zero,  /3  is  sometimes  said  to  be  infinite 
of  order  n  with  respect  to  a,  n  being  positive. 

If  /3,  y  are  infinitesimals  of  order  m,  n  respectively,  the 
product  /3y  is  an  infinitesimal  of  order  m  +  n,  and  the 
quotient  p/y  is  an  infinitesimal  of  order  m  —  n  if  m  >  n, 
but  an  infinite  of  order  n  —  m  if  m  <  n.  For 

and  in  the  same  way  the  quotient  theorem  may  be  proved. 

Ex.  1.     sin  a,  1  -  cos  a,  sin  a  (1  —  cos  a)  are  of  the  1st,  2nd,  3rd  order 
respectively  with  respect  to  a.     For 

T  sin  a     ,       T  1  —  cos  a     i       T  sin  a  (1  —  cos  a) 
Jj  -  =  1;      Jj  -  -  =  £;      L  -i—j  --  -/  = a=0     a  a=0        a  a=0  « 

and  their  principal  parts  are  a,  £a2,  ̂ a3  respectively. 

Ex.  2.     If  /^=v/(9a-2a2+3a3),  /3  is  of  order  ̂   and  its  principal 
part  is  3</a.     For 

L       =  L 
a=0  a        a=0 

Ex.  3.     tan  a  -sin  a  is  of  the  3rd  order  and  its  principal  part  is 
3.     This  follows  at  once  from  ex.  1. 
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§  87.  Fundamental  Theorems.  The  value  of  the  explicit 
discussion  of  infinitesimals  depends  on  the  principle  that  so 
far  as  the  limit  of  an  expression  is  concerned  we  need  only 
in  general  attend  to  the  principal  part  ;  the  other  terms  of 
the  infinitesimal  being  of  a  higher  order  than  the  principal 
part  will  have  to  that  part  a  ratio  whose  limit  is  zero,  and 
may  therefore  be  discarded  from  the  outset. 

If  an  expression  contain  a  finite  constant  term  A  and 
infinitesimals  a,  /3,  y  .  .  .  ,  then  so  far  as  the  limit  is  con- 

cerned we  may,  in  general,  at  once  replace  A  +  a+/3+y-i-  ... 
by  A.  The  essential  thing  is  to  find  out  the  order  of  the 
expression  ;  in  comparison  with  infinitesimals  the  principal 
part  alone  need  be  retained,  while  in  comparison  with  finite 
quantities  no  infinitesimal  need  be  retained.  The  order  of 
an  infinitesimal  /3  +  y  +  ...  is,  of  course,  that  of  its  principal 

part. 
Care  must,  however,  be  exercised  in  applying  this  prin- 

ciple. Thus  1  —  cos  a  +  sin  a  contains  the  constant  term  1  ; 
but  1  —  cos  a  is  of  the  second  order,  sin  a  of  the  first.  Hence 
the  whole  expression  is  an  infinitesimal  of  the  first  order,  its 
principal  part  being  a. 

The  following  are  the  two  fundamental  theorems. 
THEOREM  I.  The  limit  of  the  quotient  of  two  infini- 

tesimals is  not  altered  by  replacing  each  infinitesimal 
by  another  having  the  same  principal  part. 

Let  /3,  y  be  two  infinitesimals.  In  order  that  their 
quotient  should  have  a  finite  limit,  not  zero,  each  must  be 
of  the  same  order.  We  may  therefore  write,  the  order 

being  n,  p  =  kan  +  wan  .    y  =  fan  +  w'an 

Let  /3lt  yj  be  two  other  infinitesimals  having  the  same 
principal  parts  as  /3,  y  respectively  ;  then 

where  w    w/  are  infinitesimals  different  from  o>,  a/.     Now, 
T  T  l  T 

Li  -  -  =  Li  j-f—    —  =  j-,  =  Lt  — 
a=oyi    a=o#  T«I     *     a=0y 

The  reasoning  would  clearly  hold  if  /3  were  of  higher 
order  than  y,  for  the  limit  both  of  /3/y  and  of  /Vyi  would  be 
zero.  If  8  were  of  lower  order  the  theorem  would  hold  in 
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the  sense  that  the  limit  both  of  /3/y  and  of  /3ly/yi  would  be 
infinite. 

sn  CM?     T  ax    a -    -=-  =      —  =-. 
a;=otan  ox    X=QOX     o 

From  its  great  use  in  the  differential  calculus  this  theorem 
is  often  called  the  fundamental  theorem  of  the  differential 
calculus. 

THEOREM  II.  The  limit  for  n  infinite  of  the  sum  of  n 
infinitesimals  is  not  altered  by  replacing  each  infinitesimal 
by  another  having  the  same  principal  part,  provided  all 
the  infinitesimals  are  of  the  same  sign. 

The  theorem  is  not  necessarily  true  if  the  infinitesimals 
are  not  all  of  the  same  sign. 

Let  un  =  fil+/32+  ...  +/3n',  vn  =  yl  +  y2+  •••  -hyn, 
where  /3X  has  the  same  principal  part  as  yx,  /32  as  y2  .  .  .  .  The 
principal  infinitesimal,  previously  denoted  by  a,  is  here  1/ti, 
and  therefore  the  limit  of  each  of  the  quotients  /^/y^  fid  7%  .  .  . 
for  a  =  0  or  n  =  oo  is  unity.  Of  course  the  principal  parts 
of  /3V  /32,  /33  .  .  .  are  not  necessarily  the  same. 

It  is  a  known  theorem  of  algebra  that  when  the  quanti- 
ties &,  *Xi  •••»&»  7t  •••  i  are  all  of  the  same  sign  the  fraction 

un/vn  lies  in  value  between  the  greatest  and  the  least  of 
the  fractions  /^/y^  /32/y2  —  Hence,  for  every  value  of  n 
the  fraction  un/vn  lies  between  two  fractions,  each  of  which 
has  the  same  limit,  unity.  Therefore, 

1  =  00 

and  therefore  if  vn  converges  to  a  limit,  un  will  converge  to 
the  same  limit,  that  is 

L  un=  L  vn. 
n=oo  n=<x> 

Ex.     Let  /3p=n/(n+p)2,  yp=n/(n+p)(n+p  +  I);   then  the  limit  of 
for  n  —  co  is  unity  for  every  integral  value  of  p.     But 

JP  ~  nl(n  +j°)  —  nl(n  +P  + 1)  » 
n          n    \     (    n          n    \  in  n       \ 

n         ̂ n 
n+l     2n  +  l 

:.    ~Lu  =L/  +          -  +  ...+  \=Lv=l-1=i 
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From  its  use  in  integration  this  theorem  is  often  called 
the  fundamental  theorem  of  the  integral  calculus. 

the 

s 

Ex.  1.     When  dx  is  the  principal  infinitesimal,  then   (§  60) 

principal  part  of  8f(x)  is  df(x)=f(x)dx,  and  that  of  8f'(x)  is  df(x)  = 
f"(x)dx.      If  /'(#)  =  tan<£    then    the    principal    part    of    8  tan^>    is 
d  tan  (j>  =f"  (x)  dx. 

Ex.  2.     Let  PQ  be  the  graph  of  f(x) ;  PT,  TQ  the  tangents  at  P,  Q. 
OM=a,  MN=^PR  =  h,  LRPS=(f>:  LSTQ  =  8<J>,  LTPQ  =  a,  LTQP=ft. 

Let  h  or  PR  be  the  principal  infinitesimal. 
RS,  PS,  PQ  are  of  the  first  order. 

Let  f"(x)  be  finite,  not  zero,  from       \ 
x=a  to  x=a  +  h;  then  by  Th.  III., 
§72, 

Hence  SQ  is  of  the  second  order. 
8<j>  is  of  the  first  order  and  its 

principal  part  is  h  cos2(f)f"(a)  ;  for 
d  tan  <£  is  equal  to  sec^  d(f>  and 

also  (ex.  1)  to  hf"(a),  so  that 
T    I  7  2Jv-/"/       \ 

Again,  a  and  ft  are  of  the  first  order, 
sin  a       sin  a       sin  PS R 

FIG.  42. 

For  sinP£ft=cos 

N 

,  and 

X 

sn  a 

sin  a,  and  therefore  a,  is  thus  of  the  first  order  ;  the  principal  part 

of  a  is  ̂ hcos2(f>f"(a\  that  is,  half  the  principal  part  of  8<f>.  Since 
/3=8(f>  —  a.  its  principal  part  is  equal  to  that  of  a,  that  is,  to  half 
that  of  8<fr. 
.  T  PT    T   sin/3      ,     T  TQ        PT Again, 

so  that  PT,  TQ  are  of  first  order.    Also 

so  that  the  difference  between  PT+  TQ  and  PQ  is  of  the  third  order, 

since  P^and  TQ  are  of  the  first  and  (1  -cos  a)  and  (1  -cos  ft)  of  the 
second.  Hence  the  difference  between  PT+  TQ  and  the  arc  PQ  is  at 
least  of  the  third  order  since  the  arc  PQ  is.  greater  than  PQ. 

The  fact  that  the  limit  of  PT/PQ  is  1/2  is  sometimes  expressed  in 

the  words  "  PT  is  ultimately  equal  to  %PQ  "  or  "  PT  is  in  the  limit 
equal  to  %PQ."  Similarly  it  is  said  that  "the  triangle  PTQ  is 
ultimately  isosceles."  This  phraseology,  though  occasionally  con- 

venient, is  apt  to  lead  beginners  astray. 

If  /'(«)=  0,  SQ  is  of  a  higher  order  than  the  second,  and  8<f>,  a,  ft 
are  also  of  higher  order  than  the  first,  and  PT+  TQ  -  PQ  of  higher than  the  third. 
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Ex.  3.     In  Fig.  24,  §  39,  if  MA  be  principal  infinitesimal,  prove 
(i)  AT,  arc  AN  of  first  order. 
(ii)  MN,  NT,  MT  of  second  order. 

Draw  MC  perpendicular  to  AT  ;  then  prove 
(iii)  MC  of  second  order. 
(iv)  CT  of  third  order. 

Ex.  4.     Show  that  (Fig.  42)  if  arc  PQ  =  8s 

=  cos3 

§  88.  Polar  Formulae.    Let  A  PQ  (Fig.  43)  be  a  curve  whose 
polar  equation  is  r=/(0);  let  LXOP  —  0,  LPOQ  =  S9;  OP  =  r, 

~  =r+3r.     Draw  QR  perpendicular  to  OP. 

N' 

FIG.  43. 

We  will  consider  the  arc  PQ  positive  when  the  angle 
POQ  is  described  by  a  positive  rotation  of  the  radius 
vector  OP  ;  the  tangent  PT  is  to  be  drawn  towards  the 
positive  direction  of  PQ  and  by  the  angle,  \fs  say,  between 
the  tangent  PT  and  the  radius  OP  is  meant  the  angle  RPT 
between  the  outward  drawn  radius  OP  and  the  tangent  PT. 

(i)  To  find  tan 

PR 
rsmSO  +  S 

<Srcos<S0-r(l-cos<$0) 
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If  SO  be  principal  infinitesimal,  Sr  is  of  first  order  since 
dr/dO  is  in  general  finite  ;  therefore  6V  sin  SO  and  (1  —  cos  SO) 
are  of  second  order.  We  may,  therefore,  omit  the  quantities 
of  the  second  order  and  put  SO  for  sin  SO  and  1  for  cos  SO. 
Hence 

tan  \fs  =  L  tan  RPQ  =  L  r-r-  =  r-j— or      dr 

(ii)  To  find  the  derivative  of  the  arc. 

Let  AP  =  s,  arc  PQ  =  Ss'}  then  retaining  only  infinitesi- 
mals of  the  lowest  order  and  remembering  that  PQ  and 

arc  PQ  are  of  the  same  order  we  get 

_  2 

or  , 

and  sin  i/^  =  rdO/ds,  cos  \/r  =  dr/ds. 

(iii)  To  find  the  derivative  of  the  area. 

Let  sector  AOP  =  z,  sector  POQ  =  Sz;  then  Sz  is  inter- 
mediate to  the  circular  sectors  of  angle  SO  and  radii  OP, 

OQ  respectively.  Hence  Sz/SO  lies  between  Jr2  and  |(r  +  Sr)2, and  therefore 

(iv)  Polar  subtangent  and  Polar  subnormal. 
If  PM,  PN  are  the  tangent  and  the  normal  at  P  and 

through  0  a  line  MON  is  drawn  perpendicular  to  OP, 
meeting  PM  at  M  and  P./V  at  JV,  OM  is  called  the  polar 

subtangent  and  ON  the  polar  subnormal.  PM  and  PJV"  are sometimes  called  the  polar  tangent  and  the  polar  normal 
respectively. 

The  lengths  of  these  lines  can  be  easily  expressed  when 
required  in  terms  of  r  and 

EXERCISES  XVIII. 

1.  The  equation  r  =  aO  represents  the  curve  called  the  Spiral  of 
Archimedes.  Prove  tam/r  =  $  and  show  that  the  subnormal  is  con- 

stant. Sketch  the  curve. 
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2.  The   equation  r=ajO  represents   the  Reciprocal  Spiral.     Show 
that  the  subtangent  is  constant. 

Prove  that  the  perpendicular  from  the  point  (r,  6)  on  the  initial 
line  OX  is  equal  to  a  sin  0/6,  and  then  show  that  the  curve  has  an 
asymptote  parallel  to  0  X  and  at  a  distance  a  from  OX. 

3.  The  Lituus  is  the  curve  given  by  r2B=a2.     Show,  as  in  ex.  2,  that 
OX  is  an  asymptote  and  sketch  the  curve. 

4.  Show  that  ̂   is  constant  for  the  curve  given  by  r  =  ae9^a.     From 
this  property  the  curve  is  called  the  Equiangular  Spiral.     Sketch  the 
curve. 

5.  The  curve  given  by  r=a(l  —  cosO)  is  called  the  Cardioid.     Show 
that  T/r=0/2  and  sketch  the  curve. 

6.  If  r  =  2a/(l  -  cos  0),  show  that  \}r=ir-  0/2.    What  is  the  curve  ? 

7.  If, , dr  a 

,- 

'  dr  r 

T»  ds It  r=ae0cota  -—  =  ?•  cosec  a. 

'  ad 

,        =-. 
'  dv     r 

8.  If,  in  the  figure  of  §  88,  PC  is  drawn  perpendicular  to  OP  and 
QO  perpendicular  to  OQ,  prove  that  the  limit  of  PC  as  80  converges  to 
zero  is  dr/dO.     If  82  is  the  area  of  the  sector  CPQ,  show  that  dzldd  is 
equal  to  \(dr\dBf. 

9.  Find  the  area  bounded  by  the  curve  and  the  radii  whose  vectorial 
angles  are  015  02  for  the  curves  of  examples  1-5. 

10.  The  curve  given  by  r2  =  a2cos20  is  called  a  Lemniscate  ;  show 
that  it  consists  of  two  loops  of  equal  area  and  find  the  area  of  one 
loop. 

11.  APQ  (Fig.  43)  is  the  path  of  a  moving  point  P.     If  u,  v  and  a,  ft 
are  the  components  of  the  velocity  and  of  the  acceleration  of  P  along 
and  perpendicular  to  the  radius  vector  OP,  show  that 

To  prove  these,  note  that  (the  limits  being  taken  for  8t=0) 
T(r  +  8r)  cos  80  -  r         T(r  +  8r)  sin  SB -  -     -  ^ 

and  if  uly  vl  are  the  values  of  u,  v  at  Q, 
T  u-,  sin  80+v,  cos  80  —  v -^_          _ 
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12.  If  in  example  11  the  acceleration  is  always  towards  0,  show 
that  the  radius  vector  sweeps  out  equal  areas  in  equal  times. 

For  /?  =  0,  and  therefore  rz6=Zz  (§  88)  =  constant. 
13.  If  in  Fig.  24  the  tangent  at  N  meets  the  tangents  A  T,  BT  at 

P,  Q,  show  that  the  triangles  PQT,  AST  are  each  of  the  third  order 
when  MA  is  of  the  first,  and  that  the  limit  of  their  ratio  is  1/4. 

14.  If  in  Fig.  42  the  ordinate  at  T  is  LT,  show  that  the  limit 
of  MLIMN  is  1/2.     Show  also  that  the  principal  part  of  the  triangle 

PTQ  is  JA»/'(a). 
15.  A  circle  is  drawn  touching  PT  at  P,  and  passing  through  Q 

(Fig.  42)  ;  if  p  is  the  limit  of  the  radius  when  Q  converges  to  P,  show 
that 

If  SQ  is  produced  to  meet  the  circle  at  Q't  show  that  the  limit  of 
is  2  sec2  <£//'  (a). 

16.  A  circle  is  described  about  the  triangle  PTQ  (Fig.  42)  ;  if  p1  is 
the  limit  of  the  radius  when  Q  converges  to  P,  show  that  pl  =%p  (ex.  15). 

17.  W  is  any  point  on  the  arc  PQ  (Fig.  42),  and  a  circle  is  described 
about  the  triangle  PWQ  ;  show  that  when  W  and  Q  converge  to  P 
the  radius  of  the  circle  converges  to  p  (ex.  15).     Show  that  the  result 
is  true  if   W  and  Q  are   on  opposite  sides  of  P,  and   W  and  Q  both 
converge  to  P. 



CHAPTER  XL 

PARTIAL  DIFFERENTIATION. 

§  89.  Partial  Differentiation.  In  the  following  chapter  we 
will  discuss  very  briefly  functions  of  two  or  more  inde- 

pendent variables  ;  a  thorough  treatment  of  such  functions 
is  difficult,  and  we  will  restrict  the  discussion  to  the  simpler 
properties  of  continuous  functions. 

DEFINITION.  A  function  f(x,  y)  of  two  independent  vari- 
ables x,  y  is  defined  to  be  continuous  for  the  values  a,  b  of 

x,  y  if  the  limit  for  h  =  0  and  k  =  0  of 

is  zero,  in  whatever  way  h  and  k  tend  to  zero. 
A  similar  definition  holds  for  a  function  of  more  than 

two  variables. 

Let  u  be  a  function  of  x  and  y,  say  u  =  ax2  +  2bxy  +  cy2. 
Since  x  and  y  are  independent  x  may  vary  and  y  remain 
constant  ;  the  ̂ -derivative  of  u  when  x  varies  and  y  does 
not  vary  is  called  the  partial  x-derivative  of  u,  or,  the 
partial  differential  coefficient  of  u  ̂ vith  respect  to  x.  In 
the  same  way  the  partial  ̂ /-derivative  of  u  is  the  deriva- 

tive of  u  with  respect  to  y  on  the  supposition  that  x  does 
not  vary. 
When  u  is  a  function  of  x  alone  its  cc-derivative  is 

denoted  by  Dxu  or  du/dx  ;  the  same  notation  is  often  used 
for  the  partial  cc-derivative  of  u,  and  the  reader  must 
infer  from  the  context  whether  the  derivative  is  partial 
or  not.  It  has  become  customary,  however,  to  represent 
partial  derivatives  by  the  notation 

(du\   /du\ 
or  sometimes  I  -5—  }>  (  -?—  )> \dxJ   \dy/ 
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the  form  3  instead  of  d,  or  the  bracket,  indicating  that  the 
derivative  is  partial. 

Notations  analogous  tof(x),fx(x)  are  also  in  use.     Thus 

denote  partial  derivatives  of  the  functions  f(x,  y)  and  u. 
There  is  no  notation,  however,  that  is  in  itself  quite  free 

from  ambiguity;  the  reader  must  usually  infer  from  the 
context  whether  a  derivative  is  partial  or  not. 

The  formal  definition  of  3w/9a?,  'dufdy  where  u=f(x,  y) is,  therefore, 

'dx 

+  fa,y)-f(x,y). 

Sy=o  Sy 
Ex.  1.     If  u^axP  +  Zbxy  +  cy2. 

'duj'dx  =  2ax  +  2by  ;  dufdy  =  2bx  +  2cy. 
Ex.  2.     If  u=sin(ax  +  by  +  c). 

x  =  a  cos  (ax  +  by  +  c)  ;  9  ufdy  =  b  cos  (ax  +  by  -f  c). 

N 

§  89a.  Coordinate  Geometry  of  Three  Dimensions.  A  knowledge 
of  coordinate  geometry  of  three  dimensions  will  greatly  assist  the 
reader  in  obtaining  a  clear  conception  of  partial  derivatives  ;  we  will 
therefore  give  in  this  article  a  few  fundamental  theorems  regarding 
the  representation  of  points,  lines,  and  surfaces  by  means  of  three 
coordinates.  In  many  cases  the  extension  from  two  to  three  co- 

ordinates is  extremely  simple. 
(i)  Coordinate  Planes 

and  Axes.  Coordinates 

of  a  Point.  Through  a 
point  0  let  three  planes 
TOZ,  ZOX,  XOY  be 
drawn,  the  angle  be- 
tween  each  pair  of  planes 

being  90°,  and  suppose 
the  planes  to  be  pro- 

duced indefinitely,  their  r 
intersections  being  the 

linesZ'OJT,  T'OY,Z'OZ; 
these  lines  will  be  mutu- 
ally  at  right  angles.  We 

will  suppose   Y'OY  and  z' 
Z'OZ  to  lie  in  the  plane  FIG.  44. of    the    paper   and   the 
portion  OX  to  be  drawn  upwards  towards  the  reader  (Fig.  44). 

£ 
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From  any  point  P  draw  PN  perpendicular  to  the  plane  XO  Y  and 

NM  perpendicular  to  the  line  X'OX\  complete  the  parallelepiped. 
The  position  of  P  will  be  determined  by  the  segments  OM  or  M'P, 
OL'  or  LP,  ON'  or  NP, 

The  three  planes  YOZ,  ZOX,  XO  Y  are  called  the  coordinate  planes, 
the  three  lines  X'OX,  Y'OY,  Z'OZ  the  coordinate  axes  and  the  three 
segments  OM,  OL',  ON'  the  coordinates  of  P;  0  is  the  origin  of coordinates. 

The  positive  directions  of  the  axes  and  therefore  of  the  segments 
or  coordinates  are  from  0  to  X,  from  0  to  Y,  from  0  to  Z  respectively. 
P  may  be  denoted  the  point  (x,  y,  z)  where 

x=OM=L'N=M'P-,    y  =  OL'=MN=LP;    z=ON'=L'M'=NP. 
The  coordinate  planes  divide  space  into  eight  portions  (octants)  and 

there  will  be  eight  arrangements  of  the  signs  +  ,  -  corresponding  to 
the  octant  in  which  the  point  is  situated.  Thus  when  the  signs  are 
(  +  >  +>  +)  P  lies  in  tne  space  bounded  by  YOZ,  ZOX,  XOY  ;  when 

they  are  (-,-,+)  P  lies  in  that  bounded  by  Y'OZ,  ZOX',  X'OT, and  so  on. 

(ii)  Distance  between  two  Points.     The  geometry  of  Fig.  44  shows 
that  OP*=OM*  +  MN*  +  NP*  ;     OP=VC*2+#2+*2)  ............  (1) 

If  Pl  is  the  point  (#1}  ylt  z^  and  P2  the  point  (x2,  y2,  02)  draw 
through  P1?  P2  planes  parallel  to  the  coordinate  planes  (Fig.  45) 
forming  the  parallelepiped  P1X2Y2Z2P2  ;  then 

and 

FIG.  45. 

If  we  suppose  the  point  P  in  Fig.  44  to  vary  its  position,  but  always 
to  remain  at  the  same  distance,  a  say,  from  0,  it  will  lie  upon  a 
sphere  ;  the  coordinates  of  P  will  by  (1)  always  satisfy  the  equation 
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which  is  therefore  called  the  equation  of  the  sphere.  Similarly  we  see 

from  (!')  that  the  equation  of  the  sphere  with  centre  PI(X^  y^  z^)  and 
radius  a  is  (x_x^  +  (y_y^  +  (z_z^  =  a*   (2) 

(iii)  Direction  Cosines  of  a  Line.  Let  OP  (Fig.  44)  be  any  line 
through  0  ;  on  the  line  take  one  direction,  say,  the  direction  from 
0  to  P  as  positive.  The  position  of  the  line  will  be  definitely  fixed 
when  the  angles  that  the  positive  direction  of  the  line  makes  with  the 
positive  directions  of  the  coordinate  axes  are  known.  These  angles, 
namely  XOP,  TOP,  ZOP,  are  called  the  direction  angles  of  the 
line,  and  the  cosines  of  these  angles  are  called  the  direction  cosines 
of  the  line.  Each  of  these  angles  may  be  taken  as  lying  between 
0°  and  180°  inclusive. 

Thus  the  direction  angles  of  OJTare  (0°,  90°,  90°),  of  OX'  (180°,  90°, 
90°),  and  the  direction  cosines  are  (1,  0,  0),  (- 1,  0,  0)  respectively. 

If  a,  /2,  y  are  the  direction  angles  of  OP,  then 

cosa=OM/OP,     cos(3=OL'/OP, 
and 

cos2  a + cos2  /3  +  cos2  y  = 

OP2 

.—  I 

If  we  write  I,  m,  n  in  place  of  cos  a,  cos  f3,  cos  y,  we  see  that  the 
direction  cosines  (I,  m,  n)  of  a  line  are  connected  by  the  identical 

relation  P  +  m2+n2=I  ....................................  (3) 
When  the  line  does  not  pass  through  the  origin,  draw  a  line 

through  0  parallel  to  the  direction  on  the  line  that  is  taken  as 
positive  ;  the  direction  cosines  of  the  line  so  drawn  are  those  of 
the  given  line. 

If  the  distance  between  Pl  and  P2  is  r,  r  being  considered  positive, 
the  direction  cosines  of  the  segment  P\P%  are 

and  those  of  the  segment  P2P\  are 
(30 

(iv)  Cosine  of  the  Angle  between  two 
Lines.  Let  (llt  mlt  %),  (12,  w2,  n2)  be 
the  direction  cosines  of  the  lines,  arid 
draw  OP,  OQ  (Fig.  46)  parallel  to  the 
positive  direction  of  the  lines.  Let 
OQ  be  the  projection  of  OP  on  OQ, 
and  let  PN  be  perpendicular  to  the 
plane  XO  T  and  NM  perpendicular  to 
OX.  Then 

NP=niOP,     OQ  =  OP  cos  0, 
where  6  is  the  angle  between  the  lines       ̂ t 

OP,  OQ.  XM  N 
By   the   fundamental   principles   of  pIG   ̂ g 

projection,   the   projection   of   OP  on 
OQ  is  equal  to  the  sum  of  the  projections  of  OM,  MN,  NP  on  OQ 
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But  the  projection  of  OM  on  OQ  is  12OM,  of  MN  is  m^MN,  and  of  NP 
is  n2NP,  since  L  is  the  cosine  of  the  angle  between  OM  and  OQ,  etc. 

Hence  OP  cos  0  =  12OM+  m2MN+  n2NP 

=  l2llOP+m2m1OP+n2nlOP, 

and  therefore  cos  0=lll2  +  mlm2  +  n1n2  .................................  (4) 

Since  sin2<9=  1  -  cos20    and     I?  +  m^  +  n?  =  1  ,  Z22  +  w^  +  n2*=I, 

we  have    sin20  =  (If  +  w^  +  ft/X^2  +  wi22  +  w22)  -  (  ̂2  +  ™i™2  +  ̂ i^2 

=  (mtfit  -  m^)2  +  (njl2  -  n^Jp  +  (l^n^  -  I2mjp  .............  (5) 
The  condition  that  two  lines  should  be  at  right  angles  is,  from  (4), 

I1l2  +  mi7n2  +  nln2=0  ...............................  (4') 
(v)  Equations  of  a  Straight  Line.  Let  the  point  Px  (x^  y^  z^  be  a 

fixed  point  on  the  line  and  let  P2  (Fig.  45)  be  any  other  point  (x,  y,  z) 
on  the  line.  Let  PlP2=r  and  let  (I,  m,  n)  be  the  direction  cosines  of 
PiPa;  then 

P1X2=x—£cl  =  lr  ;    y-yi 
and  therefore 

m          n 

Equations  (6)  express  the  relations  that  hold  between  the  co- 
ordinates of  any  point  on  the  line  and  those  of  the  fixed  point,  and  are 

therefore  called  the  equations  of  the  line.  Had  a  point  P3  been  taken 
on  the  opposite  side  of  Pl  from  that  on  which  P2  lies  the  direction 
cosines  of  PjPq  would  have  been  (-1,  -m,  -n)  but  the  resulting 
equations  would  have  been  the  same.  If  r  be  the  absolute  distance 
between  the  variable  point  (#,  y,  z)  and  the  fixed  point  (xlt  y^  %)  we 

ma^write  (*-*!>/«-...=  ±r  ..............................  (6') 
the  +  or  —  sign  being  taken  according  as  the  variable  point  lies  to 
the  positive  or  to  the  negative  side  of  the  fixed  point. 

(vi)  Equation  of  a  Plane.  The  equation  x=a  is  clearly  true  for 
every  point  on  a  plane  parallel  to  the  plane  TOZ  and  distant  a  from 
that  plane;  in  other  words  x=a  is  the  equation  of  a  plane  parallel  to 
the  plane  YOZ.  Similarly  y  =  b,  z=c  are  the  equations  of  planes 
parallel  to  the  other  two  coordinate  planes.  The  equations  of  the 
coordinate  planes  themselves  are  #=0,  ,y  =  0,  0=0  respectively. 

The  equation  y=ax  +  b  when  considered  with  reference  solely  to  the 
coordinate  plane  XO  T  represents  a  straight  line,  AB  say.  If  through 

AB  a  plane  is  drawn  parallel  to  Z'OZ  the  coordinates  of  every  point  in 
that  plane  will  still  satisfy  the  equation  y=ax+b.  When  considered 
with  reference  to  space  therefore  the  equation  represents  a  plane 

parallel  to  the  axis  of  the  omitted  coordinate.  Similarly  z=ax+b, 
z=ay  +  b  represent  planes  parallel  to  07,  OX  respectively. 

Let  a  plane  meet  the  coordinate  axes  at  A,  B,  C  (Fig.  47)  ;  let  OZ 

be  the  perpendicular  from  0  on  the  plane,  (I,  m,  n)  the  direction  cosines 
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of   OL.     Take   P  (x,  y,  z)  any  point  on   the  plane   and  draw  the 
coordinates  OM^MN,  NP. 

The  projection  of  OP  on  OL  is  OL  itself  which  may  be  denoted  by 
p  ;  also  the  projection  of  OP  is  equal 
to  the  sum  of  the  projections  of  OJ/, 
MN,  NP  on  OL  which  are  WM,  mMN 
nNP  respectively.     Hence 

'  /IT' 

so  that  the  equation  of  a  plane  is  of 
the  first  degree  in  the  coordinates. 

If  D = A/  (a2  +  b2  +  c2)  the  equation 

(7') 

may  be  written  in  the  form 

B      Y 

FIG.  47. 
by  putting  I,  m,  n,  p  for  a/Z),  6/Z),  c/D, 
d/D  respectively,  the  sign  of  the  root  being  chosen  the  same  as  that 
of  -d  so  that  p  or  djD  may  be  positive.  The  quantities  «/Z>,  6/2),  cjD 
are  direction  cosines  since  the  sum  of  their  squares  is  unity  which  is 
the  condition  required  by  (3)  for  direction  cosines.  These  quantities 
are  the  direction  cosines  of  the  normal  to  the  plane. 

The  direction  cosines  of  the  normal  to  the  plane  #=0  are  (1,  0,  0); 
of  the  normal  to  the  plane  y—ax  +  b^  that  is,  —ax+y  =  b  are 

(-a/«/(a2+l),  l/v/(a'2  +  l),  0),  and  so  on. (vii)  Equation  of  a  Surface.  Equations  of  a  Curve.  In  general  an 
equation  of  the  form  z-=f(x,  y)  or  F(x,  y,z)=Q  represents  a  surface. 
Thus  by  (ii)  the  equation  .r2  +  «/2+22-«2=0  represents  a  sphere  of radius  a. 

Again,  when  the  coordinates  of  a  point  satisfy  two  equations 
F(x,  y,  2)=0,  <£(#,  y,  z)  =  Q,  the  point  must  lie  on  each-  of  the  surfaces 
represented  by  these  equations,  that  is,  the  two  equations,  considered 
as  simultaneous,  are  the  equations  of  the  curve  of  intersection  of  the 
surfaces.  Thus  the  two  equations 

represent  planes  ;  the  two,  taken  as  simultaneous  equations,  represent 
their  curve  of  intersection,  that  is,  are  the  equations  of  a  certain 
straight  line.  Or,  again,  equations  (6)  may  be  written m. 

™, 

'n( 

which  are  the  equations  of  two  planes  ;  the  intersection  of  the  planes 
is  the  straight  line  given  by  (6). 

The  two  equations        #=1,     #2+^2  +  ,s2=9 

represent  a  circle  which  is  the  curve  in  which  a  plane  intersects  a 
sphere. 
G.C.  P 
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(viii)  Polar  Coordinates.  In  Fig.  44,  let  OP=  r,  LZOP=  (9,  LXON=  <£  ; 
then  r,  0,  <£  are  called  the  polar  coordinates  of  P.  The  relations 
between  the  rectangular  coordinates  (#,  y,  z)  and  the  polar  coordinates 
(r,  0,  </>)  of  the  same  point  P  are  easily  seen  to  be 

x=rsin  #cos</>,     ;?/  =  ?'  sin  0  sin  <£,     2=rcos#. 

(ix)  Cylindrical  coordinates.      In   Fig.  44,  let   O^V=/o,  LXON= 
NP=z  ;    then  /o,  <£,  2  are   called  the   cylindrical  coordinates   of 

Evidently  />=rsin0;    ̂ =/ocos</>,  y—psm<$>. 
/>,  <£  are  the  pfcme  polar  coordinates  of  Nt  the  projection  of  P  on  the 
plane  XO  Y  ;  r,  0,  <f>  are  sometimes  called  spherical  polar  coordinates. 

Ex.  1.  Find  the  equation  of  the  plane  through  the  three  points 
(1,  0,  0),  (0,  2,  0),  (0,  0,  3). 

Let  the  equation  be  ax  +  by  +  cz=d;  the  coordinates  of  each  point 
must  satisfy  the  equation.  Hence,  to  find  a,  b,  c,  d,  we  have 

a  =  d')     2b  =  d;     3c=d, 

that  is,  a/e?=l, 
and  the  required  equation  is 

It  will  be  noticed  that  only  the  ratios  of  a,  6,  c,  d  are  required  ;  the 
equation  of  the  plane  thus  contains  only  three  independent  constants 
just  as  that  of  the  straight  line  in  Plane  Geometry  contains  only  two. 

Ex.  2.  The  equation  of  the  plane  through  (a,  0,  0),  (0,  6,  0), 

(0,  0,  c),  is  x/a+y/b  +  z/c  =  l  ; 
a,  6,  c  are  the  intercepts  made  by  the  plane  on  the  coordinate  axes. 

Ex.  3.  The  equation  of  the  plane  through  the  three  points  (2,  0,  3), 
(-1,5,  2),  (3,  -4,  -2)  is 

Ex.  4.     The  equations  of  the  line  through  (x^  y^  z^  (#2,  y2,  22)  are 

x~x\  =y-y\    z~z\ 

By  §  89a  (v),  the  equations  of  the  line  through  (#1}  ylt  z-^)  in  the 
direction  (I,  m,  n)  are 

(x-  xl)ll  =  (y-2/l)/m^(z-zl)ln. 
Since  (x%,  y^  22)  lies  on  the  line,  the  ratios  l:m:n  are  determined  by 

from  which  the  required  equations  follow. 

Ex.  5.     The    direction    cosines    of    the    line    through    the    points 
/        4  9  4    \ 

(3,  -  -  4,  --  2),  (-1,5,  2)  are  (^  -  -r^,    -^3'    rTfiS/'  the  Positive  direc' 
tion  of  the  line  being  from  the  first  to  the  second  of  the  points. 
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Ex.  6.     The  cosine  of  the  (acute)  angle  between  the  planes 

&e+.y-2;3=l,     2a7  -3#  +  3=1 
is  1/14. 

Ex.  7.  If  86  is  the  small  angle  between  the  lines  whose  direction 
cosines  are  I,  m,  n  and  1  +  81,  m  +  8m,  n  +  8n,  show  that,  approximately, 

(86)2  =  (8l)2+(8m)2+(8n)2. 
Both  sets  of  cosines  satisfy  (iii)  (3),  and  therefore 

(I  +  81)*  +  (m  +  8m)2  +  (n  +  8n)2  =  1  =  I2  +  m2  +  n2, 

and  2  (ZSZ  +  m8m  +  n8n)  =  -  {(8l)2  +  (8m)2 

Again  2  sin2(£S0)  =  1  -  cos  80=  -  (I8l  +  m8m 
and  the  result  follows  at  once. 

§  90.  Total  Derivatives.  Complete  Differentials.  Let 
u=f(ac,  y)  and  let  x  and  y  be  functions  of  a  third  variable  t. 
To  prove 

du  _*du  dx     'du  dy  /A\ 
dt     'dx  dt     *d     dt 

When  t  takes  the  increment  St  let  x,  y,  u  take  the  incre- 
ments Sx,  Sy,  Su  respectively  ;  then 

8u  =  f(x  +  faty  +  Sy)-  f(x,  y), 
and  this  equation  may  be  written 

,  y+Sy)-f(x,  y  +  Sy)] 
2/)]  ........  ................  (1) 

By  the  mean  value  theorem  §  72 

1Sx,  y  +  Sy) 

where  Ov  62  are  proper  fractions.  The  coefficient  of  Sx  in 
(2)  is  the  ̂ -derivative  of  f(x,  y  +  Sy)  taken  on  the  supposi- 

tion that  y  +  Sy  does  not  vary  and  with  x  replaced  by 
x  +  O^x  ;  the  coefficient  of  Sy  in  (3)  is  the  ̂ -derivative  of 
f(x,  y)  taken  on  the  supposition  that  x  does  not  vary  and 
with  y  replaced  by  y  +  02Sy.  Hence 

,  y  +  0 
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AT  T  Su    du      T  Sx    dx      T  Sy    dy 
Now,       L  -ji  =  -j7*     L  ̂7  =  -TT>      L-S=jr 

8t=0  Ot       at        gf=o  ot       tt-t 

L  /*(&  +#!<&,  y  +  Sy)=fx(x,  y); 
St=Q 

st=o 

since  &c,  #y  converge  to  zero  with  St,  and  the  functions  are 

all  supposed  to  be  continuous.  Writing  'dul'dx,  'du/'dy  in 
place  of  fx(x,  y)}  fy(x,  y)  we  get  equation  (A). 

In  the  same  way  if  u=f(x,  y,  z)  and  x,  y,  z  are  all  func- 
tions of  a  variable  t  we  get 

du     'du  dx     'du  dy     'du  dz  /B\ 

~+7     dt  ..
............... and  so  on  for  any  number  of  variables. 

In  (A)  we  may  suppose  t  to  be  the  variable  x  ;  y  is  then 
a  function  of  x,  and  u  is  really  a  function  of  the  one  vari- 

able x.  Equation  (A)  becomes  in  that  case 

du  _*du     'du  dy  /./\ 
dx     'dx     'dy  dx 

and  in  the  same  way,  from  (B) 

dy     'du  dz '  ' 
dx     'dx     'dy  dx     'dz  dx 

In  these  equations  'du/'dx  and  du/dx  have  quite  different 
meanings.  The  derivative  'du/'dx  is  formed  on  the  supposi- tion that  an  explicitly  named  variable  x  alone  varies  ;  on 
the  other  hand  du/dx  is  the  limit  of  Su/Sx  where  Su  is  the 
change  in  u,  due  (i)  to  the  change  Sx  in  the  explicitly  named 
variable  x,  and  (ii)  to  the  changes  Sy,  Sz,  which  are  them- 

selves due  to  the  change  Sx. 
du/dx,  du/dt  are  called  total  derivatives  with  respect  to 

x  and  t  respectively. 

Ex.     If  u=x*+y\  then 

"dufdx  =  2x  ;    'duj'dy  = 
But  if  y  is  a  function  of  x,  say  y  =  ax+b,  then 
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or  we  may  use  (A')  ;  then du 

since  dy/dx=a,  and  we  get  the  same  result  as  before. 

If  SB,  y  are  independent,  and  if  Su  be  the  change  in  u,  due 
to  the  independent  changes  Sx,  Sy,  equation  (1)  may  be 
written 

Su  =  fx(x  +  OJx,  y  +  Sy)  Sx  +fy(x,  y  +  02Sy)  Sy 

=  [fafa,  y)  +  o>J  fa  +.  [/jXa,  y  )  4-  ojj  Sy 
where  a>lt  o>2  converge  to  zero  with  Sx  and  Sy.  Henoe  if  we 
take  Sx,  Sy  as  independent  principal  infinitesimals  and  write 
dx,  dy  in  place  of  Sx,  Sy  the  products  w^dx,  w2dy  will  be 
of  order  higher  than  the  first  and  the  principal  part  du  of 
Su  will  be  given  by 

'du  ,  x 
(c) 

Similarly  for  three  (or  more)  independent  variables 
(D) 

du  is  called  a  total  differential  or  a  complete  differential 

'du 

and  =—      ,  ̂-      }  =— Sec        By        a* 

are  called  partial  differentials.  These  partial  differentials 
are  sometimes  written  dxu,  dyu,  dzu. 

If  x,  y,  z  are  not  independent  but  functions  of  t  then, 
since  dx  =  (dx/dt)dt  .  .  .  ,  we  should  get  equations  of  the 
same  form  as  (c),  (D)  by  multiplying  (A),  (B)  by  dt. 

These  equations  (A)  .  .  .  (D)  have  important  applications 
in  geometry  and  mechanics.  For  plane  geometry  the 

equation  (A')  is  very  useful;  the  reader  should  study  the 
following  examples  carefully. 

Ex.  1.     Let  u=axz  +  by2-  1  ;  then,  x  and  y  being  independent, 

Consider  now  the  equation  u=0.  The  variables  #,  y  are  no  longer 
independent;  the  point  (#,  y)  must  lie  on  the  conic  u=0  and  y  may 
be  considered  a  function  of  x,  namely  an  ordinate  of  the  conic.  Since 
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u  is  now  always  zero  for  the  admissible  variations  of  x  and  y,  the  total 

^-derivative  of  u  (not  the  partial)  must  be  always  zero.    Hence  by  (A') 

'du    'du  dy  _^       ,  dy_   _du/du_      ax 
'dx    "dy  dx  dx        dx/  'dy         by • 

This  equation  gives  the  gradient  at  the  point  (x,  y)  on  the  conic. 

Ex.  2.  Let  u  be  any  function  f(x,  y)  of  x  and  y  ;  the  equation  u=0) 
that  is  f(x,  3/)=0  defines  y  as  a  function  of  x,  namely  y  is  the  ordinate 
of  the  curve  /(#,  y)=0.  As  in  ex.  1,  the  total  ̂ -derivative  of  u  is 
zero  and  the  gradient  at  the  point  (#,  y)  is  given  by 

dy  _     'du  fdu  _      'df  I'd/ 
dx~     'dxl  'dy        'dx/  'dy 

where  /  is  written  for  brevity  instead  of  f(x,  y). 

Ex.  3.  If  /(#,  y)=x3+y3  —  3axy,  the  gradient  of  the  curve  whose 
equation  is  f(x,  y)  =  0  is 

dy  _      3x2  -  Say  _ay  —  x2 
dx        3y2  —  Sax    y2  -  ax 

Ex.  4.     If  pv  =  kO  (k  constant)  find  dp  in  terms  of  dv,  dO. 

'dp  _      kO  _     p  .    'dp  _k  _p ~    ~=    ~ 

Ex.  5.     If  u  =  tau~1(y/x)  prove  that 
du  =  (xdy  —  ydx}l(x*  +  y2). 

Ex.  6.     If  #=rcos#,  y=rsin#,  r  and  0  independent,  show  that 

dx  =  cos  6dr-r  sin  6d6,     dy  =  sin  6dr  +  r  cos  Odd 

xdy  -  ydx  =  r2dO. 
Ex.  7.     Let  u=f(x,y)-z,  then 

'du_df      <3^_i 'dy~'dy>      dz 

The  equation  u=0  defines  a  surface,  and  now  z  may  be  considered 
a  function  of  two  independent  variables  x,  y,  namely  z  =f(x, 

9£_3/_9^      'dz  __df  _du 
'dx    'dx    'dx      'dy    'dy    'dy 

§  91.  Geometrical  Illustrations.  Let  P  be  the  point  (x,  y,  z) 
on  the  surface  given  by  z=f(xt  y),  and  let  APE,  DPF  be 
sections  made  by  planes  through  P  parallel  to  the  planes 
YOZ,  ZOX  respectively  (Fig.  48). 
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For  points  on  the  curve  DPF,  y  is  constant.  Hence  'bzj'dx 
or  df/cfcb  is  the  gradient  at  P  of  the  curve  DPF.  Similarly 

'dz/'dy  is  the  gradient  at  P  of  the  curve  APB. 
If  the  equation  of  the 

surface  is  u  =  0,  where  u  is 
the  function  F(x,  y,  0),  the 
equation  u  =  0  defines  z  as 
a  function  of  two  inde- 

pendent variables  x  and  y. 
Along  the  curve  DPF,  y  is 
constant.  Hence  along  that 
curve  the  total  ̂ -derivative 
of  u  or  F(xy  y,  z)  must  be 
zero,  u  being  for  that  curve 
a  function  of  x  and  z  which 
is  always  zero.  Therefore, 
as  in  §  90,  ex.  1,  2, 

N 

FIG.  48. 

I 

30  'dx 
A       30 —  II      QVl       _  -     __ 

*~ 

'dx    30 

and  30/3#  is  the  gradient  at  P  of  the  curve  DPF. 

Similarly,  the  gradient  at  P  of  the  curve  APB  is 

30     _dF_  fdF 

'dy         dyl  'dz 

u 
These  expressions  reduce  to  those  first  given  if  we  put 
=f(x,  y)  —  z.     (Compare  §  90,  ex.  7.) 

Tangent  Plane.  In  Fig.  49  let  APP^  BPPl  be  sections 
of  the  surface  by  planes  parallel  to  YOZ,  ZOX  respectively. 
Let  P  be  the  point  (x,  y,  0),  MMl  =  Sx)  MM2-8y,  Ms  the 
point  (x  +  Sx,  y  +  Sy,  0)  and  P3  the  point  on  the  surface 
(x+Sx,  y  +  Sy,  z+Sz).  Let  PTlt  PT2  be  the  tangents  at 
P  to  BPPlt  APP2,  Tl  lying  on  M^  produced  and  T2  on 
M2P2  produced ;  PmlmBm2  is  a  rectangle  parallel  and  con  ̂  
gruent  to  MM^M^M^ ;  P^P^  P2^3  are  ̂ ne  curves  in  which 
the  planes  M^^  M2m^  cut  the  surface,  and  T^T^  T2TS  the 
straight  lines  in  which  the  same  planes  cut  the  plane 
through 
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Since  the  gradient  at  P  of  the  curve  BPPl  is  'dz/'dx  and 
of  the  curve  APP2  is  'dz/dy  we  have 

Also  the  geometry  of  the  figure  shows  that •(2) 

so  that 

But 

is  the  principal  part  of  Sz  (§  90,  c) ;  therefore,  when  Pm1} 
Pm2  represent  Sx,  Sy  the  line 
m3T3  represents  the  principal 

part  of  Sz. 
Again,  if  the  plane  PMM3P3 

cut  the  surface  in  the  curve  PP3 
the  gradient  at  P  of  PP3  is  the 
limit  of  Sz/MM3  or  Sz/Pm3.  But 
by  the  principles  of  infinitesimals 

—  the  limit  of  Sz/Pm3  is  the  same 
as  the  limit  of  m3T3/Pm3,  since 
m3T3  is  the  principal  part  of  Sz. 
Hence  the  gradient  at  P  of  PP3 
is  m37yPm3  and  therefore  PT3 
is  the  tangent  at  P  to  the  arc PP3. 

The  plane  PT^T^  is  completely 
determined  by  the  two  lines  PTV  PT2,  that  is,  by  the  point 

(x,  y,  z)  and  the  derivatives  dzfdx,  'dz/'dy.  By  proper choice  of  the  independent  increments  Sx,  Sy  we  could  get 
any  point  Q  on  the  surface  near  P  and  the  tangent  to  the 

•arc  PQ  would  lie  in  the  plane  PT^TZ.  This  plane  is  therefore 
called  the  tangent  plane  to  the  surface  at  P,  and  the  line 
through  P  perpendicular  to  the  tangent  plane  is  called  the 
normal  to  the  surface  at  P. 

To  find  the  equation  01  the  tangent  plane  suppose  T3  to 
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be  any  point  on  it  and  let  its  coordinates  be  (X,  F,  Z)  those 
of  P  being  (x,  y,  z)  ;  then 

and  therefore  by  (2) 
1^n>  ?\v   (3) 

which  is  the  equation  of  the  tangent  plane  at  the  point 
(x,  y,  z)  on  the  surface,  X,  F,  Z  being  the  current  coordinates 
of  any  point  on  the  plane. 

When  the  equation  of  the  surface  is  F(x,  y,  z)  =  0  we  get 

by  substituting  the  values  of  cte/cfce,  'dz/'dy  from  (1)  and  (!') 

f 

The  direction  cosines  of  the  normal  are  (89o>  (vi))  pro- 
portional to  the  coefficients  of  the  current  coordinates 

Xy  F,  Z  and  therefore  the  equations  of  the  normal  are 

or  (Z-,)=(F-,)        -(*-.)       ..........  .(4') 

Ex.  1  .  *  The    equation    ̂ (tf,  y,  z)  =  x1  +  y*  +  z2  -  a2  =  0    represents    a sphere  of  radius  a. 

Hence  the  tangent  plane  at  (#,  y,  z)  is 

(X  -  ar)2*  +  (  F-  y)2y  +  (Z-  z)Zz  =  0, 
or or  xX+yY+zZ^++za, 

since  (j?,  y,  2)  is  on  the  sphere.     If  we  take  x,  y,  z  as  current  coordi 
nates  and  (#!,  #1}  ̂ )  as  the  point  of  contact,  the  equation  is 

The  equations  of  the  normal  are 

(Z-.r)/2^=(F-y)/2y-(^-^)/20,    or 
With  (x,  y,  z)  as  current  coordinates  the  equations  are 

The  normal  clearly  passes  through  the  origin  which  is  the  centre  of 
the  sphere. 
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Ex.  2.  The  equation  ax2  4-  by1 + cz2  —  1  =  0  represents  a  surface  called 
a  central  conicoid  (a  plane  section  is  in  general  a  central  conic).  Find 
the  equations  of  the  tangent  plane  and  the  normal  at  (#15  y-^  ̂ ). 

Ex.  3.  The  equation  by2  +  cz2  —  %x  =  0  represents  a  non-central 
conicoid.  Find  the  equations  of  the  tangent  plane  and  the  normal 
at  (a?!,  ylt  zj. 

Ex.  4.  The  equation  ax2  +  by2  +  cz2  =  0,  where  a,  £>,  c  are  not  all  of 
the  same  sign,  represents  a  cone  with  its  vertex  at  the  origin.  Find 
the  equations  of  the  tangent  plane  and  the  normal  at  (x^  yl5  z^. 

If  F(x,  y,  z)  =  ax2+by2  +  cz2,  the  derivatives  'dFj'dx,  'dF/'dy,  'dF/'dz  are all  zero  when  x—y=z=Q.  Every  tangent  plane  to  the  cone  goes 
through  the  origin,  and  there  is  no  definite  normal  at  the  origin  ;  the 
equations  of  the  tangent  plane  and  normal  are  illusory  if  formed  for 
the  origin.  At  special  points  on  a  surface  it  may  happen  that  the 
three  partial  derivatives  are  all  zero  ;  in  that  case  there  is  no  definite 
tangent  plane  or  normal  at  the  point.  Such  points  are  usually  called 
conical  points,  the  vertex  of  a  cone  being  the  simplest  case. 

§  92.  Rate  of  Variation  in  a  given  Direction.  It  is  often 
necessary  to  find  the  rate  at  which  a  function  of  the 
coordinates  of  a  point  varies  in  a  given  direction.  Thus 
at  a  point  in  a  cooling  solid  the  rate  of  diminution  of  tem- 

perature will  usually  be  different  along  different  lines 
issuing  from  the  point. 

(i)  Let  it  be  a  function  f(x,  y)  of 
two  variables,  and  let  up,  UQ  denote 

*f         the  values  of  u  at  P(x,  y\  and  at 

'Q  Q(x + fa,  y  +  Sy)  respectively,  where T 
S 

>  =  PS=Sy    (Fig.   50). Then 

=f(x  +  fa, 

The  average  rate  of  increase  of  u  in  the  direction  PQ  is 
which  may  be  written 

uQ  —  Uji   RQ 

As  in  §  89a  (iii)  let  the  direction  PQ  be  distinguished 

from  that  of  PQ',  and  let  PQ  make  with  OX  the  angle 
(see  note  at  end  of  this  article)  ;  then 

PR/PQ  =  cos  0,     RQ/PQ  =  sin 
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Exactly  as  in  §  90  it  may  be  seen  that  the  limits  for* 

=  0  of  (Ufi  —  uP)/PR  and  (uq  —  ua)/RQ  are  'du/'dx  and 
'du/'dy  respectively.  If  the  element  PQ  be  denoted  by  Ss (where  s  may  represent  the  length  of  a  line,  straight  or 
curved,  measured  from  some  point  up  to  P)  then  the 

average  rate  of  increase  of  u  is  (u*q—uP)/88  or  8uP/Ss  and 
the  rate  of  increase  of  u  in  the  direction  PQ  is  then 

'du     'du  fin  . 
d>  +  ̂ sm  d>  ....................  (1) 

9s      ̂ x  ?>y 

If  the  rate  of  increase  of  u  in  the  direction  PT  perpen- 

dicular to  PQ  is  denoted  by  'du/'ds',  PT  making  the  angle 
7T/2  with  OX 

'du         du  .  'du  , (2) 

(ii)  If  u  be  a  function  /(#,  y,  z)  of  three  variables  the 

rate  of  increase  'du/'ds  in  the  direction  PQ  may  be  proved in  exactly  the  same  way  to  be 

'du     -.'du        3i6        'du 

where  (I,  m,  n)  are  the  direction  cosines  of  PQ. 

If  (1)  and  (2)  be  solved  for  'du/'dx,  'du/'dy  we  get 
3i6     'du  'du  .  ,-,. -  =  -cost--,Sin<l>;  .......................  (1) 

'du 

=  ;5-  sin  ̂ >  +^-;Cos  0 3s 

Equations  (1),  (2),  (3)  may  be  obtained  at  once  from  the  equations 

of  §  90  by  taking  t  equal  to  s  or  s'.  We  have  used  the  notation  'dul'ds instead  of  du/ds  since  we  wish  to  find  the  rate  of  variation  of  u  in  two 
(or  three)  independent  directions.  In  this  and  similar  cases  the 
meaning  of  the  symbols  must  be  constantly  attended  to. 

For  examples  on  the  use  of  these  formulae,  see  the  set  at  the  end  of 
the  chapter  (examples  9-13). 

Note  on  Angles.  —  In  earlier  chapters  it  has  been  sufficient  to  consider 
the  positive  or  negative  acute  angle  that  a  line  lying  in  the  plane  XOY 
makes  with  OX.  In  discussions  like  that  of  case  (i),  however,  where 
only  half  -lines  issuing  from  a  point  are  dealt  with,  that  restriction 
must  be  given  up,  and  the  angle  may,  like  the  angle  0  of  the  polar 
coordinates,  vary  from  0  to  STT  or  from  —  TT  to  TT.  Thus  PQ'  makes 
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the  angle  (<£  +  TT)  or  (<£-TT)  with  OX.  "With  this  new  convention cos  6  may  have  a  negative  value.  For  lines  in  space  the  determination 
specified  in  §  89a  (iii)  is  always  sufficient. 

§  93.  Derivatives  of  Higher  Orders.  The  derivatives  of 
u=f(x,  y)  will  usually  be  functions  of  x  and  y,  and  will 
therefore  have  derivatives.  Hence  we  have  2nd,  3rd,  .  .  . 
partial  derivatives.  The  notation  for  these  is  similar  to 
that  for  functions  of  one  variable  : 

3%  3s  M, 

The  brackets  and  the  letters  within  them  are  usually 
omitted  and  the  last  pair  are  written  fxx,  fyyy. 

Again,  the  ̂ /-derivative  of  du/dx  is 
3% 

or 'dy  ?>x        'dy'dx 

while  the  ̂ -derivative  of  'du/'dy  is 
3_  _ 

3#  'dy 

When  all  the  functions  in  question  are  continuous  these 
two  derivatives  are  equal  (see  below).     For  example,  let 

yn\  then 

, 
--  =  naxmyn ~ l ;  ̂ -^-  =  mnax™ 

dy 

so  that 

when  u  =  axmyn.  In  other  words  the  order  of  differentiating 
is  indifferent ;  the  operations  of  differentiating  as  to  x  and 
as  to  y  are  commutative. 

Ex.    Verify  that  these  two  derivatives  are  equal  when 
*J 

/  *\                           •                            •                        /  •  *\                       i                            / • • • \ 
ill     n  ——  nt*  Qi  fi  v/  -1.  /i/cnri'yi*        fill    'i/  —  w  \  c\cf  i/  *        i  ill  i     •?/  — •• 
III      w  —  *!/  bill   c/  ~t"  //  bill  tJU    •          \  1 1  I      tb   &  lUti    c/,          llll)      tv   ^    /  %J          i/  *  \       /  sj  */     '  \         X 

iC 
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mi The  symbol 

means  that  u  is  to  be  differentiated  first  three  times  as  to  y 
then  twice  as  to  x  ;  while  the  symbol 

means  that  u  is  to  be  differentiated  first  twice  as  to  x  then 
thrice  as  to  y. 

Similar   meanings   and    notations   hold   for   the   higher 
derivatives  of  a  function  of  any  number  of  variables. 

A  sound  proof  of  the  commutative  property  is  somewhat  difficult. 
Consider  the  expression 

f(x  +  h,y  +  k)  -/(#,  y  +  k)  -f(x  +  h,  y)  +/(#,  y} 

By  the  definition  of  a  derivative 

h=0 

** 

Hence  the  limit  of  (1)  for  A=0  is 

l#*,  y  +  *)-/«(*»  y)V*  ............................  (2) 

Again  the  limit  of  (2)  for  Jc  =  Q  is  the  y-derivative  of  fx(x,  y\  that 
is  fyx. 

By  interchanging  the  second  and  third  terms  in  the  numerator  of 
(1)  and  finding  first  the  limit  for  &=0  and  then  the  limit  for  A=0  we 
should  get  fxy.  Thus  fyx  and  fxy  are  both  derived  as  limits  from  the 
same  expression.  But  the  assumption  that  the  limits  will  be  the 
same  in  whatever  order  we  make  h  and  k  tend  to  zero  is  equivalent  to 
assuming  the  theorem  to  be  proved.  A  simple  example  will  show 
that  the  order  of  taking  the  limits  is  not  necessarily  indifferent. 

Take  the  function 

Of  course  neither  in  this  expression  nor  in  (1)  must  h  or  k  become 
zero  ;  zero  is  the  limit  not  a  value  of  h  and  £.  ' 
Assuming  all  the  functions  in  question  to  be  continuous  we  may 

proceed  as  follows.  Let,  for  brevity, 
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then  the  numerator  of  (1)  is  F(x  +  k)  -  F(x).    By  the  Mean  Value 
Theorem       F(x+h)- 

or,  returning  to  the  function  /(#,  y\ 

F(x+h}-  F(x)  =  h{fx(x  +  0  A  y  +  k}  -fx(x  +  0A  y}  }, 
so  that  (1)  becomes 

Now  apply  the  Mean  Value  Theorem  to  the  function  of  #  in  (2')  ; 

fx(x+  BJi,  y+k)  -/*(#+  0A  y)=kfyx(x+  6>A  .y  +  02&),    0<02<1, 
and  (1)  becomes  /*&+&&  y  +  0<$)  ...............................  (3) 

Again,  taking  <j>(y)=f(x+h,  y)-f(x,  y}  instead  of  F(x\  the 
numerator  of  (1)  is  (j>(y  +  k)  —  <f>(y).  Apply  the  Mean  Value  Theorem 
and  proceed  as  before.  We  thus  find  that  (1)  is  equal  to 

,  ......  ,  .........  (4) 

The  two  expressions  (3),  (4)  are  therefore  equal.  Since  the  functions 
are  continuous  the  limits  are  therefore  equal  in  whatever  way  h  and  k 
tend  to  zero,  that  is  fyx= 

The  commutative*  property  may  be  easily  extended  by 
induction  to  higher  derivatives,  the  functions  being  sup- 

posed all  continuous.  Thus,  since 
'dy'dx 

'dxdy'dx     'dx'dyXdx       d£/  p#  \dx 
In  general, 

as  may  be  readily  shown  by  induction. 

Ex.  1.     In  Fig.  48,  §  91,  let  Fbe  the  volume  bounded  by  the  surface 
APDC,  the  coordinate  planes  and  the  planes  J/P,  LP. 

Prove  (i)  |J=area  MNP  A  ; 

(ii)  |--=areaZ^PZ>;          - oy  oxoy 

If  V  be  taken  as  the  function  /(#,  «/),  we  get  a  geometrical  proof 
of  the  commutative  property. 
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Ex.  2.     If  u  =  log  r  where  r2  =  (x  -  a)2  +  (y  -  6)2  and  (x  -  a),  (y  -  b)  are 
not  simultaneously  zero,  show  that 

c)2u 

»/         \ 
-  =  2(#  -  a)  ;  also ox 

'dr  r     x-a 
r 

"du    dlogr    'dr     1    x  —  a    x  —  a _  -  O          .    ___   —  _    .    __^^  _  _    « 

'dx       dr       'dx    r       r          r2 

Similarly, 

and  therefore  by  addition,  since  r2=(x  —  a)2  +  (y  —  6)2,  the  result  follows. 

Ex.  3.     If  u  =  l/r  where  rz  =  (x-af  +  (y-b)2  +  (z-cf  and  (a  -a),' 
(y  —  b),  (z  —  c)  are  not  simultaneously  zero,  prove  that 

A  charge  m  of  electricity  concentrated  at  (a,  6,  c)  has  at  (#,  y,  2)  the 
potential  m/r.  The  potential  F  therefore  satisfies  the  equation  last 

written,  usually  called  Laplace's  Equation. 
If  charges  m^  m2,  ...  are  concentrated  at  (a^  b^  Cj),  (a2,  &2,  c2),  ...  the 

potential  Fat  (x,  y,  z)  of  these  charges  is  2  (m/r)  where 

so  that  the  potential  at  any  point  (x,  y,  z)  not  coincident  with  any  of 
the  masses  also  satisfies  the  same  equation. 

Ex.  4.     If  u  =/(#,  y)  and  x,  y  are  functions  of  t  find 

mr  du    *du  dx  ,  'du  dy  /.x have  —  -=—  -         --  TI  ..............................  (i) 

-r 

dt    
dx  

c 

dx  d  f^du\  ,'&u  d2y    dy^   d  f?)u\ 

di  dt\dx)     *dy  ~dfi    ~dt  di\!dy)' 
Since  'duj'dx  is  a  function  of  x  and  y,  its  ̂ -derivative  is  found  in  the 

same  way  as  du/dt  in  (i)  ;  that  is,  write  'du/'dx  for  u  in  (i), 
df'du\_'d'iu  dx      c)2M    dy 

dt\dx)     d#2  dt    'dy'dx  dt 

^\o  ^2 

Substituting  these  values  and  noting  that  ~-~-=~-  .-,  we  find oyox    oxoy 

jdu  d^x    'du  d%f,'&u(dx\t dt2+'dx2\dt) 
dx_  dy 
~     ~ H 
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Ex.  5.     If  f(x,  y)=0,  show  that  d^yjdx*  is  given  by  the  equation 

±s 
+**- This  may  be  obtained  directly  ;  or  in  Ex.  4  put  t  =  x  and  note  that 

u=f(x,  #)=0  for  every  value  of  x  and  y,  and  therefore  du/dt  and 
d2u/dt2  are  both  zero,  while  dx/dt  =  l,  d2xJdtz—Q. 

Deduce  in  this  way  the  results  of  examples  26,  27, 28  of  ExercisesXIV. 

Ex.  6.    If  u  —f(y  +  ax\  prove 'du     /..s 

Ex.  7.     If  ̂  =f(x  +  at)  +  <J>(x-  at\  prove 

Verify  for  ̂   =  A  cos  (^7  +  a^)  +  B  sin  (^  -  at}. 

§  94.  Complete  Differentials.     If  u  is  a  function  of  the  two 
independent  variables  x  and  37  the  complete  differential  of 
u  is  (§  9°) 

(1) 

Now  the  question  arises;  given  two  functions  0(&,  y\ 
\fs(x,  y)  of  two  independent  variables  x,  y,  is  there  always 
another  function  u  which  has 

(2) 
as  its  differential  ? 

If  x  and  y  are  not  independent,  say  if  y  is  a  function  f(x) 

of  x,  we  may  replace  y  by  f(x)  and  cfo/  by  f'(x)  dx.  The expression  (2)  will  thus  become  of  the  form  F(x)  dx  and  in 
this  case  (§  82)  there  is  a  function  which  has  F(x)  as  its 
^-derivative  or  F(x)  dx  as  its  differential. 

But  if  x  and  y  are  independent  the  case  is  altered.  For 
suppose  the  expression  (2)  to  be  the  complete  differential  of 
a  function  u]  then  the  expressions  (1)  and  (2)  must  be 
equal  for  all  values  of  dx  and  dy.  Since  dx  and  dy  are 
independent  we  may  put  dy  =  0,  dx+0  and  we  get 

and  in  the  same  way 
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for  all  values  of  x  and  y.     Therefore 
/g\ 

'dy     'dy'dx     'dxby     'dx 
Hence  the  expression  (2)  cannot  be  a  complete  differential 

unless  90/d2/  =  'dty/'dx. Condition  (3)  is  therefore  a  necessary  condition  ;  it  is  also 
a  sufficient  condition,  but  for  .the  proof  of  sufficiency  we 
refer  to  treatises  on  Differential  Equations. 

If  P,  Q,  R  are  functions  of  three  independent  variables 
xt  y,  z  the  necessary  and  sufficient  conditions  that 

Pdx  +  Qdy  -\-Rdz 
should  be  a  complete  differential,  that  is,  that  there  should 
be  a  function  u  of  x,  y,  z  such  that 

du  —-  Pdx  •+-  Qdy  +  Rdz 

are  that 
9flj 

The  student  may  show  that  these  conditions  are  necessary. 

Ex.  1  .     (3#2  -  4xy)dx  +  (3j/2  -  2oF)dy  is  a  complete  differential  for 

and 

Ex.  2.     If 
show  that 
where 

=  Pdx  +  $ofo/  + 

u  =  x^yz  +  y^zx  4-  z*xy. 

§  95.  Application  to  Mechanics.  Let 
the  plane  curve  APQ  be  the  path  of  a 
particle  which  is  acted  on  by  a  force 
F,  making  an  angle  e  with  the  tangent 
PT,  F  and  e  being  functions  of  the 
coordinates  x,  y  of  P.  Let  W  be  the 
work  done  from  the  position  A  (a,  b) 
up  to  the  position  P,  and  let  the  arc 
AP  be  denoted  by  s.     To  the  first  order  of  infinitesimals 
the  work  done  over  the  distance  ds  is 

FIG.  51. 

G.C. 

dW=Fcoseds. 
P 
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Let  PT,  PF  make  the  angles  </>,  i/r  with  the  #-axis  ;  then 
cos  0  =  dx/ds,  sin  <£  =  dy/ds,  and  since  cos  e  =  cos  (<£  — 

dx  t  -r,  .     ,  dy -- -T---  -, 
ds              Y  ds  ds         ds 

where    X  =  Fcos\[s,    Y=Fsm\fs,    the  components    of    F 
parallel  to  the  axes.     We  thus  get 

Suppose  now  that  Xdx  +  Ydy  is  the  complete  diffe/ential 

of  a  single-valued  function  f(x,  y).  Therefore  X  =  'df/'dx 
and  Y=  df/'dy,  so  that 

oy  ds/         ds 
Hence,  as  the  particle  moves  along  the  curve,  the  rate 
dW/ds  at  which  W  changes  is  equal  to  the  rate  df/ds  at 
which  the  function  f(x,  y)  changes,  and  any  change  d  W  in 
W  is  equal  to  the  corresponding  change  df  in  the  function 
f(x,  y).  As  the  particle  moves  from  A  to  P  the  work  done 
is  therefore  equal  to  the  change  in  f(x,  y),  so  that 

W=f(x,y)-f(a,b)  ......................  (2) 
If  W  is  the  work  from  A  to  P  when  the  particle  moves 

along  a  different  path  of  length  s',  we  have  as  before 

so  that  W  =  f(x9  y)-f(a,b)=W. 
In  this  case,  therefore,  the  work  done  by  the  force  is 

independent  of  the  path  between  A  and  P,  and,  when  A  is 
fixed  and  P  variable,  is  a  function  simply  of  the  coordinates 
of  P.  When  P  coincides  with  A,  that  is,  when  the  path 
is  a  closed  curve,  the  work  done  is  zero  (see  Ex.  2  for  an 
illustration  in  which  /(•#,  y)  is  multiple-valued). 

Suppose  on  the  other  hand  that  Xdx  +  Ydy  is  not  a 
complete  differential.  In  this  case  the  coefficient  of  ds  in 
(1)  is  not  the  total  derivative  of  a  function  f(x,  y).  To  find 
the  work  from  A  to  P  we  must  express  y  in  terms  of  x  by 
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using  the  equation  of  the  path.     Equation  (1)  will  then 
become 

and  the  coefficient  of  dx  in  (!')  is  a  function  of  x  alone. 
For  different  paths  the  function  X+Y(dy/dx)  will  have 
different  values,  and  therefore  W  will  depend  not  merely  on 
the  coordinates  of  P  but  also  on  the  path  from  A  to  P. 
(See  Ex.  3). 

If  APQ  is  not  a  plane  curve  it  is  easy  to  prove  by  the 
same  method  as  that  of  finding  dx/ds,  dy/ds  for  a  plane 
curve  (§  62)  that  the  direction  cosines  of  the  tangent  PT 

are  (§  89a,  iii.  (3')) 
dx/ds,  dy/ds,  dz/ds. 

If  I,  m,  n  are  the  direction  cosines  of  PF 

j       ,      dy  ,     dz cos  e  =  l-^r  +  m-^  +  n-j- ds        as       as 

and  dW=x+Y-+Zds  .................  (3) \    ds         ds        dsJ 

where  X  =  IF,  Y=mF,  Z=nF  are  the  components  of,  F 
parallel  to  the  axes. 

Exactly  as  before  we  see  that  if  Xdx  +  Ydy  +  Zdz  is  the 
complete  differential  of  a  single-valued  function  f(x,  y,  z) 

dW=df  and  W=f(x,  y,  z)-f(a,  b,  c) 

where  A  is  the  point  (a,  b,  c).  In  this  case  W  is  independ- 
ent of  the  particular  path  from  A  to  P. 

If  however  Xdx+  Ydy  +  Zdz  is  not  a  complete  differential 
it  will  be  necessary  to  use  the  equations  of  the  path  and  W 
will  depend  not  merely  on  the  coordinates  of  A  and  P  but 
also  on  the  particular  path  from  A  to  P. 
When  Xdx+  Ydy  +  Zdz  is  a  complete  differential  the 

force  F  is  said  to  be  conservative  ;  the  components  are 
the  derivatives  of  a  force  function  u  or  a  potential  —  V, 

=        or  Z=~    dW=du  or  dW=-dV. 



228      AN  ELEMENTARY  TREATISE  ON  THE  CALCULUS. 

Ex.  1.     If  F=m/r2  where  r2=3?+y2  +  zz  =  OP2,  and  the  direction 
of  F  is  from  0  to  P,  then  F  is  a  conservative  force. 

-F-—  my  mz 
~    Tf          ~      ̂3      >  2     '-      y&      >  ̂-      ̂ 3' 

and  o?  PF=  Xo?^  +  F^?/  +  Zcfe  —  -§  (  xdx  +  ydy  +  zdz  \ 

or  dW=-sdr  =  d(  ---  ),     since    xdx+ydv+zdz=irdr. r{  V     r  J 

Hence  W=  —m/r+  const,  and  if  V=mfr, 
X=  -  3  7/9#,     Y=  -  3  Vfdy,    Z=  - 

The  work  from  position  P  to  position  Q  is 

and  is  independent  of  the  path  between  P  and  Q. 

Ex.  2.     Let  Z=  -#/r2,  Y=xjr\  where  r2=x2+y2. 
In  this  case,  putting  y/x  =  ta,n  6, 

dW=  (xdy  —  i/dx)jrz  =  d  .  tan-^y/a?) 
and  therefore  W=  0  +  constant. 

If  the  point  P  sets  out  from  A  and,  after  describing  a  closed  curve 
within  which  the  origin  lies,  returns  to  A,  the  angle  6  and  therefore 
W  will  increase  by  2?r.  The  work  done  is  not  zero,  although  d  W  is 
a  complete  differential  dO  ;  the  function  0  is  multiple-valued. 

If,  however,  the  path  is  a  closed  curve  within  which  the  origin  does 
not  lie,  the  work  done  over  that  path  will  be  zero. 

Ex.  3.  Let  X—  —y,  Y=x.  In  this  case  xdy  —  ydx  is  not  a  complete 
differential.  Let  A  coincide  with  the  origin  0,  and  let  the  path  be 

the  parabola  y  =  cx*.  Then,  by  (!'), 
d  W=  (  —  ex*  +  x  .  ̂Gx)dx  =  cx^dx  ;      W=  Jc^3  =  \xy. 

If  the  path  is  ?/  =  c^3,  we  find  W=\cx^  =  \xy,  the  work  being 
different  for  different  paths. 

§  96.  Applications  to  Thermodynamics.  The  condition  of 
a  given  mass  of  thermodynamic  substance,  say  unit  mass,  is 
completely  defined  by  three  variables  p,  v,  0  the  intensity  of 
pressure,  the  volume  and  the  absolute  temperature,  p,  v,  0 
are  connected  by  an  equation,  the  characteristic  equation 
of  the  substance,  f(p,  vy  0)  =  0  ;  for  a  perfect  gas  the  equa- 

tion is  pv  =  kO,  k  being  a  constant.  Of  the  three  variables, 
therefore,  only  two  are  independent. 

Since  f(p,  v,  0)  =  0  its  total  differential  is  zero  ;  therefore 

1 

  (1) 

1.4,  -  -1&& 
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If  p  be  constant,  and  vt  0  vary,  then  dp  —  0  and  we  have * 

Forming  in  the  same  way  W/^dp}  *dpfdv  and  multiplying 

,  3v  W  'dp we  get  ^Z'^--^=- 30  3p  ̂  30 

It  must  be  remembered  that  in  all  these  expressions  the 
derivative  of  one  of  the  variables  p,  v,  0  with  respect  to  a 
second  is  formed  on  the  supposition  that  the  third  variable 
is  constant. 

If  a  small  quantity  SQ  of  heat  be  communicated  to  the 
substance  and  change  p,  v,  0  by  Sp,  Sv,  SO  respectively, 
then  SQ  can  be  expressed  in  terms  of  any  two  of  these 
increments.  To  the  first  order  of  infinitesimals  we  may 
write,  with  0,  v  as  the  variables, 

dQ  =  MdQ  +  Ndv  .......................  (4) 
It  is  to  be  most  carefully  noticed  that  d@,  dv  are  any  arbitrary 

small  changes  of  temperature  and  volume.  The  three  differentials 
dO,  dv,  dp  are  subject  merely  to  the  restriction  expressed  in  equation 
(1),  and  any  two  of  them  may  have  values  chosen  at  will. • 

The  specific  heat  at  constant  volume  (Kv)  is  the  limit  for 
—  0  of  SQ/SO  on  the  supposition  that  the  volume  does  not 

change  when  0  increases  by  SO,  that  is,  on  the  supposition 
that  dv  =  Q.  But  if  c£'6>  =  0  equation  (4)  gives  dQ/dO  =  M  so 
that  KV  =  M. 

The  specific  heat  at  constant  pressure  (Kp)  is  the  limit 
for  SO  =  Q  of  SQ/SO  on  the  supposition  that  p  is  constant, 
that  is,  that  dp  =  0.  To  find  Kp  equation  (4)  must  be  trans- 

formed so  that  0  and  p  shall  be  the  independent  variables. 
Since  v  is  a  function  of  0  and  p  we  have 

'dv     .     'dv 

and  (4)  becomes       dQ  =  M  +  N       dO  +  N-  dp. \  ov/  op 
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•Therefore  Kn=M+N^=Kv+N^   (6) 

The  elasticity  of  the  substance  is  —vdp/dv  (§  70).  Let 
Ee  denote  the  elasticity  when  the  substance  expands  at 
constant  temperature; 

therefore.  E6=  —  v~ ov 

where  'dp/'dv  is  taken  subject  to  the  condition  that  9  is constant. 
Let  E$  denote  the  elasticity  when  the  substance  expands 

adiabatically,  that  is,  so  that  heat  neither  enters  nor  escapes. 
We  must  distinguish  the  ̂ -derivative  of  p  in  the  two  cases. 
For  the  present  denote  the  ̂ -derivative  of  p  for  adiabatic 

expansion  by  (dp/dv)^  and  let  dp/'dv  retain  its  previous meaning.  Therefore, 
/7x (7) 

To  find  (dpfdv\  we  must  transform  (4)  so  that  p  and  v 
shall  be  independent  variables.     Now 

W,       30 

and  therefore         dQ  =  M  ̂  dp  +  (  M^  +  N}dv  ............  (8) 
9p          \    30 

(dp/dv)^  is  the  value  deduced  from  (8)  on  the  supposition 
that  dQ  =  0.     Therefore 

W, 

by 

'dp  dp  W 

The  numerator  last  written  is  Kp  and  M=KV\  therefore 

"dp      J:r  IT,  , -f-  =  KJKv  by  (2). v       -x 
dp  W 

Hence  ^  =  ̂/  ...............................  (9) 
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For  a  perfect  gas  KPJKV  is  a  constant,  y;    also  for  a 
perfect  gas  pv  =  kO,  and  therefore 

dp/'dv  =  —p/v. 
Hence  for  adiabatic  expansion,  by  (7)  and  (9), 

that  is,  pvy  =  constant. 

The  results  (1)...(3),  (5)...  (9),  are  merely  formal  con- 
sequences of  the  definitions  and  the  two  equations 

§  97.  Four  Thermodynamic  Eolations.  dQ  in  the  previous 
article  is  not  a  complete  differential  ;  we  cannot  express  Q 
in  the  form  F(9,  v)  —  F(90,  VQ)  without  assuming  some  further 
relation  between  0  and  v.  Physically,  Q  is  not  a  function 
of  0  and  v\  heat  may  be  given  to  the  substance  and  0, 
v  go  through  a  range  of  values  and  return  to  their  initial 
values,  while  the  heat  absorbed  in  the  process  is  not  equal 
to  that  given  out.  Compare  §  95  when  dW  is  a  complete 
differential  ;  when  x,  y  return  to  their  initial  values  a,  b, 
W  =  0,  that  is,  the  work  done  by  the  force  F  is  equal  to 
that  done  against  it. 

It  is  shown  in  treatises  on  thermodynamics  that  if  we 
put  dQ  =  Od</>  where  </>  is  the  entropy  we  can  replace  (4)  by 

dE=Od^>-pdv  ........................  (10) 

E  is  the  intrinsic  energy  and  pdv  the  work  done  in  the 
infinitesimal  expansion  dv.  dE  is  a  complete  differential  ; 
that  is,  E  is  a  function  of  the  variables  that  define  the  state 
of  the  substance. 

There  are  now  four  variables  p,  v,  0,  0,  but  of  these  only 
two  are  independent.  If  v,  0  are  chosen  as  independent 
the  symbol  cjp/30  is  now  not  sufficiently  clear;  it  means  the 
^-derivative  of  p  when  v  is  constant.  But  if  <f>,  6  were  the 

independent  variables,  'dp/W  would  mean  the  0-  derivative 
when  <£  is  constant.  To  avoid  confusion  we  will,  when 
there  is  doubt,  enclose  the  derivative  in  a  bracket  and  affix 
the  independent  variable  which  is  supposed  to  be  constant. 
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Thus  (dp/W)v  means  that  v,  6  are  the  independent  variables, 

and  that  v  is  constant  in  forming  'dp/W. 
Since  dE  is  a  complete  differential  we  have  (§94  (3)) 

from  equation  (10) 

or 
Let  now  v,  6  be  the  independent  variables,  then  since 

(10)  becomes 

.  3 

and  therefore         - 

or or 3V  -03V   \*+ ""  B^v^3w    30 

thatls' 

since  the  two  derivatives  of  second  order  are  equal. 
In  the  same  way,  by  taking  p,  $  as  independent  variables, 

,  fdv\ 
we  get  I^T]  = 

\d(j>/p 

and  by  taking  p,  0  as  independent  variables 

© 

\dO/p 

Equations  (I7),  (2X),  (3X),  (4r)  are  those  numbered  (1),  (2), 
(3),  (4)  in  Maxwell's  Heat,  p.  169. In  effecting  the  differentiations  it  must  be  borne  in  mind 
that  for  example  when  v,  0  are  the  independent  variables 

Wl'dv  is  zero.  The  careful  working  out  of  these  four  rela- 
tions will  give  much  information  as  to  the  meaning  of 

partial  derivatives  ;  it  is  necessary  at  each  step  to  attend 
to  the  meaning  of  the  operations  rather  than  to  the  notation. 
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Ex.  1.  d<f>=dQ/6=(Md0+jydv)/B. 
For  a  perfect  gas  Kp,  Kv  are  constant,  and  by  §  96,  KV  =  M  and 

Kp-Kv  =  N(dvl'd6)p.  But  for  a  perfect  gas  (dvlW)v  =  vl6.  Hence 
Nld=(Kp-Kv}lv  and 

p-K=d  .  log 

as  may  be  tested  by  differentiation.     Therefore 

<£  =  log  (QKvvKp~Kv)  +  const. 
For  adiabatic  expansion  dQ  =  0  and  d<f>=Q  ;  we  therefore  have 

QKVVKP-KV  —  const.     or    pv  v  =  const.  , 
as  in  §  96.  , 

Ex.  2.     The  gain  in  energy  dE  due  to  a  supply  dQ  of  heat  is  given 

by  dE=  dQ  -  pdv  =  (N-  p)dv  +  MdO. 

Show  that  if  dE  is  a  complete  differential,  dQ  is  not. 
Since  dE  is  a  complete  differential,  we  have 

ay 
dv 

that  is,  'dN/'dO,  'dMfdv  are  not  equal  and  the  result  follows. 
Ex.  3.     Prove  that 

"dp 

_, 

~^"
   

  

= 

Ex.  4.     Show  that  equation  (10)  may  be  written  in  the  forms 

dE=  d(0$)  -  <fxt0  -pdv  ;  dE=  -  d(pv)  +  6d<t>  +  vdp  ; 

dE=d(0$)  -  d(pv}  -  <j>dO  +  vdp, 

and  then  prove  (!'),  (2'),  (3'). 
Ex.  5.     It  is  shown  in  works  on  Thermodynamics   that  d<f>  is  a 

complete  differential.     Prove  that 

§  98.  Change  of  Variable.  DiflFerentials  of  Higher  Orders. 
When  the  independent  variable  x  of  a  function  y  is  changed 
by  a  substitution,  x  =  </>(t)  say,  to  a  new  independent 
variable  t  the  ̂ -derivatives  of  y,  Dxy,  D«y...,  must  be 
expressed  in  terms  of  the  ̂ -derivatives  of  y,  y,  y  —  We 
have  found  (§  68,  ex.  2)  that 

...............  (1) 
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and  it  is  easy  to  find  D%y,  D*y...  when  these  are  required. 
Since  <£(£)  is  supposed  to  be  given,  the  values  of  x,  x...,  can 
be  calculated,  and  the  substitution  of  <j)(t)  for  x  and  the 

above  values  for  Dy,  D2y  changes  any  expression  containing 
x,  y,  Dy,  D2y...  into  one  containing  t,  y,  y,  y...  . 

If  we  wish  to  make  y  the  independent  variable  and  x  the 
dependent,  then 

yX 

~    y  Dyx    'y~     (D~xf  ....... and  so  on. 

*Again  if  we  change  from  rectangular  to  polar  coordinates, 
an  equation  f(x,  2/)  =  0  becomes  an  equation  between  r  and 

0  and  we  may  express  Dxy,  D%y...,  in  terms  of  DQr,  D*rt 
...  0  being  the  independent  variable.  For  x  =  r  cos  0, 
y  =  r  sin  0  and  we  can  differentiate  the  products  T  cos  6, 
r  sin  0  with  respect  to  0,  r  being  a  function  of  0, 

dx  ~  .    ~ 
-^  —  cos  0-jn  —  rsmv dO  dO  ,„. 

.     ..dr 

with  similar  expressions  for  dy/dO,  dzy/d02.  In  equations 
(1)  we  may  suppose  t  replaced  by  6,  since  of  course  t  may 
represent  any  variable;  x  would  be  replaced  by  dx/dO, 
x  by  d2x/d02  and  so  on.  We  should  thus  express  Dy,  D2y 
in  terms  of  r,  0,  dr/dO,  d2r/d02. 

In  geometry  and  mechanics  differentials  of  order  higher 
than  the  first  are  often  required.  When  x  is  the  inde- 

pendent variable,  dy  =  y'dx  (§  60).  The  second  differential 
of  y  is  denoted  by  d?y  and  is  defined  by  the  equation 

and  in  general  the  Tith  differential  of  y  is  denoted  by  dny 
and  is  defined  by  the  equation 

dny  =  yWdxn  =  (D?y)dxn 

where  dxn  means  (dx)n. 
If  dx  is  an  infinitesimal  of  the  first  order  dny  is,  in 

general,  of  the  nth  order. 
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In  the  second  of  equations  (1)  multiply  the  numerator 
and  denominator  of  the  fraction  on  the  right  by  dt3.  Since 
t  is  the  independent  variable  we  have 

and  therefore     D%y  =  (dx  d2y  —  dy  d2x)/dx*  ..................  (4) 
D%y  is  thus  expressed  as  a  quotient  of  differentials;  the 

independent  variable  for  the  differentials  is  not  x  but  t 
(or  any  other  variable  of  which  x  and  y  are  functipns).  If 
x  is  the  independent  variable,  then  by  definition 

d2x  =  (D*x)dx2  =  Qxdx2  =  0, 
and  similarly  we  see  that  d3x,  d*x,  .  .  .  are  zero.  In  other 
words,  the  differential  of  the  independent  variable  is 
constant. 

From  (4)  we  may  easily  derive  (2).  Take  y  as  the 
independent  variable  ;  then  d2y  =  0,  dx  =  (DyX)dy,  d2x 
=  (DyX)dy2  and  (4)  becomes 

For  more  than  one  independent  variable  the  trans- 
formations are  complicated.  We  will  consider  only  one 

case  that  is  of  great  importance  in  mathematical  physics. 

§  99.  Transformation  of  V2u.  Let  u  be  a  function  of  two 
independent  variables  x,  y,  and  let  x,  y  be  changed  to  polar 
coordinates  r,  0;  we  wish  to  express  uX)  uxx...  in  terms  of 
urt  urr.  ...  Of  course  a  derivative  ur  implies  that  x,  y  have 
been  replaced  in  the  function  u  by  r  cos  0,  r  sin  0. 

du/'dr  is  the  rate  of  variation  of  u  in  the  direction  in 
which  r  increases,  6  being  constant.  In  §92  put  0  =  0, 
s  =  r  and  we  find 

r  in  §  92  is  the  rate  of  variation  of  u  in  the  direction 
7T/2.     Let  (p  —  0  so  that  PT  is  perpendicular  to  OP  and 

Su  Su 

TJ  .      ̂           ,  r 
Hence  -^  =  —  sm#--  +  cos  Q-- r  W 
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The  element  'ds  is  replaced  by  rW  ;  rW  is  the  element 
in  the  direction  perpendicular  to  r  just  as  *dr  is  that  in  the direction  of  r. 

Equations  (1),  (2)  are  so  important  that  we  give  another 
proof  of  them.  By  §  90  (A),  taking  x  and  y  as  functions 
of  r,  0  being  kept  constant,  we  get  by  putting  r  for  t 

'du_'du'dx    'du'dy 
'dr     'dy  'dr 

Here  'duj'dx  means  (du/'dx)y  and  'dx/'dr  means  (daj/3r)i  in the  notation  of  §  97.     Also 

fdx\      'd(rcosO)  fdy\ 
\^r]  =-^  --  =  -2 \dr/  dr 0 

and  the  substitution  of  these  values  in  (!')  gives  (1). 
In  the  same  way 

_  /9'\ 
~  .................... 

and 
OU/r  \OU/r 

from  which  equation  (2)  follows. 

Solving  (1)  and  (2)  for  'du/'dx,  'du/dy  we  get 

sin  9  'du r 

'du      .    ̂ u  ,  cos  0 r     W 

rp,         P  ,  .  2 The  function 

is  of  very  frequent  occurrence  in  Physics  and  is  usually 
denoted  by  V2u.  It  is  often  necessary  to  transform  V2u 
so  that  other  variables  shall  be  the  independent  variables. 

First,  let  u  be  a  function  of  the  two  variables  x,  y  so  that 
the  third  term  is  absent,  and  transform  it  so  that  r,  0,  polar 
coordinates,  shall  be  independent  variables. 

Denote  'du/'dx,  'duj'dy  by  ux,  uy  ;  then  we  can  find  32u/3#2 
in  terms  of  r,  6  by  writing  ux  in  place  of  u  in  (3). 

We  must  calculate  'du^/'dr,  dtt^/30.  Now, 
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3  f       n  3w     sin  f 
s*\  /-\       1   v^vykj   \s    ̂ ^  ^,^  -^    j 

3r      3r[          3r        r     30J 

,  sin  0  'du     sin 
3r2       r2     30        r     3r30' 

'd2u       .       'du     sin  0  3%     cos  0 

Hence  from  (3) 
sin  0 . 

=  "    —  ̂   COS  "  - r 

and  when  the  above  values  of  dux/dr,  ttuJW  are  substituted 
we  get,  after  an  easy  reduction, 

2  sin  0  cos  0  3%   •  sin2^ = C°S 

r 

In  a  similar  way  we  find 

sin2  0  'du     2  sin  0  cos  /-\ 

3%  ~  32?i  ,  2  sin  0  cos  0  &u      cos2  0  32it __     (J-lT-)^      AJ     _         I        _       _        I 

2  2  '  "^ 
_       _  _  _ 

3r2  r        '  "drW       r2   "  302 
cos2  0  'du     2  sin  0  cos  0  'du 

r3r  "       30 • 

Adding  (5)  and  (6)  we  get 

transform  V^u  from  a?,  y,  z  to  cylindrical  coordinates 

ic  =  p  cos  0,  2/  =  p  sin  0,  0  =  0. 

Here  z  is  not  changed  ;  we  have  merely  to  write  p,  (/>  for 
r,  0  in  (7),  so  that 

3%     1  3u      1  3% 

Lastly,  transform  to  spherical  polar  coordinates 

x  =  r  sin  0  cos    ,  y  =  r  sin  6  sin  0,  0  =  r  cos 
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The  transformation  may  be  effected  in  two  steps.  First 
transform  to  cylindrical  coordinates  p,  <£,  z  where  p  = 
r  sin  0  ;  this  change  gives  (8).  Next  transform  from  0,  p 

to  r,  6  where  Z  =  rcos0>  p  =  rsin0. 

This  change  gives  by  writing  z  for  x  and  p  for  y  in  (7), 
8% r2  80 

Also  by  (4)  replacing  y  by  p, 
du 

' 

_    .     ~ x    =  sin  u  K  r 
dp  dr        T     06 

Substitute  from  (9)  and  (10)  in  (8)  and  put  p  = 
and  we  get 

du          1       82u 

r2         +22         2  .....  (     } 

It  is  sometimes  useful  to  write  the  first  two  terms  of  (11) 
in  the  equivalent  forms 

__ __ 
r2  dr      8r/        r     8r2 

and  we  may  transform  (11)  to 

since  -         =  r,  etc. 

EXERCISES    XIX. 

1.  If  #=rcos#,  y=rsin^,  show  that 

dx\      fdr\  f  ?)x  \      frdO\ -  " 

The  equation  (i)  is  not  in  conflict  with  the  theorem  that  when  #  is  a 
function  of  the  single  variable  r,  the  product  of  dxldr  and  drjdx  is 
unity.  The  student  should  prove  the  equations  by  using  a  diagram, 
and  he  will  see  their  meaning  much  more  clearly. 



EXERCISES  XIX.  239 

2.  If  #  =  rcos$,  y  =  rsin@,  prove 

(i)  D?y  =  (r*  +  2  (Der)2  -  rDgr}/(cos  ODer-r  sin  0)3  ; 

(ii)  {  1  +  V>4fl/D&  ={r*  +  (/Vf  P7 

Deduce  from  (i)  the  condition  for  a  point  of  inflexion  on  the  curve 
given  by  the  polar  equation  r=f(0). 

3.  If  x  —  a(l  —  cos  t\  y  =  a(nt  +  sin  t\  express  Dly  in  terms  of  t. 

4.  If  x  =  r  cos  0,  y=r  sin  #,  and  #,  y,  r,  0  functions  of  t,  prove 

(i)  accos  6+ysm  @  =  f  ;  (ii)   —  xsin  0  +  $cos  6=rO  ; 

(iii)  #cos  ̂ 4-ysin  0=r  —  rB2  ;    (iv)   -^sin  ̂ +ycos  6=r6  +  '2,rO. 
If  P  is  the  point  (#,  y),  equations  (i)  and  (ii)  give  the  velocity  of  P 

along  and  perpendicular  to  the  radius  vector  while  equations  (iii) 
and  (iv)  give  the  acceleration  of  P  in  the  same  directions.  It  is  easy 
to  see  that 

5.  If  s  is  the  arc  of  a  curve  measured  from  a  fixed  point  on  it  up 
to  the  point  P(x,  y,  z\  prove,  using  accents  to  denote  s-derivatives 
and  dots  to  denote  ̂ -derivatives, 

(i)  afa/'+y'y"+M'  =  0  ;        (ii)  x=x's  ;        (iii)  x  =  tf'8  +  a/'&  ; 

(iv)  x'x+y'y  +  z'z=s  ;  (v)  ̂ 2+y2+22=s2+s4//°2  5 

where  ]//32=^/2+/2  +  /2. 
Equation  (i)  is  obtained  by  differentiating  as  to  s  the  identity 

this  relation  holding  since  3/,  y',  z'  are  direction  cosines.  These  results 

are  important  in  Mechanics.  '  Thus  (iv)  gives  the  tangential  velocity, (v)  the  total  acceleration. 

6.  If  the  axes  are  turned  through  an  angle  a,  the  old  coordinates 
(#,  y}  of  any  point  are  connected  with  the  new  coordinates  (£,  rj) 
of  that  point  by  the  equations  (§  27) 

tf 
prove  that 

3w    'bu  'dx    'du  'dy    'du  'du  . For,  ^r  =  o-  o?+o-^7  =  ̂ -cosa  +  ̂ -sma  5 

oy 

'du    'du'dx    'du'dy        'du  .       .  *d o-='5-'5  —  Ho-o^=  ~^~  sma+^-cosa. Or;     ox  OTJ     oy  Orf         ox  Cy 
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Solving  for  3w/3#,  3w/3y,  we  find 

'du    "du  "du   .  'du    'du  .         "du ~-=^rCOsa  —  75—  sma  ;     ~—  =7^-sma  +  ~-  cos  a  ; ~-^r          —  75—  ~—     7^-  ~- da?     o£  a?)  oy     o£  or) 

x        x  x  . 
5  =  ̂ 5-=  =^^  cos  a  -,5—  sma,  etc. ^-5     ^5-      ̂   -,5— oar     ox     a£  077 

A  similar  equation  to  (i)  holds  for  three  variables  x,  y,  z. 

7.  Prove  |(V%)=V<|) 

8.  If  in  §  99  (12)  8  be  changed  to  //,  where  //,  —  cos#,  show  that becomes 
IT       ru       d(.  u  1     jftfl 

2  J  • 

9.  P,  P'  are  the  points  (^,  y,  z),  (xf,tf,  z1}  and  PP'—r,  a  positive 
number;    PQ  =  ds,  P'Q'=ds'  ;    the   direction  cosines  of  PQ,  P'@  are 
(Z,  m,  w),  (£',  w',  »')»  and  the  an£les  Qpp'i  Q'P'P  are  ̂ '  ̂   while  €  is 
the  angle  between  the  directions  of  PQ  and  P'Q'.    Prove 

(i)  'drfds  =  -  cos  ̂   ;  (ii)  ̂r/3s'  =  -  cos  Of  ; 

9V      'dr  ?>r  t.  .   cXr'1)    cos  0 
(m)  r^  ̂   /  +  ̂ 5-^7=  -cose  ;         (iv)     V    7  =  —  —  5 OS  OS        OS  OS  OS  ^ 

4  92(VV)_      2  cos  €  +  3  cos  0  cos  & 

1  x/r  3*  3s'  :  r2 

In  §  92  (3)  put  u=r  ;  then  since  r*=(x'  -xf  +  (y>  -yf  +  (z>  -z)\ 

'drj'dx  =—(of  —  x)\r^    'drj'dx'  =  (of  —  x)\r,    etc. 

and  the  ̂ -direction  cosine  of  PP'  is  (x1  -  x)\r  ;  of  P'P,  (x  -  x'}jr. 

'dr     j'dr  ,      'dr       'dr         (  JG'  -x  ,  \ Then       ̂ r—l^  —  h  m**  —  H^o-=  -  It-  ---  H.  ..  +  ...  r=  -cos  6/. os      0^7        o         oz         I     r  J 

** 
oy 

In  finding  'dV/'ds  9s'  by  differentiating  3r/3s  as  to  s',  it  is  to  be  noted 
that  ly  m,  n  and  x,  y,  z  are  independent  of  s'  ;  so  are  I',  m',  ri  and 

xf,  y'j  z'  of  s. 

3_    ltf-x)=l  'dx'     l(a!-as)  'drj.l'     l    x'-x    1  'dr  ̂ Ss'         r          r  3s'          r2       3s'     r  r       r  9s' 

since    l'='daf[dif.      Finding   the   derivatives    of   m(y'  -  y)/r, and  adding 

x     y'  -y      s 
r 

cose     3/*    1 

r       9s    r  3s'' which  gives  (iii).     Also 

3(r~1)/3s=  -f-2c>/3s  =  cos  ̂ /r2,  which  is  (iv). 
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10.  Let  QP  in  ex.  9  be  produced  backward  to  Qlt  making 

Let   u  =  l/PP'  =  l/r,    and   let    u^  uQl    denote    l/QP',  I/Q^'.      Show (as  in  §  92)  that 

uQ  —  UQI        'du  _  cos  B 
o~W~        3T  ~ 

11.  With  the  notation  of  ex.  9,  let  P  be  the  centre  of  an  elementary 
magnet  of  moment  J/,  whose  axis  is  in  the  direction  PQ  ;  show  that 
the  potential  V  at  P'  of  the  magnet  is 

Q>  Qi  (see  ex-  10)  let  quantities  m,  -m  of  magnetism  be  placed  ; 
the  potential  at  P'  of  these  quantities  is 

muq  - Let  $!$  tend  to  zero  while  the  product  mQ$  remains  constant  and 
equal  to  J/;  then  V  is  the  limit  of  the  fraction  just  written,  which 
by  ex.  10  is 

,  f'du     ,,cos  0 
M  ̂ —M  —  =—. 
os  r* 

12.  The    components    of    the    magnetic   force   at   P'   (ex.    11)  are 
',  -'dVfdy',  -VV/'dz'  ;   show  that 

-x)coB6    Ml r*  V 

with  similar  expressions  for  the  other  two  components. 

13.  If  an  elementary  magnet   of   moment   M'   is  placed  with  its 
centre  at  P'  and  its  axis  along  P'ty,  show  that  the  mutual  potential 
energy  W  of  the  magnets  is 

'  (cos  e  +  3  cos  0cos  &} - 
—     .  ~^r-7  —  M         ^  —  ~^—r  —  -  Q  -  • os  os  os  r 

Apply  the  method  of  ex.  11,  taking  Fin  place  of  it  or  l/r. 

G.C. 



CHAPTEE  XII. 

APPLICATIONS  TO  THE  THEORY  OF  EQUATIONS. 

§  100.  Rational  Integral  Functions.  If  f(x)  is  a  rational 
integral  function  of  x  of  degree  n,  it  is  proved  in  treatises 
on  the  theory  of  equations  that  in  general  there  are  n 
values  of  x  which  make  f(x)  zero ;  these  values  are  called  the 
roots  of  the  equation  f(x)  —  0,  or  the  zeroes  of  the  function 
f(x).  These  values  are  not,  however,  necessarily  real 
numbers,  nor  are  they  necessarily  all  different.  Thus,  if 
f(x)  =  (x  —  l)2(x  —  2)(&2  +  l),  f(x)  is  of  the  5th  degree;  two 
of  the  roots  of  /(#)  =  0  are  equal  to  1,  one  root  is  2,  and 
there  are  two  imaginary  roots  ±N/(  — 1). 

a  is  called  an  r-ple  root  of  f(x)  =  0,  or  an  r-ple  zero  of  f(x) 
if  f(x)  contain  (x  —  a)r,  but  no  higher  power  of  (x  —  a).  In 
this  case  f(x)  is  of  the  form  (x  —  a)r(j>(x),  and  <£(a)  is  not 
zero ;  if  <p(a)  were  zero,  then  by  the  Remainder  Theorem 
proved  in  Algebra  0(a?)  would  contain  x  —  a,  and  therefore 
f(x)  would  contain  a  higher  power  than  (x  —  a)r. 

When  f(x)  =  (x  —  a)r(/>(x)  it  is  obvious  that  the  1st,  2nd 
...  (r  — l)th  derivatives  of  f(x)  will  contain  x  —  a  as  a  factor, 
and  will  therefore  vanish  when  x  =  a.  We  leave  it  as  an 
exercise  to  the  student  to  show  that  the  necessary  and 
sufficient  conditions  that  a  should  be  an  T-ple  zero  of  f(x) 
are  that  f(x)  and  its  first  (r—  1)  derivatives  should  vanish 
when  x  =  a,  but  that  the  rth  derivative  should  not  vanish 
when  x  —  a.  Also  that  the  multiple  roots  of  /(#)  =  0  are 

roots  of  f'(x)  =  0,  and  may  therefore  be  obtained  as  the 
zeroes  of  the  G.c.M.  of  f(x)  and  f'(x). 

Manifestly  the  graph  of  (x  —  a)r<j>(x)  will  or  will  not  cross 
the  #-axis  according  as  r  is  an  odd  or  an  even  integer ;  if 
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r>l  the  cc-axis  will  be  a  tangent  at  the  point  (a,  0),  since  in 
that  case  /'(«)  will  be  zero. 

Ex.  1.     Show  that  2  is  a  triple  root  of  the  equation 

/(2),  /(2),  /'(2)  are  zero,  but  /"(2)  is  not  zero  ;  y(2)  is  (x  -  2)3(3#  -f  2) 
so  that  2  is  a  triple  root,  and  —  2/3  is  the  remaining  root. 

Ex.  2.  Find  what  relation  must  hold  between  q  and  r  that  the 
equation  3?  +  qx  +  r=Q  should  have  a  double  root. 

If  the  root  be  a,  then/(a)  =  0,/(a)=0,/"(a)=|=0  .  therefore 
a3  +  ga  +  r  =  0  (i)  ;  3a2  +  g  =  0  (ii)  ;  6a=|=0  (iii). 

From  (ii)  a2=  -qj%,  and  therefore  by  (i)  2qa/3  +  r=Q.     Hence 
«2=  -£/3,  and  a?  =  9r2/4q*, 

so  that  27r2  +  4<?3=0  is  the  required  relation. 

§  101.  Any  Continuous  Function.  We  will  now  suppose 
f(x)  to  be  any  continuous  function  ;  it  has  always  to  be 
remembered  that  theorems  proved  on  the  assumption  of  the 
continuity  of  the  function  may  cease  to  be  true  if  the 
function  be  discontinuous. 

If  /(a),  f(b)  are  of  opposite  signs,  then  (§  45,  Th.  II.)  there 
is  at  least  one  root  of  f(x)  =  0  in  the  interval  (a,  b)  ;  when  it 
is  said  that  a  root  lies  in  the  interval  (a,  b),  what  is  meant 
is  that  the  root  is  greater  than  one  of  the  numbers  a,  b  and 
less  than  the  other. 

If  f(x)  is  continuous  and  does  not  vanish  for  any  value 
of  x  in  the  interval  (a,  b),  then  f(x)  is  either  an  increasing 
or  else  a  decreasing  function  in  the  interval  (a,  b))  and 
therefore  when  /(a)  and  f(b)  are  of  opposite  signs,  f(x) 
vanishes  once  only  ;  that  is,  there  is  only  one  root  in  the 
interval. 

If  f(x)  and  f(x)  are  continuous,  then  between  every  two 
consecutive  roots  of  f(x)  =  Q  there  is  at  least  one  root  of 

/'(#)  =  0;  and  conversely,  between  two  consecutive  roots  of 
f  (x)  =  0  there  cannot  be  more  than  one  root  of  f(x)  =  0  and 
there  may  be  none. 

The  first  part  of  this  proposition  is  Belle's  Theorem  (§  72). 
To  prove  the  converse,  let  a  and  /5  be  the  two  roots  of 
f(x)  =  0,  and  suppose  if  possible  that  there  are  two  roots  of 
/(#)  =  (),  say  a  and  b,  in  the  interval  (a,  /3)  ;  we  may  assume 
a<a<b<p.  Since  /(a)  =  0,  /(6)  =  0,  f(x)  must  vanish  in 
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the  interval  (a,  b),  contrary  to  the  hypothesis  that  a,  /3  are 

consecutive  roots  of  f'(x)  =  0.  It  has  already  been  pointed 
out  that  f(x)  may  vanish  more  than  once  between  two 
consecutive  roots  of  f(x)  =  0,  and  therefore  it  may  happen 
that  there  is  no  root  of  /(&)  =  0  between  two  consecutive 
roots  of  /»  =  0(§72). 

§  102.  Newton's  Method  of  Approximating  to  the  Roots  of 
an  Equation.  Throughout  the  chapter  we  consider  real 
roots  alone,  and  we  suppose  that  f(x)  and  its  first  two 
derivatives  are  continuous  within  the  range  considered. 
When  f(x)  is  a  rational  integral  function  we  will  suppose 
that  the  multiple  roots,  if  any,  of  /(#)  =  0  have  been 
determined  by  the  method  of  the  G.C.M.,  and  that  the  cor- 

responding factors  have  been  removed  ;  hence  f(x)  and  f'(x) 
will  not  vanish  for  the  same  value  of  x.  (Of  course  it  may 
quite  well  happen  that  the  zeroes  of  the  G.C.M.  have  to  be 
determined  by  one  of  the  methods  about  to  be  given  for 
approximating  to  the  roots  of  an  equation.) 

The  following  method  of  approximating  to  the  roots  is 
known  as  Newton's  Method. 

Suppose  it  has  been  found  that  f(a)  is  numerically  small  ; 
we  can  generally  get  a  closer  approximation  than  a  as 
follows  :  Let  a  be  the  root  to  which  a  is  an  approximation, 
so  that  /(a)  =  0.  By  the  Mean  Value  Theorem, 

fia)=fo)  +  (a-a)f(a)  +  l(a-ayf(xj  .........  (1) 

where  xl  lies  in  the  interval  (a,  a).     If  we  neglect  (a  —  a)2  in 
comparison  with  (a  —  a),  equation  (1)  becomes,  since  /(a)  =  0, 

f(a)  +  (a1-:a)f(a)  =  0,  giving  a1  =  a-f(a)lf(a) 
where  c^  is  the  approximate  value  of  a. 
We  may  now  use  ax  as  we  have  just  used  a,  and  get 

another  approximation  a2  where 

and  so  on.  This  process,  however,  does  not  show  that  aL  is 
really  closer  to  a  than  a  is,  and  gives  no  criterion  of  the 
closeness  of  the  approximation.  We  therefore  investigate 
the  conditions  for  the  closeness. 
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§  103.  Tests  for  Degree  of  Approximation.  Let  us  suppose 

(i)  that  y(a),  f(b)  are  of  opposite  signs,  (ii)  that  f'(x)  does 
not  vanish  in  the  interval  (a,  6),  (iii)  that  f"(x)  does  not vanish  in  the  interval. 

Conditions  (i),  (ii)  show  that  there  is  one  and  only  one 
root,  a  say,  in  the  interval  (a,  b)  ;  condition  (iii)  shows  that 
the  graph  of  f(x)  is  either  convex  upwards  or  else  concave 
upwards  in  the  interval,  that  is,  it  has  no  point  of  inflexion. 

Let  a  be  that  end  of  the  interval  at  which  f(x)  has  the 

same  sign  as  f"(x)  ;  this  choice  of  the  end  of  the  interval  is 
essential,  a  may  be  either  greater  or  less  than  b. 

The  figures  (a),  (b)  show  the  graph  when  f"(x)  is  nega- 
tive, (c),(d)  when  f  (x)  is  positive.  The  abscissae  of  A,  B 

are  a,  b. 

a 
l\  ̂ ^V  g.  a 

(b) 

a//\ 

(c) 
(d) 

FIG.  52. 

The  graphs  show  that  the  tangent  at  A  will  cross  the 
jr-axis  at  a  point  ax  between  a  and  a  ;  04  will  therefore  be 
a  better  approximation  than  a.  Now  the  equation  of  the 
tangent  at  A  is 

and  when  y  =  0,  x  =  ar     Hence 

(1) 

Let  the  line  through  B  parallel  to  the  tangent  at  A  cut 
the  ic-axis  at  the  point  6X  ;  the  equation  of  the  line  is 

y=f(b)+(x-b)f(a). 

Hence  b,  =  b  -f(b)/f(a)  ...........................  (!') 
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and  6j  lies  between  b  and  a,  so  that  ̂   is  a  better  approxi 
mation  than  6,  though  not  necessarily  better  than  a. 

Now    fc,  -  a,  =  -  {/(6)  -/(a)  -  (6  -  «)/(«)}  //(a), 
which  by  the  Mean  Value  Theorem  may  be  written 

where  a?1  lies  in  the  interval  (a,  6). 
Let  d  be  the  numerical  value  of  (b  —  a),  d1  that  of  (^  —  c 

and  let  0  denote  the  greatest  value  of  f'(x),  g  the  smallest 
value  of  f(x)  in  the  interval  (a,  b)  ;  then 

or 

Since  a  —  ax  is  numerically  less  than  \  —  av  we  have  a  —  ax 
numerically  less  than  c£x  or  cZ2&,  so  that  the  error  in  taking 
ax  instead  of  the  root  a  is  less  than  d2k.  Similarly  the  error 
in  6j  is  less  than  d2k. 
We  may  repeat  the  process  with  av  &x  instead  of  a,  b  ; 

we  should  find,  using  a  similar  notation, 

d^d^k,  that  is,  d^ 

and  the  error  in  taking  a2  or  62  is  less  than  c£2  or 
The  process  may  be  repeated.     As  soon  as  a,  b  are  such 

that  dk  is  less  than  1,  the  approximation  to  a  becomes  very 
rapid.     There  is,  as  a  rule,  no  need  to  calculate,  bv  62... 

The  student  will  see  by  examining  figures  that  if  a  is  not 
chosen  as  stated,  the  value  of  ax  or  bl  may  be  further  from 
a  than  a  or  b. 

§  104.  Examples. 

Ex.  1.     If  f(x)  =  3^-4^  +  5,  find  the  roots  of  f(x)  =  0. 
"#  =  18. 

/(-§)  =  6|  is  a  maximum  value  of  fix)  ;  /(|)  =  3|  is  a  minimum.  The 
point  (0,  5)  is  a  point  of  inflexion. 

It  is  easy  to  see  that  the  graph  of  f(x)  crosses  the  #-axis  once  only, 
so  that  there  is  only  one  real  root. 

/(  —  2)  =-11,  /(-I)  =+  6,  so  that  the  root  lies  between  -2  and 
—  1  ;  as  /(  —  2)  and  /(  —  I)  are  large,  we  seek  a  closer  approximation 
before  choosing  a,  b.  Now  /(  -  1  -6)  =  -  '888,  /(  -  1  -5)  =  +  '875.  Since 

(x)  is  negative  when  x  is  negative,  we  take  a=  —  1*6,  6=  —  1'5. 
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G=  numerically  greatest  value  of  /"(#)  in  interval  (  —  1*6,  -  r5)  =  28'8. 
g  =  numerically  smallest  value  of/'(#)  in  interval  =  16  '25. 
k=G/2g  =  14-4/16-25  <  1  ;   d='l  ;   d*k  <  -01. 

«!=«-/(«)//(«)  =  -l-6  +  -04  =  -1-56, 
and  «!  differs  from  a  by  less  than  -01. 

a2  =  a1-f(al)/f(a1)=  -1-56  +  '0083=  -1-5517, 
and  #2  differs  from  a  by  less  than  o?4P  or  '0001. 

The  values  '04  and  '0083  are  of  course  approximations.  Care  must 
be  taken  that  we  do  not  go  beyond  the  root.  Thus 

-/(a)  //(a)  =-046..., 
but  if  we  take  '05  as  the  value,  thus  making   a^=  —  T55,  we  find 
f(  —  1  "55)  to  be  positive.     The  reasoning,  however,  depends  on  having 
f(ai)  of  the  same  sign  as  f'(x\  that  is  in  this  case  negative. 

A  closer  approximation  is 

«3=-  1-551  608  12, 
and  the  error  is  less  than  a  unit  of  the  last  decimal  place. 7T 

Ex.  2.     Solve  the  equation  x  +  sin  x  —  7.  =  0. o 

If  A  is  a  point  on  the  circumference  of  a  circle,  and  if  AB,  AC  are 
two  chords  which  trisect  the  area  of  the  circle,  then  the  angle  between 
AB  and  the  diameter  through  A  is  ̂ x  radians. 

f(x)  =x  +  sin  x  -  5  ;  f(x)  =  1  +  cos  x  ;  f"(x)  —  -  sin  x. o 

It  is  easily  found  that  x  lies  between  30°  and  31°,  or  in  radians 
•5236,  and  '5411. 

/(•5236)  =  -  -0236  ;  /(-5236)  =  1-8660  ; 

/(•5411)=  +  -0089  ;  /('5411)  =  1-8572  ; 
d=  -0175  <  -02  ;   k=G/2g  <  -2,  d2k  <  -00008. 

Since  /"(#)  is  negative,  we  take  a  =  "5236, 

ai  =  a  -/(«)//(«)  =  '5236  +  '0126  =  '5362, 
and  the  error  is  less  than  a  unit  of  the  fourth  place. 

The  next  approximation  gives 

«2  =  ai  -/(«!>//(«!)  =  '5362  +  -0000674  =  -5362674, 
and  the  error  is  less  than  a  unit  of  the  last  figure.     In  degrees  the 

angle  is  30°  43'  33"  -0. 

§  105.  Successive  Approximations.  Suppose  the  equation 
to  be  of  the  form  x  =  cj)(x);  let  a  be  a  root  arid  a  an 
approximation  to  a,  a  =  a  +  h  say.  Now 

and  therefore  a  —  0  (a)  =  h<p'(a  +  Oh). 
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Using  the  terms  "  greater  "  and  "  less  "  to  mean  numeri- 
cally "  greater  "  and  "  less,"  we  see  that  if,  for  every  value 

of  x  that  is  nearer  to  a  than  a  is,  (j>'(x)  is  less  than  a  proper 
fraction  m,  the  difference  between  a  and  0(a)  is  less  than 
mh;  that  is,  the  difference  between  a  and  </>(a)  is  less  than 
that  between  a  and  a.  Hence  (f>(a)  is  a  closer  approxima- 

tion than  a. 

Denote  <p(a)  by  a^  and  let  a  =  a1-\-hl  where  \  is  equal  to 
h</>'(a  +  0h)  and  therefore  less  than  mh.  We  find  in  the same  way 

a  — 
So  that  (/>(a>i)  —  a?,  is  a  closer  approximation  than  av  The 
upper  limits  of  the  errors  hm,  hm2  usually  decrease  pretty 
rapidly  as  m  is,  in  the  cases  to  which  the  method  applies, 
often  a  small  fraction.  We  may  proceed,  of  course,  with  a2 
and  so  on. 

It  is  essential  for  the  success  of  the  method  that  <f>'(x)  be, 
near  the  root,  a  proper  fraction.  It  may  be  proved  that 

Newton's  method  is  a  particular  case  of  that  of  Successive 
Approximations,  and  unless  m  be  pretty  small  the  latter 

method  has  no  advantage  over  Newton's. 

Ex.    'Solve  the  equation  10*  =  3456  >/#. 
Take  logarithms  to  the  base  10,  and  we  get 

x  =  i  log  x  +  3  -538  5737  =  <£(#). 

If  we  draw  the  graph  of  ̂ logx  and  of  .r-3'538  5737  we  see  that 
they  intersect  for  a  value  of  x  near  4  and  also  for  a  very  small  value 
of  x.  Take  first  a  =  4,  now 

.     M     -4343 

so  that  when  x  is  nearly  4,  <fi(x)  is  a  proper  fraction. 
Take  4-figure  logarithms  for  the  first  approximations, 

ttl  =  <£(4)  =  3-5386  +  '3010  =  3'8396  ; 

a2  =  <£(«a)  =  3-5386  +  '2921  =  3  '8307  ; 
«3  =  <jf)(a2)  =  3-5386  +  '2916  =  3'8302. 

When  x=a^  x  —  $(x)  —  "0005,  so  that  a2  is  a  fairly  close  approxima- 
tion.    Tftke  now  7-figure  logarithms,  and  we  find 

ai  =  <J>(a3)  =  3-538  5737  +  '291  6107  =  3*830  1844  ; 

a5  =  (f>(a^)  =  3-830  1835; 
a6  =  <jf)(a6)  =  3'830  1835  ; 

to  7  decimals  «5  is  correct. 
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For  the  other  root  the  method  is  inapplicable,  since  near  0  <ft(x)  is 
greater  than  1.  But  since  x  is  very  small  we  get  a  good  approxima- 

tion by  taking  the  value  of  #,  which  satisfies  <£(#)=  0.  Therefore 

log  x=  -7-077  1474  =  8-9228526  ; 
and  x  =  '000  0000  8372  45. 

§  106.  Expansion  of  a  Boot  in  a  Series.    Eeversion  of  Series. 
Let  the  equation  x—<j>(x)  be 

x  =  Ay+Bx2+Cxy+Dy2+Ex*+Fx2y+Gxy2+Hy*+..., 
or  x  —  A  y  +  u2  +  us+..., 
where  U2,  uy..  are  of  the  2nd,  3rd...  degree  in  x  and  y. 

If  y  is  a  small  quantity  one  root  will  be  approximately 
Ay,  for  this  value  of  x  makes  u2  of  the  second  order  in 
y,  us  of  the  third...  .  Call  this  approximation  a.  Clearly 

for  small  values  of  x  we  may  suppose  (}>'(x)  a  proper  fraction. 
The  next  approximation  is  al  =  (j)(a)  =  <p(Ay).  To  the 

2nd  order  in  y  we  may  neglect  %,  u±...  and  take 

The  next  approximation  is  a2  =  <f>(a1),  and  in  forming 
)  we  need  only  retain  terms  of  the  third  order  in  y. 

Hence  in  u3  we  need  only  substitute  the  first  approximation 

a  or  Ay,  since  if  we  put  Ay  +  B^2  all  terms  except  those 
which  come  from  Ay  alone  would  be  of  a  higher  order 

than  the  third.  In  u2  we  substitute  Oj_  or  Ay+B^y2  but 
reject  the  term  B(Bly2)2  which  is  of  the  fourth  order.  We 
thus  get  a2  =  Ay  +  B^2  +  C^3, 
and  we  proceed  in  a  similar  way  to  find  0(a2). 

The  practical  rule  then  may  be  stated  as  follows  : 
For  the  first  approximation  neglect  U2,  us.  .  .  ;  we  get 

Ay  =  a. 
For  the  second  approximation  neglect  u3,  u±...  and  sub- 

stitute a  in  u2;  we  get  Ay  +  Bly2  =  ar 
For  the  third  approximation  neglect  %,  U5...,  substitute 

a  in  us,  04  in  u2,  and  reject  terms  above  the  third  order  ; 

we  get  Ay  -{-B.y2  +  Ciys  =  a2. 
For  the  fourth  approximation  neglect  U5,  u6...,  substitute 

a  in  164,  ct1  in  UB,  a2  in  u2,  and  reject  terms  above  the  fourth 

order;  we  get  'Ay+B1y2  +  Clys+Dly*  =  a3  and  so  on. 
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Ex.  1. 

1st  App.  ̂ ?=2y  ; 

2nd  App.  x  =  iy  +  (2y)2  - 
3rd  App.  #  =  2y  +  (2y  +  2y2)2  -  (2y  +  2y2)y  +  (2y)3  =  2y  +  2y 
4th  App.  ̂   = 

Ex.  2.     (£(#)  may  be  an  infinite  series,  the  usual  conditions  as  to 

convergency  being  supposed  satisfied.     Thus  if  we  put  ex  =  l  +y,  then 

or  %—y—  3 
and  the  student  will  readily  find  that  to  the  fourth  order 

that  is  log  (1  +y)  =y  -  fyf  +  Jy3  -  Jy4. 
This  is  an  example  of  Reversion  of  Series  ;  the  full  discussion,  how- 

ever, of  the  subject  of  this  article  lies  beyond  our  limits.  The  student 

is  referred  to  Chrystal's  Algebra,  vol.  ii.,  chap.  30,  for  an  adequate treatment. 

Ex.  3.     Expand  y  in  powers  of  x  for  large  values  of  x  when 

When  x  and  y  are  both  large  the  product  xy  may  be  neglected  in 

comparison  with  x3  and  y3,  hence  a  first  approximation  gives  y3+^3  =  0, 
that  is  y=  —  x.  To  get  a  second  approximation  write 

y—  —x  +  Zaxy  I  (x2  —  xy  +  y2), 
and  on  the  right  side  put  —x  for  y.     We  thus  get 

2nd  App.      y=  —  A*+3a^(-^)/(^2+^2-l-^2)=  —x  —  a. 
To  get  a  third  approximation  put  —(x+  a)  for  y  and  expand  in 

powers  of  l/#,  which  by  hypothesis  is  small  since  x  is  large.  Then 

a_     a      a2    '1 
2    2 

a2\  a3 

The  line  y=  —  x  —  a  is  an  asymptote  of  the  curve  ;  the  term  «3/3^2 
shows  that  at  both  ends  of  the  asymptote  the  curve  is  above  the 
asymptote.  (See  Ex.  13,  p.  62.) 

The  method  of  this  article  is  of  great  service  in  finding 
the  shape  of  a  curve  near  any  point  on  it.  If  the  point  is 
not  the  origin,  we  may  shift  the  origin  to  the  point,  and 
then  the  equation  will  be  of  the  form  given  at  the  beginning 
of  the  article.  We  may,  of  course,  when  we  wish  to  expand 
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y  in  powers  of  x,  write  the  equation  in  the  form  y  =  \fs(y). 
For  the  application  of  the  method  to  the  finding  of  asymp- 

totes and  generally  to  the  investigation  of  the  shape  of  the 
curve  at  a  great  distance  from  the  origin,  example  3  may 
serve  as  an  illustration.  The  student  is  referred  to  the 
admirable  treatise  on  Curve  Tracing  by  Frost  (London: 
Macmillan)  for  a  systematic  exposition  of  the  method  in  its 
applications  to  geometry ;  that  book  is,  in  the  words  of 
Professor  Chrystal,  "  a  work  which  should  be  in  the  hands 
of  every  one  who  aims  at  becoming  a  mathematician,  either 

practical  or  scientific." 
§  107.  The  Equation  x  =  tanx.  Equations  of  the  form 

mx  =  tan  x  occur  in  the  Theory  of  the  Conduction  of  Heat 
and  in  the  Theory  of  Vibrating  Plates.  For  simplicity  we 
take  77i  =  l,  but  the  discussion  goes  on  similar  lines  when 
m  is  different  from  1. 

Obviously  zero  is  a  root,  and  the  negative  roots  are  equal 
in  numerical  value  to  the  positive  roots,  so  that  we  consider 
only  the  positive  roots. 

By  drawing  the  graphs  of  tan  x  and  of  x  we  see  that  they 
intersect  once  and  once  only  in  the  intervals  (TT,  3  Tr/2), 
(27T,  57T/2)  and  in  general  (UTT,  nw  +  Tr/Z)  where  n  is  any 
positive  integer.  There  is  therefore  one,  and  only  one,  root 
of  the  equation  in  each  interval ;  there  is  no  root  between 
0  and  7T/2. 

Let  x  —  tan  #=/(#)  and  calculate  by  Newton's  method 
the  root  in  the  interval  (TT,  3?r/2). 

f'(x)  =  —  tan2  x ;  f"(x)  =  —  2  tan  x  sec2  x. 
An  inspection  of  the  tables  shows  that  the  angle  lies 

between  180°  +  77°  and  180°  +  78°.  Expressing  these  angles in  radians,  we  have  to  three  decimals 

x  =  4-485;  /(a)  =  -154; 
x  =  4-503;  /(a)  =-202;  /(«)=- 221. 

Since  f"(x)  is  negative  we  take  a  —  4'503,  b  —  4*485,  so 
that  d=  '018  <  -02  and  it  is  easily  found  that  k  is  less  than  5. 

0!  =  a  -  /(a)//(a)  =  4-  503  -  "009  =  4'494, 
and  the  error  is  less  than  d^k  or  less  than  "002. 
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In  seeking  a  closer  approximation  care  must  be  taken 
not  to  go  beyond  the  root ;  if  we  do  so  /(«2)  will  be  positive. 
Owing  to  the  rapidity  with  which  the  tangent  changes 
there  is  danger  of  doing  so  when  using  4-figure  tables; 
besides  the  next  approximation  will  have  an  error  less  than 

d*k?  or  2  x  10  ~5,  so  that  we  may  use  the  ordinary  7 -figure tables. 

ax  is  not  beyond  the  root,  for/(a1)=  —'Oil  9542. 
Again, 

a2  =  ai  -/KV/K)  =  «!  -  -000  5888  =  4-49341 12, 
so  that  if  we  take  the  root  as  4*49341  the  error  is  less  than 
2  units  in  the  last  place.     A  closer  approximation  is 

;  4-493  4095. 

To  get  the  other  roots  let  x  =  n  TT  +  ?r/2  —  0,  then  6  is  an 
acute  angle  and 

tan  x  =  tan  (  —  —  $)  =  I/tan  0 ; N  Lt  / 

and  since  x  =  tan  x  we  have  tan  0  =  ->  0  =  tan  ~ l  ( -  \     Hence x  \x/ 
putting  c  for  nir  +  Tr/Z  we  have 

x  —  c  —  tan-1  (- )• \xJ 

It  is  shown  in  a  later  chapter  that 

.       i/lXl       11        1 

tan     \x)-x~ 

so  that  x  =  c x 

The  equation  may  be  solved  by  the  method  of  last  article, 

since  x  is,  even  for  n  =  2,  greater  than  7"5,  and  therefore 
I/a?  fairly  small. 

1st.   App.  x—c\ 

2nd.  App.  x  =  c —  ; c 

3rd.  App.  «-*-«- 
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1  3 
A 
App.  o?  =  c  —  (c  --- 1  3  V     e/        5c5 

-  --(^4-l -+.AA     1  (i    ̂\     l ~C'~c\  +?  +  3c*y  +  3?\  +  cV     ik?' 
1      2        13 

c     3c3     15c5' 

r., '  12        13        146 5th.  App.  aj  =  c---s-3- 3c3     15c5     105c7 

For  n  =  2,  3,  4, . . . ,  this  last  approximation  is  amply 
sufficient  for  "all  practical  purposes.  The  student  may 
show  that  xl>7r  has  the  values  T4303,  2-4590,  3-4709,  4'4747, 
5-4818,  6-4844,  for  n  =  l,  2,  3,  4,  5,  6.  [Rayleigh's  Sound, 
I,  p.  334  (2nd  Ed.).] 

Many  equations  involving  trigonometric  and  exponential 
functions  were  discussed  by  Euler,  and  the  general  solution 
of  the  equation  x  =  tan  x  is  due  to  him. 

EXERCISES  XX. 

In  the  following  examples  it  will  usually  be  sufficient  to  calculate 
the  root  to  3  or  4  decimal  places  ;  in  some  cases  the  results  are  given 
to  more  figures. 

1.  Find  the  real  root  of  3x?  +  5#  —  40=0. 
2.  A  sphere  of  radius  1  is  divided  by  a  plane  into  two  parts  whose 

volumes  are  in  the  ratio  of  1  to  2  ;  the  distance  x  of  the  plane  from 
the  centre  of  the  sphere  is  a  root  of  the  equation  Sx3  —  9#+ 2  =  0. Find  x. 

3.  Find  the  root  of  ̂ 73-4^2-7^  +  24  =  0  that  lies  between  2  and  3. 

4.  If  '  (!+#)*  =  27-34,  findtf. 
5.  If  10^=20^,  find^. 
6.  The  chord  AB  of  a  circle,  centre  C',  bisects  the  sector  ACB\  if  the 

angle  ACE  is  x  radians,  show  that  #  =  2  sin#  and  find  x, 
7.  Solve  the  equation  x= cos  x. 
8.  The   equation   2.r  =  tan#  has  one  root  between  0  and  ?r/2  and 

another  between  TT  and  3;r/2  ;  find  both  roots. 
9.  Show  how  to  solve  the  equation 

for  a  when  I  and  c  are  given,  I  being  not  much  greater  than  c  ;  for 
example,   c  =  100,  £  =  105.     The  value  of  a  determines  the  catenary 
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assumed  by  a  string  of  length  I  hanging  from  two  points  in  a  hori- 
zontal line  distant  c  from  each  other. 

10.  Find  the  least  roots  of 

(i)  (ex  +  e-*)  cos  #-2=0;     (ii)  (e*+e-*)cos.r  +  2  =  0. 
Obviously  zero  is  a  root  of  (i)  ;  find  the  next  smallest  root. 

11.  Solve  x  —  asinx  =  b 

where                              a  ='245316,  6  =  5*755067. 

12.  Show  that  the  approximations  to  the  root  a  of  x  —  <^(x)  given 

by  the  method  of  §  105  are  alternately  greater  and  less  than  a  if  <£'(a) 
is  negative. 

13.  If  /(#,  y)  =  0  and  F(x,y)  =  Q  have  as  an  approximate  pair  of 
solutions  x=a,  y  =  b  show  that  in  general  the  values  a-f-A,  b  +  k  will 
be  closer  approximations  if  A,  Tc  satisfy  the  equations 

where  in  the  derivatives  #,  y  are  replaced  by  a,  b. 

If  f(x,  y}=x*  +  3xy*-y-l2, 
find  closer  approximations  to  the  roots  near  #  =  2,  y  =  \. 

14.  If  (y-#)(y-2#)  =  #3  +  2.#3?/  +  #2<y3 
show  that  when  x  is  small  there  are  two  values  of  y  given,  as  far  as 
terms  of  the  third  order  in  #,  by  the  equations 

=x-xz-y?  and  2/  = 

Show  that  the  curve  given  by  the  equation  has  two  branches  that 
pass  through  the  origin  and  that  the  tangents  at  the  origin 
and  y  =  2%.     Sketch  the  curve  for  small  values  of  x. 

/v*o  O  fY&nt  /vii/^yO 

[Write  y=x-\  ---  tr+~  ~^~^  —  ™o    an(^  proceed  as  in  §  106  ;  then 
y  —  Ax    y  —  Ax    y  — 

write  y  =  2#+#3/(y-.r)  +  ,  etc.] 

15.  If  a2(y2-.r2)  =  ̂ 4+y4,  show  that  for  small  values  of  x  there  are 
two  values  of  y  given  by 

y  =  x  +  x?/a2  and  y  =  -  x  -  x*  /a2. 
Show  also  that  near  (o,  a)  the  shape  of  the  curve  is  given  by 

Graph  the  curve. 

16.  If  (y  —  xf  '  =  x*  +  x^y  +  x*  show  that  for  small  values  of  x 

Graph  the  curve  near  the  origin, 
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§  108.  Proportional  Parts.  In  the  use  of  Logarithmic  and 
similar  Tables  it  is  often  necessary  to  find  the  value  of  the 
function  for  a  value  of  the  argument  not  given  exactly  in 
the  Tables.  It  becomes  necessary,  therefore,  to  interpolate, 
and  the  ordinary  rule  is  based  on  the  assumption  that  the 
difference  in  the  function  is  proportional  to  the  difference 
in  the  argument.  We  will  now  examine  the  assumption. 

Let  h  and  z  be  small  quantities  having  the  same  sign, 

but  z  being  numerically  less  than  h',  then  by  the  Mean 
Value  Theorem,  f(x),  f'(x),  f"(x)  being  assumed  continuous, 
the  following  equations  are  approximately  correct. 

/(«  +  h)  -/(a)  =  hf(a)  +  ifc*/"(«)  ...............  (!) 
/(a  +  *)  -/(a)  =  z/(a)  +  ̂ f(a)  ...............  (2) 

Let  D  =f(a  +  h)  —f(a)  and  eliminate  /'(&)  '•>  therefore 

f(a  +  z)  -f(a)  =  jD  +  \z(z-  h)f"(a)  .............  (3) | 

Equation  (3)  is  approximate,  but  by  following  the  lines  of 
the  proof  of  the  Mean  Value  Theorem  we  can  show  it  to  be 

exact  if  in  place  of  f(a)  we  write  f'(a  +  9h)  where  0  is  a 
proper  fraction. 

F°rlet  (A) 

and  let  F(x)  =f(x)  —f(a)  —  -~r—D  —  %(x  —  a)(x  —  a  —  h)P. 

Now  F(a)  =  0  identically  ;  F(a  +  z)  =  0  by  (A)  ;  F(a  +  h)  =  d 

identically,  remembering  the  value  of  D.  Hence  F'(x)  must 
vanish  for  a  value  of  x  between  a  and  a  +  0,  and  again  for 

a  value  of  x  between  a  +  0  and  a  +  h;  therefore  F"(x)  must vanish  for  a  value  of  x  between  these  two  values,  and 
therefore  between  a  and  a-\-h.  But 

F"(x)=f'(x)-P, 

and  therefore  P  =f"(a  +  Oh). 
Hence,  instead  of  (3)  we  get  the  exact  equation, 

f(a  +  z}  -f(a)  =  ̂D  +  ±z(z-  h)f"(a  +  0/0  .........  (4) 

where  •  D  =f(a  +  h)  -/(a). 
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In  the  figure  (Fig.  53), 
OA=a,  AG=z, 

UT=zD/h. 

8T=tz(h-z)f'(a 
The  error  committed  in  replacing 

the  arc  PSQ  by  the  chord  PTQ  is 
measured  by  ST.  z  is  by  hypothesis  less  than  h,  and  the 

numerically  greatest  value  of  z(h—z)  is  ffi2.  Hence,  if  G 
be  the  numerically  greatest  value  of  f"(x)  in  the  interval 
(a,  a+h),  the  numerically  greatest  value  of  8T  or  of 

will  be  ± 
Suppose  now  that  f(x)  is  tabulated  for  a  series  of  equi- 

distant values  of  x,  the  difference  between  successive  values 
being  h.  Let  a  +  z  be  a  value  of  x  between  a  and  a  +  h, 
and  therefore  not  given  in  the  Table.  The  ordinary  rule  is 
to  calculate  f(a  +  z)  from  (4),  neglecting  the  second  term 
on  the  right  ;  that  is, 

For  a  given  value  of  a,  the  amount  by  which  f(a)  is  in- 
creased to  find  /(a  +  0),  namely  zD/h,  is  therefore  proportional 

to  z  ;  the  error  in  f  ollowing  the  rule  is  therefore  not  greater 
than  h*G/S. 

Exceptions  to  the  application  of  the  rule  occur  in  the 
following  cases  : 

I.  G  may  be  such  that  h2G/8  can  not  be  neglected  in 
comparison  with  zD/h  ;  in  this  case  the  difference  D  is  said 
to  be  irregular. 

II.  D  may  be  so  small  that  it  vanishes  to  the  number  of 
figures  in  the  Table  ;  in  this  case  the  difference  is  said  to  be 
insensible.     The  difference  will  be  insensible  when  f(a)  is 
very  small,  since 

D  =/(<*  +  A)  -/(a)  =  hf'(a)  +  Jfe2/"(a  +  6h).     • 
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Example,    f  (x)  =  Iog10  sin  x. 

Let  M  =  Iog10  e  =  "434  2945  ; 

then      /  '  (x)  =  M  cot  x  ;    f"(x)-—M  cosec2^. • 

If  x  is  small,  f'(x)  is  large,  and  the  differences  are 
irregular;  since  cot  a?  is  not  large  the  differences  are  not 
insensible. 

If  x  is  nearly  90°,  cot  x  is  small,  and  the  differences  are 
insensible;  though  f"(x)  is  not  large  the  ratio  /"(#)//'(#) 
=  —  2/sin  2x  is  numerically  large  and  therefore  h?G/8  can 
not  be  neglected  in  comparison  with  zD/h.  Near  90° 
therefore  the  differences  are  both  insensible  and  irregular. 

For  tables  that  proceed  at  differences  of  1',  h  is  V  or  in 
radians  &  =  -000  2909, 

and  pf  h2  =  '000  0000046. 

To  find  when  JJfA2cosec2#  would  affect  the  seventh  figure 
we  may  put  i  M^  cosec2a,  =  g  x 

and  we  find  from  this  equation  that  x  is  about  18°.  Hence, 
apart  altogether  from  errors  due  to  neglected  figures  in 
carrying  out  the  numerical  work  which  may  easily  amount 
to  more  than  a  unit  in  the  seventh  place,  the  error  due  to 
neglecting  the  term  h?G/8  will  amount  to  half  a  unit  in  the 

seventh  place  for  angles  less  than  18°. 
If  h  is  equal  to  10"  the  student  may  show  that  the 

seventh  figure  will  not  be  affected  by  the  neglect  of  h?G/8 

till  the  angle  is  about  3°. 
The  student  may  with  advantage  consult  Hobson's 

Trigonometry,  Chap.  9.  The  advanced  student  will  find 
a  thorough  discussion  of  all  the  principles  involved  in 

numerical  approximations  and  the  use  of  tables  in  Liiroth's Vorlesungen  tiber  numerisches  Rechnen  (Leipzig:  Teubner, 
1900). 

Ex.  1.  Show  that  for  log  cos  x  the  differences  are  insensible  and 

irregular  when  x  is  small,  and  irregular  when  x  is  near  90°. 

Ex.  2.     Show  that  for  log  tan  x  the  differences  are  irregular  when 
x  is  small  and  when  x  is  near  90°.     Show  also  that  the  maximum 
error  is  least  when  x  is  near  45°. 
G.C.  R 
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Ex.  3.  In  a  7  -figure  table  of  the  logarithms  of  numbers,  show  that 
the  term  h?G/8  is  most  important  when  the  number  is  10000,  and  that 
the  greatest  error  arising  from  the  neglect  of  that  term  is  about 

5  '5  x  10~10,  and  is  therefore  negligible  for  these  tables. 

§  109.  Small  Corrections.  Iri  practice  all  measurements 
are  subject  to  errors,  and  it  is  therefore  of  importance  to 
determine  the  influence  on  the  result  of  a  calculation  when 
the  argument  or  arguments  of  the  calculated  function  are 
given  by  measurements  whose  errors  are  approximately 
known. 

Let  a  quantity  x  be  determined  by  measurement  and  let 
y  be  a  function  f(x)  of  x.  Suppose  that  the  value  x  given 
by  the  measurement  differs  from  the  true  value  by  Sx,  then 
the  true  value  of  y  is  f(x  +  Sx)  and  the  error  Sy  is 

or  Sy=f(x)Sx  approximately. 
The  relative  error  Sy/y  is,  approximately, 

As  a  rule  it  is  the  relative  error  that  is  important  ;  of 
the  two  factors  Sx  and  f(x)/f(x)  the  first  depends  solely 
on  the  accuracy  of  the  measurements  while  the  second  is 
conditioned  by  the  general  arrangements  of  the  inves- 
tigation. 

If  there  are  two  or  more  variables,  x,  y,  z  say,  then  the 
error  Su  in  the  function  u=f(x,  y,  z)  is 

as  far  as  quantities  of  the  first  order  in  Sx,  Sy,  Sz.  Since 
the  value  of  Su  is  of  the  first  degree  in  Sx,  Sy,  Sz  the  joint 
effect  of  the  individual  errors  Sx,  etc.,  is  obtained  by 
addition  of  the  effects  due  to  each  separately.  This 

principle  of  "  the  superposition  of  small  errors  "  is  of  great 
importance  in  practice. 

Ex.  1.  The  side  a  and  the  angles  B,  C  of  a  triangle  ABC  are 
measured  ;  if  these  be  liable  to  the  errors  Sa,  SB,  8C,  to  find  the  error 
in  the  calculated  value  of  the  area  S. 
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Denote  by  (8£)a  the  error  in  £  due  to  the  error  8a  taken  by  itself, 
and  use  a  similar  notation  for  the  other  errors.  In  finding  the 
derivative  of  £  it  is  most  convenient  to  differentiate  logarithmically. 

£=£a2  sin  B  sin  C/sw(B+  <7), 

(8£)a/£=28a/a,  • 

The  total  error  88  is  got  by  adding  these  separate  errors. 

As  an  example,  let  «  =  250  (feet),  £  =  27°  12',  (7=45°  18',  8a  =  '25, 
=10',  8(7=20'.     The  percentage  errors  in  a,  B,  C  are 

100^  =  1;   100*1  ='6;   100^=7. Cb  -D  G 

It  is  sufficient  therefore  to  use  5-figure  logarithms.     We  find 

?\  o 
^  =  '002  +  '00474  +  '00392  =  '01066. o 

£=10646;  ££=113-49;  ̂ ^=1-1. o 

The  calculation  of  £  from  the  values  a  +  8a,  B  +  8B,  C+  8C  gives,  if 
£'  be  the  new  value  of  £, 

>S"  =  10760;  £'-£=114. 
Since  b  =  a  sin  B  /sin  (B  +  C\  we  have  for  the  error  in  b 

8b/b  =  8a/a  +  (cot  B  -  cot  (B  +  C))  8B  -  cot  (B  +  C)  8C, 

so  that  86/6  =  '00390,  10086/6  =  '4,  86  =  -5  nearly, 
and  in  the  same  way 

8c/c=-0040,    1008c/c=-4,    8c='75. 

Ex.  2.     The  sides  a,  6,  c  of  a  triangle  ABC  are  measured  ;  to  find 
the  error  8A  in  A  due  to  errors  8a,  86,  8c  in  a,  6,  c. 

We  may  take  the  value  of  cos  A  given  by 

and  differentiate  ;  but  the  result  may  be  obtained  more  quickly,  thus  : 

a=  bcosC+ccoaB  ; 

therefore        8a  =  cos  C  86  +  cos  B8c-(b  sin  C  8C+  c  sin  B  8B) 

=  cos  C  86  +  cos  B  8c  -  b  sin  C(8C+  8B) 
=  cos  (786  +  cos  £  8c  +  6  sin  C  8A, 

since  6  sin  (7=  c  sin  5  and  A  +  5  +  C=  1  80°,  so  that  8^  +  8B  +  8(7  is  zero. 

Hence  8  A  =  (Sa  -  cos  C  86  -  cos  B  8c)/b  sin  C, 

and  the  trigonometrical  functions  may  easily  be  expressed  in  terms  of 
the  sides  if  required. 
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EXERCISES   XXI. 

1.  The  area  $  of  a  triangle  A  EC  is  determined  by  «,  £>,  C  ;   show 
that  the  relative  error  in  the  area  is  given  by 

8a    8b          />o/v 
=  —  h-r-  +  cot  C/oC. 

-cr    —  -r- Sab 

Show  that  the  error  in  the  side  c  is  given  by 

So  =  cos  B  8a  +  cos  A  8b  +  a  sin  B  80. 

2.  At  a  distance  of  120  feet  from  the  foot  of  a  tower  the  elevation 

of  its  top  is  40°  16'  ;  if  the  distance  and  the  elevation  are  measured  to 
within  1  inch  and  1  minute,  find  the  greatest  error  in  the  calculated 
height. 

3.  If  the  density  (p)  of  a  body  be  inferred  from  its  weights  JF,  w  in 
air  and  in  water  respectively,  show  that  the  relative  error  in  p  due 
to  errors  8  W,  8w  in  W,  w  is 

8p_    —w8W       8w ~^~~''W-w~W  '  W-w 

4.  The  side  a  and  the  opposite  angle  A  of  a  triangle  ABC  remain 
constant  ;   show  that  when  the  other  sides  and  angles  are  slightly 
varied,  5,7  « 

} /•v  —     • cos  B    cos  C 

5.  If  a  triangle  A  BC  be  slightly  varied  but  so  as  to  remain  inscribed 
in  the  same  circle,  show  that 

8a         8b          8c 
T  T\   i 

T\   i  7v  —  v. cos  A     cos  B    cos  C 

6.  In  a  tangent  galvanometer  the  tangent  of  the  deflection  of  the 
needle  is  proportional  to  the  current  ;   show  that  the  relative  error 
in  the  value  of  the  current  due  to  an  error  in  the  reading  of  the 
deflection  is  least  when  the  deflection  is  45°. 

7.  If  ordinates  which  differ  by  less  than  one-hundredth  of  the  unit 
line  are  considered  to  be  equal,  show  that  the  parabola  y=#  +  2.T2  will 
coincide  with  the  graph  of 

for  values  of  x  between  —  *14  and  +  *14. 

8.  Show  that  the  curve  a?-\-yz  =  %axy  has  two  branches  which  pass 
through  the  origin  and  that  the  equations  of  these  branches  near  the 
origin  are  * 

Show  that  closer  approximations  are  given  by 
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9.  Show   that,  near  the  points  stated,  the  curve  3?+y*=2ax2  is 
given  by  the  respective  equations,  a  being  positive. 

Near  (o,  o)  y3  =  2eu?2  ;  near  (2a,  0)  y*  =  —  ±a\x  -  2a)  ; 
At  infinity  y=  -x  +  2a/3  +  4a*/9x. 
Show  that  y  is  a  maximum  when  x  =  4a/3  and  graph  the  curve. 

10.  Show  that  for  the  curve  xyz  —  x5  —  6#2  +  xy  +y2  =  0  the  following 
approximations  hold  :  — 

Near  (o,  o)  y  =  2#  —  f  x2  and  y  —  —  %x  4-  f  x*. 
At  infinity  #+l  =  l/y,    y=#+2-5/#,    y=  -x-^  +  Qfx. 
Show  that  the  asymptote  #+1=0  crosses  the  curve  at  (  —  1,  -5), 

the  asymptote  y  =#  +  2  crosses  at  (  —  f  ,  f)  and  the  asymptote  y=  —  x  —  3 
crosses  at  (  —  f  ,  —  |-  ).  Graph  the  curve. 

11.  Show  that  the  curves 

have  each  a  cusp  at  the  origin  but  that  both  branches  of  (ii)  lie  above 
the  #-axis  near  the  origin.     Graph  the  curves. 

In  case  (ii)  the  cusp  is  called  a  cusp  of  the  second  kind  or  a  ramphoid 
cusp  while  the  ordinary  cusp  is  called  for  distinction  a  cusp  of  the  first 
kind  or  a  ceratoid  cusp. 



CHAPTEK  XIII. 

INTEGRATION. 

§  110.  Integration.  In  §  82  the  general  problem  of  the 
Integral  Calculus  has  been  stated,  namely  :  —  Given  a  con- 

tinuous function  F(x),  to  find  another  function  which 
(i)  has  F(x)  as  its  derivative  and  (ii)  takes  a  given  value  A 
when  x  takes  a  given  value  a. 
When  condition  (i)  alone  is  given  there  is  an  indefinite 

number  of  solutions.  These  solutions,  however,  differ  only 
by  a  constant  ;  any  one  of  them  is  called  an  indefinite 
integral  of  F(x)  and  the  constant  is  called  the  constant  of 
integration.  This  constant  is  sometimes  called  an  arbitrary 
constant  since  it  may  have  any  value  whatever.  If  f(x) 
is  an  indefinite  integral,  f(x)  +  G  is  called  the  general  in- 

tegral, G  being  an  arbitrary  constant. 

Instead  of  the  notation  of  inverse  functions  Dx~l  F(x)  it 
is  customary  to  denote  the  indefinite  integral  of  F(x)  by 
the  symbol  p 

;....  ........................  (1) 

read,  "  the  integral  of  F(x)  with  respect  to  x"  or  "  integral 
of  F(x)dx"     The  differential  dx  indicates  the  variable  of 
integration,  namely  x,  and  the  joint  symbol   I  .  .  .  dx  means 

"  integral   of  ...  with    respect   to   x"      F(x)   is   called   the integrand. 

What  was  in  §  82  denoted  by  [D~l  F(x)]b  is  now  denoted by  n 
F(x)dx;  ...........................  (2) 

Ja 
read,  "  the  integral  from  a  to  6  of  F(x)  dx."     The  function 
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denoted  by  the  symbol  is  called  a  definite  integral,  and  a,  b 
are  called  the  limits  of  the  integral,  a  being  the  lower  limit 

and  b  the  upper.  (The  word  "  limit "  in  this  use  of  it  means 
merely  "  value  of  the  variable  of  integration  at  one  end  of 
its  range,"  "  end- value  " ;  this  use  of  the  word  must  not  be 
confused  with  the  technical  sense  employed  in  other  con- 

nections.) The  interval  (b  —  a)  is  called  the  range  of 
integration. 

Geometrically,  the  symbol  (2)  denotes  the  area,  in  sign 
and  in  magnitude,  swept  out  by  an  ordinate  of  the  graph 
of  F(x)  as  x  varies  from  the  lower  limit  a  to  the  upper 
limit  b.  If  f(x)  is  an  indefinite  integral  of  F(x)  then  as 
in  §  82 

I  F(x)dx  =  [D~iF(x)]ba  =/(6)-/(a)   (3) 
Ja 

We  may,  if  we  please,  use  the  general  integral  f(x)  -f  G 
instead  of  f(x) ;  the  result  will  be  the  same  since  C,  being  a 
constant,  will  disappear  in  the  subtraction. 

It  follows  at  once  from  the  geometrical  meaning  or  from 

(3)  that       f aF(x)  dx=-  { V(a?)  dx  =  f(a)  -  /(&)   (4) Jb  Ja 

that  is,  the  limits  a,  b  may  be  interchanged  if  at  the  same 
time  the  sign  of  the  integral  is  changed. 

Again,  the  form  f(b)— /(a),  or  the  geometrical  meaning, 
shows  that  the  definite  integral  is  a  function  of  its  limits, 

not  of  the  variable  of  integration.      Thus  1  F(u)du  has 

Ib
  

Ja F(x)  dx. a 
From  the  point  of  view  of  a  rate,  F(x)  when  it  is  the 

derivative  of  f(x)  measures  the  rate  at  which  f(x)  increases 
with  respect  to  x\  the  amount,  positive  or  negative,  by 
which  f(x)  increases  as  x  varies  from  a  to  &  is  /(&)  —/(a). 
Hence  the  definite  integral  (3)  measures  the  amount  by 
which  a  function  f(x)  increases  for  a  given  change  (b  —  a)  of 
its  argument  when  the  rate  of  change,  F(x),  of  the  function 
is  known. 

The  function  which  has  F(x)  as  its  derivative,  and  which 
is  equal  to  A  when  x  is  equal  to  a,  is  (§  82) 
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and  is,  in  the  present  notation,  represented  by 

\F(x)dx  +  A  or  by    *F(u)du  +  A  .............  (5) Ja  Ja 

Here  the  upper  limit  x  denotes  the  particular  value  of  the 
argument  for  which  the  function  is  calculated.  In  the 
geometrical  representation  of  §  82  the  upper  limit  x  is 
the  abscissa  OM  of  the  point  P.  From  the  point  of  view 
of  rates  the  symbol  (5)  denotes  the  function  which  is 
equal  to  A  when  its  argument  is  equal  to  a  and  which 
increases  at  the  rate  F(x). 

The  subject  of  definite  integrals  will  be  more  fully  con- 
sidered in  Chapter  XIV.  ;  enough,  however,  has  been  given 

in  this  article  and  in  Chapter  X.  to  enable  the  student  to 
solve  the  simple  examples  on  areas,  etc.,  which  are  given 
in  the  exercises  of  this  chapter. 

111.  Standard  Forms.  Integration  from  the  point  of 
view  from  which  it  is  now  being  considered  is  simply  the 
inverse  of  differentiation  and  the  first  requisite  for  the 
calculation  of  an  integral,  definite  or  indefinite,  is  a  table 
of  known  integrals  ;  the  table  will  be  formed  from  an 
examination  of  the  known  results  of  differentiation. 
Various  methods  will  then  be  given  for  reducing,  if 
possible,  an  integrand  not  found  in  the  table  to  a  form 
that  may  be  integrated  by  means  of  the  standard  forms. 
In  all  cases  of  indefinite  integrals  the  test  to  be  applied 
is  that  the  derivative  of  the  integral  must  be  equal  to  the 
integrand. 

In  symbols 

so  that  the  equation  that  defines  an  integral  is 

d 
dx\ 

Considered  as  symbols  of  operation  d/dx  and     . .  .dx  are 
inverse  to  each  other. 

In  the  language  of  differentials  F(x)dx  is  the  differential 
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of  f(x)  when  f(x)  is  the  integral  of  F(x)'}  f(x)  is  often 
called  the  integral  of  the  differential  F(x)dx.     Since 

F(x)dx  =  df(x)  =  d[\F(x)dx\ 

the  operators  d  and  '|  are  inverse  to  each  other. 
The  following  table  contains  what  may  be  called  the 

fundamental  standard  forms;  other  important  forms  will 
be  given  later.  Most  of  the  forms  are  given  twice  ;  the 
argument  occurs  so  often  in  the  combination  ax  +  b  that 
the  student  should  from  the  outset  make  himself  familiar 
with  the  corresponding  integral.  The  results  should  of 
course  be  tested  by  differentiation. 

1.  If  rH=-l. 
xn+l  T  (ax+b)n+l n f 

\ J 
x7ldx= 

2.  If  w=- 

\-dx  =  logx:  I  -  f  dx  = Jx  )ax  +  b 

3.  \exdx  =  ex\  \eaxdx  =  -eax. 

4.  \sinxdx=  —coax;  \  sin  (ax  +  b)  dx  =  —  cos(a#+6). 

5.  lcos£cfce  =  sin&;  \cos(ax  +  b)dx  =  -sm(ax+b). 

6.  I  sec2  x  dx  =  tan  x  ;  I  sec2  (ax  +  6)  dx  =  -  tan  (ax  +  b). 

7.  I  cosec2cc  dx  =  —  cot  x  ; 
f  1 
cosec2(a#  +  6)cfcc=  —  co J  a 

(      dx  (       dx  ,fx\ 
=sm    W  ' 

or  =—  cos"1^  or  =—  cos"1-- 
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9- 

or  =—  cot'1^  or  =  —  cot cot"1!--)- a          W 

1      ••  /  Cl  ~~  X 

=  3-  log  I-       - * 

Since  sin"1.*?  —  (  —  cos-1.r)  is  equal  to  Tr/2,  both  sin"1^  and  —  cos"1;*? 
are  integrals  of  !/>/(!  ~^2)  5  a  similar  observation  holds  for  the  integral 
of  1/(1+^2).  An  indefinite  integral  may  often  be  expressed  in 
different  forms,  any  two  of  which  must  however  differ  only  by  a 
constant.  Particular  care  is  required  in  dealing  with  the  inverse 
trigonometric  functions  since  these  are  many-valued  ;  the  restriction 
on  the  range  of  the  angle  (§§  28,  64)  must  always  be  attended  to. 

If  x  is  negative,  the  integral  of  l/#  is  not  log#  but  log(  —  x)  ;  if  x  is 
less  than  a,  the  integral  of  !/(#-«)  is  log  (a  —  x).  Form  11  is  inserted 
for  the  sake  of  comparison  with  10  ;  for  a  similar  reason  forms  8  and  9 
are  brought  together. 

Again,  if  x  is  negative,  it  may  be  verified  that  the  integral  of 

l/x/(#2  +  £)   is    -log{-^  +  v/(^2  +  ̂)}. 

Instead  of  the  logarithms  in  form  9  inverse  hyperbolic 
functions  may  be  used  (§  66). 

dx  ,    lfx\  . 

-    - 

f       dx  .'       .fx\     f 
to*        //  2  .  ~2\  =  smn"  (--)        -77 J  *J\X  +a  )  ^a'     J\/( 

and  it  should  be  remembered  that  cosh  ~  l  x  is  two-  valued. 

The  forms  tanh-1^,  coth'1^,  are  of  less  importance. 
Ex.  1.     Integrate  with  respect  to  x 

Ex.  2.     Evaluate 

/>  .        ,  r*          ,  f    ̂   p'cfce        T-1^ /  sm  ̂ 7  CM?  ;       I  cos  ̂   a^7  ;  -  ;  -  ;  — 
Jo  JO  Jo  COS*X  Ja2    X  J-S    X 
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§  112.  Algebraic  and  Trigonometric  Transformations.  By 
applying  the  definition  of  an  integral  and  Theorems  II.,  III. 
of  §  58  the  following  theorems  are  easily  proved  : 

(i)   I  c  F(x)  dx  —  c  \F(x)  dx  if  c  is  a  constant. 

(ii)  l(^  —  v+  ...  +  z)dx  —  Imfcc—  |w&e  +  ...  +  \zdx, 

where  U,  v,  ...  z  are  functions  of  x  or  constants. 
Thus  the  derivative  of  the  integral  on  the  left  of  (ii)  is 

by  definition 
16  —  V+  ...  +  Z', 

by  Theorem  III.,  §  58,  the  derivative  of  the  sum  on  the 
right  of  (ii)  is  the  sum  of  the  derivatives  of  the  terms,  and 
that  sum  is  by  the  definition  of  an  integral  u  —  v+  ...  +z. 
Hence,  apart  from  constants  of  integration,  which  are  not 
considered,  equation  (ii)  is  seen  to  be  true. 

Ex. 
f(3^-5^2  +  iy^=  f&xtdx-  \5x2dx+  \\dx    by  (ii) 

=  3  /  x^dx  -  5  /  xldx  +  I  dx      by  (i) 

Integration  is  essentially  a  tentative  process,  and  it  often 
happens  that  among  the  known  functions  there  is  none  of 
which  a  given  function  is  the  derivative  (see  §  82).  Two 
general  methods  of  integration  will  be  given  (§§  113,  118) 
which  are  of  great  use  in  the  search  for  integrals;  but 

usually  some  simple  algebraic  or  trigonometric  transforma- 
tion of  the  integrand  will  be  of  great  assistance  in  reducing 

it  to  a  sum  of  terms  each  of  which  is  a  standard  form. 

Some  of  the  results  are  so  important  as  to  be  included 
among  the  stand^d  forms,  but  the  student  should  rather 
try  to  seize  the  spirit  of  the  transformations  than  burden 
his  memory  with  a  mass  of  isolated  results.  (See  the 
remarks  in  §  123.) 

We  now  take  one  or  two  examples  of  such  transforma- tions. 
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Ex.  1.     Integrate        (2^-7^2  +  l)/(2^-  1). 
By  division, 

Hence  the  integral  is 

%x*  —  f  #2  -  f  x  —  \  log  (2#  -  1). 
Any  fraction  in  which  the  numerator  is  a  rational  integral  function 

V      of  x  and  the  denominator  a  linear  function  may  be  integrated  in  the 
same  way. 

Ex.  2.     Integrate  l/(^2-a2). 
Eesolve  the  fraction  into  partial  fractions  : 

J__=JL(_1       i  \ xz  —  a?     2a\#-a    x x+a/ 

1    ,        X  —  Cb 
\J  =—  log  -     -. 2a      3  x+a 

This  is  the  proper  form  if  x2  >  a2,  because  then,  and  only  then,  is 
(x-  a)  I  (x+a)  positive  ;  if  x2  <  a2  the  integral  is 

1  ,      a  —  x 

because  in  that  case  the  integral  of  l/(x-a)  is  log  (a  —  x). 
The  transformation  is  a  particular  case  of  the  method  of  partial 

fractions,  and  the  student  should  refer  to  some  text-book  of  algebra 
for  an  account  of  the  method  ;  see  also  §  120. 

Since  ^     ̂           _f_  +  . 
(#-l)(#-2)    #-1     < 

it> 
(x-  l}( 

(x 

Ex.  3.     The  forms       \  ., 

a+bx* If  a,  b  are  both  positive,  we  have 
dx        I       dx _ 

If  a  is  negative,  &  positive,  we  reduce  the  integrand  to  the  form  of 
ex.  2  ;  thus 

I      dx          I     ! 
' 

In  a  similar  way  l/*J(a  +  bx2)  may  be  treated  ;  thus 
f       dx  I      [      dx  1          !/ I  _  —  _  I  _  —  _  QI  n  ~*  I 

i   /3-2^~2  '  J  V     ~^2)~V2          V 
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With  a  little  practice  the  student  should  be  able  to  do  many  of  the 
steps  mentally  ;  the  full  process  for  the  first  case  is 

dx       1      1         _J  x\         1  ,xJb 
— -=T-  -r-tan    /-r-\  =  -77  ,-rtan-1— J— . 

lf 

67 
J      A 

Ex.  4.     sinw#,   cos71  #,   sin  mx  cos  MX 
When  w  is  a  small  positive  integer,  sinn#,  cosw#  may,  without  any 

difficulty,  be  expressed  in  terms  of  sines  or  cosines  of  multiples  of  x  ; 
for  other  values  of  n  it  is  best  to  take  the  method  of  successive  reduc- 

tion (§  119)  or  the  method  of  ex.  4,  §  114, 

sin2#  =  £(1  —  cos  2#)  ;   sin3#  =  f  sin  x  —  \  sin 

/  sin2.rcfo7  =\x  —  \  sin  Zx  ;     /  sin3#cfo?  =  —  f  cos  x  +  ̂   cos 

f*          *    r 
I   sin2^o?^  =  j  ;     /    si 

In  the  same  way  powers  of  cos  x  may  be  treated. 
Again,  a  product  of  a  sine  and  a  cosine,  or  of  two  sines  or  of  two 

cosines,  may  be  expressed  as  a  sum  or  a  difference  of  sines  or  cosines 
and  then  integrated.  Thus 

sin  mx  cos  nx  =  £  {  sin  (m  +  n)x  +  sin(m  —  ri)x  }  ; 
hence,  if 

but  if  m=n,  then  the  integral  is 
-- 
4m 

EXERCISES  XXII. 

Integrate,  with  respect  to  x,  examples  1-15. 
x*   ^±ju     r  A*H>   o  Q     AM  -|    i  ̂   o 

X-S  '
  ~ ~ ' 

4  3^-7  5        1 /  c\\  /  o\   *  to 

11.  cos2(a^  +  6);  12.  sin4#;  13.  si 
14.  sin  (S.r  +  2)  cos  (4^-  +  3)  ;  15.  cos  x  cos  2#  cos  3.r. 

Find  the  value  of  the  integrals  in  examples  16-21. 

r'v  /*?  r2    dx 
16.    /  cos2  x  dx  ;  17.    /  sin2  2#  o?^-  ;  18.    /    4  .  ̂ 2  5 
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22.  If  m,  n  are  unequal  positive  integers,  prove  that 

/  cos  mx  cos  nxdx=Q  =  I  sin  mx  sin  nx  dx, 

and  find  the  value  of  each  integral  when  m,  n  are  equal  positive 
integers. 

23.  Show  by  considering  the  graphs  of  the  integrands  that  the 
following  equations  are  true  : 

w  tr 
r~z  rv 

(i)    /  cosnxdx=  /  sir^xdx  where  n  is  positive, Jo  Jo 
TT 

f  

f"2" (ii)    /  sinM#efo?=2  /  $\i\nx  dx  where  n  is  positive, 

/**  /"* 
(iii)    /  cosw#cfo?=2  /  co&nxdx  if  n  is  an  even  integer, Jo  Jo 

but  =0  if  n  is  an  odd  integer. 

24.  The  area  bounded  by  the  parabola  y2  =  4ax,  and  the  double 
ordinate  through  the  point  (6,  c)  on  it  is  %bc. 

25.  If  a,  b  are  positive  and  a<b,  the  area  between  the  hyperbola 

xy  =  ci,  the  #-axis  and  the  ordinates  at  a,  b  is  c2  log  (&/«). 
If  instead  of  a  hyperbola  the  curve  is  that  given  by  y=xnlcn~l, 

then  the  area  is  n1       ni       +  ̂ -i 

26.  The  area  between  the  #-axis  and  one  arch  of  the  harmonic  curve 
y  =  b  sin  (xja)  is  2a6. 

27.  An  ellipse  revolves  about  its  major  axis  ;  show  that  the  volume 

of  the  spheroid  generated  by  a  complete  revolution  is  ̂ Trab2. 
If  the  axis  of  revolution  be  the  minor  axis,  the  volume  is 

28.  The  area  of  the  section  of  certain  surfaces  "made  by  a  plane 
through  the  point  whose  abscissa  is  x  perpendicular  to  the  #-axis 
is  A  +  Bx+Cx*  where  A,  B,  C  are  constants.  Show  that  the  volume 
intercepted  between  two  planes  perpendicular  to  the  #-axis  is 

A(b-  a)+  J5(62  -  a2)  +  %€(&  -  a3) 
where  a,  b  are  the  abscissae  of  the  points  where  the  planes  cut  the 

Apply  the  result  to  find  (i)  the  volume  of  a  cone  ;  (ii)  the  volume  of 
a  segment  of  a  sphere  ;  (iii)  the  volume  of  the  ellipsoid  whose  equation 
is 

29.  If  in  ex.  28  Slt  £2,  M  are  the  areas  of  the  sections  through  a,  b 
and  the  point  midway  between  a  and  b,  and  if  b  —  a  =  2h,  show  that 
the  volume  is 



CHANGE  OF  VARIABLE.  271 

§  113.  Change  of  Variable.  The  rule  for  differentiating  a 
function  of  a  function  (§  59)  leads  to  one  of  the  two  general 
methods  of  integration  referred  to  in  the  preceding  article, 
namely,  that  of  changing  the  variable  of  integration. 

Take  first  the  simple  example 

„,_  f   dx     dy=      l 
CvX       <X, 

Let  y  be  made  a  function  of  u  by  the  substitution  x  =  u—,~[  ; by  §  59, 
^ 

du~dx 
Hence,  considered  as  a  function  of  u,  the  integral  is 

f
j
 

-2
~-
j 
 

= 
 

ia
iD
.~
lu
) 
 

th
at
  

is,
  

2/ 
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ta
n~
1(
cc
+l
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The  change  of  variable  has  enabled  us  to  reduce  the 
integrand  to  a  known  form,  and  thus  to  integrate  it. 

Take  now  the  general  case  in  which  the  integrand  is  F(x). 
Let  y  be  made  a  function  of  u  by  the  substitution  x  =  (f>(u)  ; 

dy  _dy  dx_     ~    .dx  /^ 
du~  dx  du       *   '  du 

In  (1)  let  dx/du  be  found  from  the  equation  x  =  (/>(u)  and 
then  express  the  new  integrand  F(x)  dx/du  in  terms  of  u 
by  means  of  the  same  equation.  Equation  (1)  will  now  be 
free  from  x  and  we  shall  have 

y= 

It  may  happen  that  the  new  integrand  is,  as  in  the  above 
example,  a  standard  form ;  if  not,  it  may  perhaps  be  more 
easily  reduced  to  one  than  the  old  integrand  F(x). 

Expressing  y  as  an  integral  with  respect  to  x,  and  equating 
it  to  the  value  given  by  (2),  we  have 

  (3) 

The    simple   rule    then   for   changing    the   variable    is: 
Replace  dx  by  (dx/du)  du  and  by  means  of  the  equation 
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between  x  and  u  express  the  new  integrand  F(x)  dx/du  in 
terms  of  u  ;  the  integral  will  then  be  a  function  of  the  new 
variable  u. 
When  the  integration  has  been  effected  the  integral 

should  be  expressed  in  terms  of  the  old  variable. 
If  when  x  =  a,  u  =  a,  and  when  x  =  b,  u  =  /3,  the  relation 

being  such  that  as  x  varies  continuously  from  a  to  b,  u  also 
varies  continuously  from  a  to  /3,  then 

In  this  case,  of  course,  there  is  no  need  for  returning  to  the 
old  variable. 

In  applying  the  transformations  (3)  and  (4>)  it  is  essential 
that  to  each  value  of  x  there  should  correspond  one  and 
only  one  value  of  u,  and  to  each  value  of  u  one  and  only 
one  value  of  x,  within  the  ranges  b  —  a,  /3—  a  of  integration. 
When  the  equation  between  x  and  u  gives  u  as  a  multiple- 
valued  function  of  x,  or  x  as  a  multiple-valued  function  of 
u,  care  must  be  taken  to  choose  the  proper  value.  (See 
§  117,  Ex.  3,  §  123.) 

§  114.     Examples  of  Change  of  Variable. 
Ex.  1.     F(x)  of  the  form 

Let  u=ax  +  b;    du=adx,  dx  —  -du a 

I  -\ls(ax  +  b)dx  =  -  I 

This  type  constantly  occurs.     Thus  if  u=x-  1/4, 

f       dx       _  j  [        dx         _ 

J  2x*-x+i~  $J  (x-ty+fr- 
so  that  the  integral  is 

*  14  i/4%\      2 

i-^^^v 

A  constant  factor,  like  2,  can  be  taken  outside  the  integral  sign 
when  necessary  ;  similarly  a  constant  factor  may  be  introduced,  as  in 
ex.  3. 
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Ex.  2.     F(x)  of  the  form 

Let  u  =  xn  ;    du  =  fu^1"1  c£r,  .j^"1  dx=-du n 

TVniQ    if  ?/  —  'r2 iii 1 1*>»  11  K'  —  ̂ 6  • /  7 

/•  i  r  i /  »J(ax2 -\-b)xdx  =  -\  J(au  +  b)du  =  —  (au J  ZJ  3d' 

< 

and  the  given  integral  is       (ax2  +  b)3l2/3a. 
The  integral  may  also.be  found  by  putting  u  =  ax2-}-b,  or  by  putting 

The  last  substitution  gives 

u3 

u  =—, 
3a 

leading  to  the  same  value  as  before. 

if  1 
xdx=-udu  ;    /  J(axz  +  b)xdx=-  I a  J  aJ 

Ex.  3.     F(x)  of  the  form 

Let  u  =  \Js  (x)  ;   du  =  ̂'  (x)  dx  ;  '  F(x}  dx  =  un  du, 
and  the  integral  is  a  power  or  a  logarithm  according  as  n  is  different 
from  or  equal  to    -  1.     We  have 

From  (36)  we  see  that  when  the  integrand  is  a  fraction  whose 
numerator  is  the  derivative  of  the  denominator,  the  integral  is  the 
logarithm  of  the  denominator. 

The  introduction  of  a  factor  is  sometimes  needed  to  make  the 
integrand  of  the  form  3.  Thus 

f,  [-sinx  , 
(in)      /  tan  x  dx—  —  I  --  dx—  -  log  cos  x. J     COS  X 

(iv)     I  tan3^  dx  =  f  tan  x  (sec2#  -  l}dx  =  I  tan  x  sec2^  dx  -  I  tan  x  dx, 

and  therefore         =  ̂   tan2.^  +  log  cos  x. 
G.C.  s 
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Ex.  4. 

(i)  When  either  m  or  n  is  an  odd  positive  integer  the  integration 
can  be  effected  by  substituting  u  for  cos.r  when  m  is  odd,  but  u  for 

sin  x  when  n  is  odd.     For  example,  take  F(x)  =  sin^r  cos5.r. 
Let  u  =  sin  x  ;   du  =  cos  x  dx  ;   cos4  x  =  (1  -  u2)2 

l^ii^xcQ^xdx—  I  (u*  - 

o 

Again,  if  u  —  cos  .#,  c?w  =  —  sin  x  dx 

=  sin¥#(§  -  f  sin2.r  -f-  ̂   si 

=  f  (u*  -  2u?  +  w*)  du  =  §  - Jo 

I  sin5#  dx  =  —  /  (1  -  u2)2du  =  -(u-  |w3  +  i 

and  /  sin5  .r  dx  =  —  cos  ̂ 7  +  1  yos3  ̂7  —  £  cos5  #. 

(ii)  When  m+n  is  an  even  negative  integer,  let  w  =  tan#  (or  cot  x)  ; 
the  new  integrand  can  be  expanded  by  the  Binomial  Theorem.     Thus, 

(       dx  f(I+u2)*    du        [(I      33^    \, /    .  ,      —5-=;^  --  r~i  --  9=1  I  -fi  +  ~sH  —  h«  )»«• J  sm5^  cos3^    J       u6      I  +  u*    J  \  u5    u3     u       / 

and  the  integral  is  readily  found  in  terms  of  x. 

Ex.  5.  If  F(x)  is  a  rational  function  of  x  and  of  *J(ax+b),  the  sub- 
stitution ax  +  b  =  u2  will  make  the  new  integrand  a  rational  function 

of  u.  Thus,  if  x  +  1  =u2, 

=  2  f  (u2  -  I)2u2du  =  ZQu1  - 

and  after  a  little  reduction  we  get  for  the  integral 

The  forms  just  given  include  many  of  the  most  important 
cases  in  elementary  work,  and  the  student  should  at  once 
try  the  earlier  examples  in  Exercises  XXIII.  Only  through 
practice  will  he  gain  facility  in  making  the  transformations. 

§  115.  Quadratic  Functions.  If  R  =  ax2  +  bx  +  c  and  if  f(x) 
is  rational  and  integral,  the  fraction  f(x)/R  can  be  expressed 
as  the  sum  of  an  integral  function  and  a  proper  fraction 

+  B)/R.  We  will  now  consider  the  forms  (Ax  +  B)/R 



QUADRATIC  FUNCTIONS.  275 

For  beginners  the  simplest  method  is  to  write  R  in  the 

form  _,        /    , R-a(x+ 

i} 

2a/ 

when  a  is  positive  we  may  take  it  as  equal  to  +1,  and 
when  negative  as  equal  to  —  1  :  there  is  no  loss  of  generality 
in  so  doing  since  a  constant  factor  may  always  be  taken 
outside  the  integral  sign. 

If  4ac  —  b2  is  positive  the  factors  of  R  are  imaginary  ; R  is  then  of  the  form 

(i) 

If  4ac  —  62  is  negative  the  factors  of  R  are  real,  and 

fora=+l,         •          R  =  (x+a)*-/32  ........................  (ii) 

fora=-l,  R  =  @*-(x  +  a)*  .......................  (iii) 

I.  (Ax  +  B)/R. 
(i)  If  the  factors  of  R  are  real  resolve  the  fraction  into 

partial  fractions  as  in  §  1  1  2,  Ex.  2. 

(ii)  If  the  factors  of  R  are  imaginary  then  R  =  (x  +  a)2 and  we  can  transform  the  fraction  so  that  the  substitutions 
of  Ex.  3  and  Ex.  1  of  §  114  can  be  used.  Choose  X  and  p. 
so  that 

Ax  +  B 
Hence       --  - 

, 
and 

the  first  integral  being  a  case  of  §  114,  Ex.  3,  the  second 
of  §  114,  Ex.  1. 

II.  (Ax  +  B)/  JR. 

(i)  Let  R  be  either  (x  +  a)2  +  /32  or  (a  +  a)2-/32.      Make 
the  same  transformation  of  Ax  +  B',  then 

dx 

log  {(x  +  a 
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(ii)  Let  R  =  /32  -  (x  +  a)2  ;  then 
[(A  _ 

J 
 ~ 

when  J.  =  0,  X  =  0  and  the  integrand  is  of  the  type  §  114, 
Ex.  1. 

In  working  numerical  examples  it  is  best  to  find  first  the 
derivative  of  R\  it  is  then  easy  to  write  Ax  +  B  in  the 
required  form. 

Ex.  1. 

&7     1  f 
Z  +  *!  ̂ 

dx 

Ex.  2. 

3  f   (-kv+V)dx         7    f integral-  .  + 
dx 

The  types 

can  be  reduced  to  the  cases  just  discussed  by  the  substitu- 
tions x  =  l/u,  mx  +  n  =  l/u  respectively.  These  give  by 

logarithmic  differentiation 
dx  _      du        dx  1    du 
x  u      mx+n         rmJ    u 

The  substitution  of  1/u  for  x  is  effective  in  other  cases  ; 
f      dx  f      udu  1 

thus  -i=  —  I  —  =  -  —[> 
J(a2  +  ̂ T        J(aV  +  l)f     a2(aV  +  lf 

which,  expressed  in  terms  of  x,  is  x/a\a2+x2y*. 
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The  more  general  form  l/(ax2  +  bx  +  cy  can  be  treated  in 
a  similar  way  after  expressing  the  quadratic  in  the  form 
given  at  the  beginning  of  this  article. 

§  116.  Trigonometric  and  Hyperbolic  Substitutions.  Another 
method  of  treating  the  quadratic  function  is  to  transform 
it  by  a  trigonometric  or  hyperbolic  substitution.  The 
particular  transformation  is  suggested  by  the  form  of  the 
quadratic. 

a2  —  x2,  ̂ /(a2  —  x2)  ;  x  =  a  sin  0  or  x  =  a  cos  0  ; 

or  #== 

or  a;  = 

;  etc. Ex.  1.     If#—  asin#;  dx=acos6dO. 

?-x*)dx=a?[coszede  =  a?(6  +  sm  (9  cos  0\ 
and  therefore 

-  x*)  4-  -~  sin"1  -. /  x/(«2  - 

Ex.  2.     If  #=asinh#;  dx=acoshddO. 
sh  0\ 

and  therefore 

By  putting  ̂ =  a  cosh  0  we  find 

f  x/(^2  -  a*)dx=%xj  (x*  -  a2)  -  ̂  cosh'1^  \ 

Ex.  3.     If  a?+2=^3  tan  0  ;  dx= 
dx 

and  the  integral  is 

For  definite  integrals  trigonometric  substitutions  are  of 
great  importance. 
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§  117.  Some  Trigonometric  Integrands.  The  integration 
of  powers  and  products  of  sines  and  cosines  can  often  be 
effected  by  the  methods  of  §  112,  Ex.  4,  §  114,  Ex.  4,  and 
§119,  Ex.  2,  3.  There  is  another  method,  however,  that  is 
frequently  useful.  When  the  integrand  is  a  rational 
function  of  sin  a?  and  of  coso?  the  substitution  u  =  tanja? 
will  reduce  the  integral  to  that  of  a  rational  algebraic 
function  of  u,  for 

1  —  u2    7        2du =  =  - — s>  dx  = 

Examples    1-3    may    almost    be    reckoned    among    the 
standard  forms  ;   the  substitution  is  for  each  u  =  tan|  x. 

Ex.1. I-     -=  /-  -  = 
J  Sill  X       J    U 

-r,     0  f  dx       f  2du  l+u     ,      1-ftani.r 
-kx.  2.  /  -  =  /  -  -  9  =  log  -  -  =  log  =-        —  f 

J  cos  x    J  I—  w-        '  1  —  u        'I  —  tan  •£# 
The  integral  can  be  put  in  several  forms  as 

f  x    TT\ 
log  tan  I  s-f  T  J  °r \2     4/ 1  —  sin  x 

The  substitution  v  =  =  —  x  or  <v=x  —  -~   will  reduce  the  integral  of 

l/cos#  to  that  of  1/sinx 
du  . 

Ex  3 

(a  +  6)  +  (a  -  b)u* 
Let  a  +  b  be  positive  ;    then   there  are  three  cases  according  as  b 

is  numerically  less  than  or  greater  than  or  equal  to  a. 

(i)  b2  <  a2  and  therefore  b  <  a,  numerically 

[       dx  2  ./       la-b\ 
I      i  i.   =  //  2 — r^tan"1  (  w  A/   f  }tu  =  tan  f .tr. 

(ii)  b2  >  a2  and  therefore  b  —  a  positive, 

dx                1       !      v6  +  a,  +  i<v  6  —  & 
— =           log  -^=:=            . 

a  +  6  cos  #    v  &2  -  a2       v  6  +  a  —  u-Jb  —  a 
(• " *\       7  O  

O 

m)  62=a2, 

//y />* 
 /  /y/y* Cv«X/  ±   j  j        ̂   ''.'  A  j     j 

a+acos.r    a  J  a  —  acosx        a 

Case  (ii)  is  of  less  importance  than  (i).     A  more  easily  remembered 
form  of  the  integral  (i)  is  obtained  by  writing 
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whence  cos  6  =  (a  cos  x  +  b)/(a  +  b  cos  x\ 

or  (a  —  6  cos 

x  is  the  true  and  Q  the  eccentric  anomaly  in  an  ellipse  of  eccentricity 

b/a  (Godf  ray's  Astronomy,  §  186  ;  Gray's  Physics,  §  520.) 
a  +  6  cos  #  goes  through  its  complete  range  of  values  if  x  varies  from 

0  to  TT  or  again  if  x  varies  from  -  TT  through  negative  values  to  0.  If 
x  lies  between  0  and  TT,  0  is  positive  and  lies  between  6  and  TT  ;  but  if 
x  lies  between  -TT  and  0,  0  is  negative  and  lies  between  -TT  and  0. 
Hence  bearing  in  mind  the  restriction  on  the  inverse  cosine  (§§  28,  64). 

if  0<*^ir. 
cos 

—  1  _,  .,.         <-   ̂ - 
but  =   .         .ovCOS-M-    -=-  --     if  -TT^P^ 

There  is  no  ambiguity  when  the  integral  is  expressed  in  terms  of  the 
inverse  tangent.     See  also  Examples  11,  12,  p.  135. 

T7 dx  ...  TT  TT 

The  integral  =  /  — .'  a 

If  62<a2,  the  substitution  x  —  irl^  —  v  or  .r=7r/2  +  v  will  reduce  it  to 
Ex.  3  (i)  ;  the  student  should  make  both  of  the  latter  substitutions. 
He  will  thus  see  that  it  is  not  sufficient  to  consider  only  the  one  value 
of  0  as  determined  by  cos  0.  The  substitution  furnishes  a  good 
instance  of  the  care  needed  in  dealing  with  inverse  functions.  There 
is  no  ambiguity  if  the  integral  of  Ex.  3  (i)  in  terms  of  the  inverse 
tangent  is  used. 

/» 

-  5  -  :  —  ,    a  positive. 
a  +  ocos#+csm.£ 

If  62  +  c2  =  £2  we  may  write 

and  the  integral  reduces  to  Ex.  3.     For  k2  <  a2  the  integral  is 

±1 

the  sign  being  +  or   —   according  as  x  —  a  lies  between  0  and  TT  or 
between  -  TT  and  0. 
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EXERCISES   XXIII. 

Integrate  with  respect  to  x  examples  1-22. 
111 

3. 

£\JU        *"|       ̂ JfV    ̂ f™  TI 

1        l 
5* \!  (x  —  a)(b  —  x)  ' 

7   *»_.. 
8          x 

10.    cot  x  ; 
....        cos  # 

1  +  sin  x  ' 1  ̂        ̂ tifi^/v*  • 
XcK               L  (I   I   I       ,  '         y 14.    cot5#  ; 

16.    sin7^?  ; 
1  rr           *     fi               l 1  *        CIITW  v  /^na*'; X  f  •        OAAl    ^O  l^Uo   »> 

19     sin  x. 
Oft        r    ///y        <A 
£i\J.       ib/\J\U/        tb) 

22.             * 

-  ax)  ' 

6.          * 

9.          ̂ +1
 

15. 

a2 

18.   -^± 

21. 

23.   Find  the  value  of  the  integrals 

ft  ft  f"  dx 
(i)  /    sin5^7  dx  ;      (ii)  /   sin%  cos5^7  dx  ;  (iii)  /  —5   ^ Jo  Jo  Jo  or  cos. 

(vi)  P 
o  4  —  sm^r  Jo  Jo 

dx  iii)  /"'  slnJ^ 
}Jo  1+cosV 

dx 

Integrate  M'ith  respect  to  x  examples  24-41. 

24.    -£±±r;  25.   i4;  26. 

27.  V^;  28.  -F^44;  29. 

30.  A/r     :  ;  si.  A/(      :  J        32- 
\  \^7-l/       .  V  \     «      / 

33.  JL  •  34.   7   x  ̂  0   .  ;    35. sv*      If  Q  /yt*     1      O  /yi  ̂      1    1  i    /y1  -J.-.  1     1       //  /V»^         1     l 

tA^\f  \ *>Jw        i^  AtAs  i  I  \  «*/  ̂ ^  J-   7yV/  \  *A/  A   7 

36.    y—   — r — 77—    -H^  ;  37.    7   rr — jr=-    —^- ;    08. 

A*  1  41      cos  #+ sin  ̂7 
*U.      •= — — —  )  41.      — :   — —   . 1  +  tan  x  sin  x  +  2  cos  x 
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42.    Find  the  value  of  the  integrals 

dx  ,..v   f2'       dx 

(iv)  (f  dx  -  ,(rH=l)  ;       (v)  r       J^L.        (0  <  a  <  TT)  ; 7  Jo  l-2rcos#  +  r2V  '  Jo  l  +  cosacos#v 

3  +  5  cos 

43.    Find  the  value  of      ' '-  1 1  -  2#  cos  a 

(i)  when  0  <  a  <  TT  ;         (ii)  when  TT  <  a  <  27r. 

44.  If  a  is  positive,  and  b  numerically  less  than  a,  prove,  by  the 
substitution  cos  B  =  (a  cos  x  +  b)/(a  +  6  cos  x),  that 

jT(g    frtos  xY = fa2  -  W-  JJ^  ~  b  C°S
  ̂"~  W> 

45.  Trace  the  curve  given  by  ayz=3?(a-x\  a>0,  and  find  the  area 
of  the  loop. 

46.  Trace  the  curve  given  by  a?y*=xi(a?-x2'))  and  find  the  area  of 
both  loops. 

47.  Trace  the  curve  whose  polar  equation  is  r=a  +  bcos  9,  a>6>0, 
and  find  the  area  enclosed  by  it. 

48.  By  transferring  to  polar  coordinates,  find  the  area  of  the  ellipse 
whose  equation  is  ax2  +  %hxy  +  by2  =  1. The  area  is 

n      i         i   -'  -7/1        '  ™" 

r- 

J- ^  „  _»  acos2#+2Asin  0cos  6+bsin26 

§  118.  Integration  by  Parts.  The  second  of  the  general 

methods  of  Integration  is  that  called  "  Integration  by 
Parts  " ;  it  corresponds  to  the  theorem  for  the  differentia- 

tion of  a  product. 
For  the  moment  denote  integration  by  a  suffix  and 

differentiation  by  an  accent;  thus 
du 

udx ;  u'  = 
dx 

By  the  rule  for  differentiating  a  product  we  have 

_dul  dv 

dx        dx          l  dx' 
-i  ,  - 

that  is,  T1  /  =  uv-\-u,v)        since  - dx  dx 
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Hence  u-p  =  \(uv  -+-  n^v')  dx  ........................  (1) 

=  I  uv  dx  +  I  u^'dx  ; 

and  therefore    \uvdx  =  ulv—  1%1/cfo  ..........................  (2) 

Equation  (2)  gives  the  theorem  in  question.  It  may  happen 

that  the  integral  of  u^v'  can  be  more  easily  determined than  that  of  uv. 
For  a  definite  integral,  lower  limit  a  upper  limit  6,  we 

get  instead  of  (1) 

[u-^v]^  —  I  (uv+u-pf)  dx  ......................  (3) 
and  instead  of  (2) 

p  6      (b 
i  uvdx  =  [u*vV  —  1  u*v'dx  ...................  (4) 
Ja  Jci        Ja 

where  the  symbol  [i^v]  means  as  usual  that  x  is  to  be  first 
replaced  by  6,  then  by  a,  and  the  second  result  subtracted 
from  the  first. 

The  examples  will  show  the  great  power  of  the  theorem. 

Ex.  1.     Find I 

Here  both  x  and  cos  x  can  be  immediately  integrated  ;  but  we  take 
=x  since  then  v'  =  l. 

I  xcosxdx=x  .  sin.#-  /  1  .  sin#cfo7=.r  sin 

Ex.  2.     Find I 

Again   we   put  v=xz   since  v'  =  2#,   and   the   new   integrand   will 
therefore  be  simpler  than  the  old. 

/xz  cos  x  dx=x*  .  sin  x—  \  2x  .  sin  x  dx. j 

The  theorem  may,  be  again  applied 

/  Zx  .  sin  x  dx=%x(  —  cos  x)  —  I  2(  —  cos  x)dx  =  —2x  cos  x  +  2  sin  x. 

Hence     I  x2  cos  x  dx  =  x2  sin  x  +  2x  cos  x  —  2  sin  x. 
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Ex.  3.     Find    /  eaxco$(bx+c)dx  and    /  eax$m(bx  +  c)dx. 

In  finding  one  of  these  integrals  we  also  find  the  other. 

Let  P=  I  eaxcos  (bx  +  c)  dx,      Q  =  I  e^sin  (bx  +  c)  dx. 
In  this  case  it  does  not  matter  which  factor  is  taken  for  v. 

D    eax         /-L  feax   r     7    •    /z,        \i  j       eaxcos(bx  +  c)     bQ P=  --  cos(o#  +  c)-  /  —  .  [-  bsm(bx+c)\dx  =  -  2  —  -^—H  —  X. a  J  a  a  a 

Hence  aP—bQ  =  eaxcos(bx+c)  ...............................  (i) 
In  the  same  way  by  operating  on  Q  we  find 

bP+aQ  =  eaxsiu(bx+c)  ..............................  (ii) 
Solving  (i)  and  (ii)  for  P  and  Q  we  find 

P=  fe-cos^  +  c)^=^^COS^+c)  +  6 J  a2  +  62 

These    two    integrals    are   of    great  importance  in  mathematical 
physics. 

Ex.  4.     Find     *a*  -  x2dx  and .  4.     Find  f  *J(a*  -  x 
Here  the  integrand  has  but  one  factor  ;  but  we  may  take  unity  as  a 

factor  and  put  u  =  l.     Hence 

/J(a2-x2)dx=xJ(a?-x'X)-  \x.  -77-s  -  ̂  
>/(«  -  9r) 

-"W-"**-  1  ,&#-*)**• 
We  now  write 

The  first  term  on  the  right  is  the  given  integrand  while  the  integral 
of  the  second  term  is  — 

Substitute  in  (1),  transfer  the  integral  to  the  left  side,  and  divide 
by  2  ;  we  thus  get 

the  same  result  as  in  §  116,  ex.  1. 
In  the  same  way  it  may  be  shown  that 

±  o?)dx  =  iax/fa2  ±  «2) 
Compare  §  116,  ex.  2. 
The  algebraic  transformation  used  above  is  often  useful  ;  a  similar 

transformation  occurs  in  integrating  circular  functions  (§  119,  2,  3). 
The  quadratic  >J(axz  +  bx  +  c)  can  be  integrated  by  expressing  it  as 

in  §  115,  and  putting  x  +  a=u. 
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Ex.  5.     Find      logxdx. 

I  log  xdx=x  log  x  —  I  x-dx—x\og  x-x. 

§  119.  Successive  Reduction. 

Ex.  1.     Let  un  —  \xne?dx  ;  then,  integrating  by  parts, 

un=  \xnefdx=xneK-    nxn~1exdx=xnex-n  ix^-^dx, 

that  is,        un=xnex  —  nun-i. 
Writing  n  —  I  in  place  of  n,  we  find 

wn_i  =  xn~  V  -  (n  -  1  K_2, 

that  is,        un  =  xnex  —  nxn~^(^  +  n(n  —  1  )ww_2. 
Proceeding  in  this  way,  we  see  that  if  n  is  a  positive  integer,  un  may 

be  made  to  depend  on  w0,  that  is,    /  exdx  or  e*.     If  n  is  not  a  positive 
integer  but  is  still  positive,  un  may  be  made  to  depend  on  an  integral 
in  which  the  integrand  contains  x  with  a  positive  proper  fraction  as 
index.  The  integral  cannot  in  that  case  be  expressed  in  finite  terms 
by  means  of  known  functions,  but  it  is  reduced  to  the  most  convenient 
form  for  studying. 

The  above  method  of  making  an  integral  depend  on  another  of  the 
same  form  is  called  that  of  Successive  Reduction. 

The  integrals  of  xn  sin  x,  xn  cos  x  may  be  treated  in  the  same  way. 

Ex.  2.  un—  \smnxdx. 

un=  I  sinn#  dx  =  I  sin""1^  .  sin  x  dx 

=sinn-1#(  —  cos  x)  —  I  (n  -  1)  sinn~2#  (  -  cos2#)  dx 

=  —  sin""1^  cos  x  +  (n  —  1)  /  sinw~2#  cos2^  .  dx. 

Now  cos2#  =  1  -  sin2#  ;     sinw~2^7  cos2#  =  sinM~2^7  -  sinw.r. 

Hence  un  =  —  sin*1"1^  cos  x  +  (n  —  1  )  un-z  —  (n—l)un, 

,  1.*?  cos  #  ,  n  —  1 
and  therefore     un=——  -  -\  --  wn_2  ...............................  (i) n  n 

The  index  n  has  thus  been  reduced  by  2.     Writing  n  -  2  in  place  of  n, 
we  get  sinM~3#  cos  x    n-3 

and  therefore 

sin^^costf    n  —  l  sinw~3^  cos  x  ,  (n  -  l)(n  -  3) 

Un~  IT  ^T        n-2  n(n-2)     Un~4' 
If  n  is  a  positive  integer,  we  can  repeat  the  reduction  until  the 

index  is  1  if  n  be  odd,  or  0  if  n  be  even  ;  ul=  -cos#  and  UQ=X,  since 
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in°^=l.  If  n  is  positive  but  not  integral,  un  may  be  reduced  to 
depend  on  an  integral  in  which  the  index  is  either  a  positive  or  a 
negative  proper  fraction.  For  negative  values  of  n  see  ex.  4. 

The  most  useful  case  of  the  formula  (i)  is  that  in  which  n  is  a 
positive  integer  and  the  integral  is  taken  between  the  limits  0  and  Tr/2. 
In  this  case  (i)  becomes 

P  •       ̂       f    T     f    sin'-^cosarp    n-ir       ~] /    sin*4pdfc=    un     =    —  +•  -   ww_2 Jo  L     Jo     L_  n          Jo^LJ 

n-l  ft  . 
=-     -I   8mn-*xax. n   Jo 

since  the  integrated  term  vanishes  at  both  limits. 
When  n  is  odd,  the  last  term  of  un  is 

/  ̂~5\ —  e"  o     (  -cos ^  ) ; n(n  -  2)  ...  5  .  3      \  / 
but  when  n  is  even, 

»)\  A      O  * TJ^Tl  —  2j  )  ...  4  .  ̂  
Hence 

01  v\  **/>*  /v  (V1  ̂ ^~  —  I  AJ    f^fi /i     1  T"l  i  OfTTOT*  1    * 
olIJ.    &  \A/»A/  ——  /  .^v  ^         r»  •    -^      \**r   "vt-W-    HlvCtiCl   I    • 

/yj  /  /yj        _   »/  \  ^\          J  N  ^5          /    ' 
J  0  /frl /&  —  ̂   J   •  •  •   U  •  O 

P  (w-l)(w-3).  .3.  ITT 
I    smM#e£y=v-— -H^  9x490  (w  even  integer). •/O  /fc^/fr         ii^   . . .   rt  .  £i  & 

If  vn=  I  cosnx dx,  then 
f*f\Q?^~~     ̂ Y*  G1T1    <*V*          ̂ 1   — <--*Jo  »^  olll  UU          IV          \. 

and  it  is  easy  to  prove  from  the  formula  or,  better,  directly  from  the 
meaning  of  the  definite  integral  that 

ft-  ft 
I    cosnxdx=  I    sin.nxdx. 
Jo  Jo 

A  simple  inspection  of  the  graphs  of  sinn^7  and  cosw#  will  show  that 
/**  .  ft  . ai  Tt  ̂ /v  /V 'V*  —  O  I      en  n^'/y  ft  w .~  1  1  1      ,*     '  *  i1        —     I          Olll     iV    l>f  «Xx  • 

Jo  Jo 

r*  r^ 
I  cosna?c?^=2/   cosw^o^  (71  even  integer), Jo  Jo 

but  =0  (n  odd  integer). 

In  a  similar  way  such  results  as 
r%w  rz*  f 

Jo  Jo  Jo 

are  readily  proved.     See  also  the  rule  given  in  ex.  3. 
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Ex.  3.  f(m,  n)  =  I  sinm.r  cosw#  dx. 
/(m,  ft)  =  Jsin 

In  /(m,  ft)  the  first  letter  is  the  index  of  sin#,  the  second  that  of 
cos  x.     For  brevity  denote  sin  x  by  s,  cos  x  by  c.     Then 

/(m,  w)  =  I  smcn  dx=  \smc  .  c"-1  cte. 

Since  c  is  the  derivative  of  .5,  the  integral  of  smc  is 
Thus,  m+1  r  w+i 

A\      °         «_i      i  ° ^^"S+i^  rJ; 

m  +  l 

But  s™  +  V-2  =  sm(l  -  c2)cn-2  =  smcn~2  -  smcn. 

The  first  term  is  the  integrand  of  /(m,  n  -  2),  and  the  second  that  of 
/(/n,  n).  Substitute  in  (i),  transfer  /(m,  n)  to  the  left  side,  and  then 
multiply  by  (m+l)/(m  +  n).  Therefore 

Qm+l,,n-l       ̂   _  I 

(™,  »-2)  .......................  (A) 

The  integral  thus  depends  on  another  of  the  same  form  with  m 
unchanged  but  the  other  index  reduced  by  2. 

Had  we  begun  by  writing  sm~l  .  scn  and  integrating  the  cosine,  we 
should  have  got 

oW-l^n+l      /m  _  -I 
/./  \  O  C  lit  -    1       /./  _  x  xv 

/(m,  w)=  --          -H  ---  -  —  /(m-2,  n),  ...................  (B) j  v 

and  now  m  is  reduced  by  2,  ft  unchanged. 
We  will  continue  the  reduction  for  the  case  in  which  m,  n  are 

positive  integers,  so  as  to  obtain  the  definite  integral  from  0  to  r/2. 
If  ft  is  odd,  (A)  makes  f(m,  n)  depend  on  /(wi,  1)  ;  (B)  then  makes 

/(w,  1)  depend  on  /(I,  1)  or  on/(0,  1)  according  as  m  is  odd  or  even. 
If  n  is  even,  (A)  makes  /(m,  n)  depend  onf(m,  0)  ;  but  /(m,  0)  is  the 

integral  of  ex.  2,  with  m  in  place  of  n.  Thus,  by  ex.  2  (i),  /(m,  0) 
depends  on  /(I,  0)  or  on/(0,  0)  according  as  ?w  is  odd  or  even. 

Thus,  /(?/?,  n)  may  be  reduced  to  depend  on  one  of  the  four 

/(I,  1)=  /sc^=|sin2.r  ;   /(O,  1)=  I  cdx  =  sinx  ; 

/(I,  0)=  /  scfo?=  -  cos#  ;     /(O,  0)=  /  lofo?=#. 

When  the  integral  is  taken  between  0  and  Tr/2  the  values  of  these 
are  1/2,  1,  1,  Tr/2  respectively. 

The  student  may  now  show  that  the  following  rule  is  correct  : 

Jo sinm  x  cos* 
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where  a  =  l  except  when  m  and  n  are  both  even  integers,  in  which  case 
a  =  7r/2  ;  each  of  the  three  series  of  factors  is  to  be  continued  so  long 
as  the  factors  are  positive. 

It  will  be  noticed  that  the  factors  of  each  series  decrease  by  2. 
The  rule  includes  the  integral  of  ex.  2,  putting  m  (or  n)  zero  and 
omitting  negative  factors. 

1x3.1     TT     TT 
Ql  TT\  ̂    *Y*  f*f\Q^   'Y*  fw  <Y*         V   _  —  —  " 

"6.4.2  X2~32' 
5.3.1x3.1     7r__37r  . 

= 10. 8. 6. 4. 2 X 2  ~512  ' 
f 

L 6.4.2x4.2  1 
sin7  .r  cos5  xdx=^^    ,  „    „    ̂  — : — -  x  1  =•: 
o  12.10.8.6.4.2         "120' 

7.5.3.1     TT     357T 

The  great  importance  of  the  results  of  ex.  2  and  3  arises  from 
the  fact  that  many  integrals  are,  by  a  proper  substitution,  easily 
rediiced  to  these  forms.  For  example,  if  we  put  x= a  sin  0,  so  that 
when  .r  =  0,  0=0,  and  when  x= a,  0=7r/2,  we  get 

ft 

=  a6/    sin20cos4^™- 
./o 

32 

If  we  put  x= a  sin2  0,  then 

T*  3  9    /* 

.r2(a-^r^=2a" 

v' 

315 

Ex.  4.     If  ?t  is  negative  the  index  of  un->2  is  numerically  greater 
than  that  of  n.     In  ex.  2  (i)  let  n=  —m,  where  m  is  positive  ;  then 

/dx  _      c        m  +  l  I  dx ~4"l  =  msm+1       m   J 

sm+'2' 

therefore 

Now  put  m  +  2=n,  where  n  is  positive,  and  we  get 

/dec  cos  x  n  —  Z(dx 

smn#~  ~  (n  -  1)  sinw-%    n  -  \i  sinOT~2^' 
In  many  cases  the  integration  will  be  simplified  by  writing 

1        sin2  x+ cos2  x          1  cos# 

19 — T- 
But  these  integrals  are  of  small  importance  for  elementary  work. 
The  key  to  the  transformations  is  that  after  one  integration  by  parts 
the  new  and  the  old  indices  differ  by  2  ;  when  an  index  is  negative  it 
is  simpler  to  begin  by  integrating  the  integrand  with  the  reduced 
index. 
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Ex.  5.  un  =  I  tann  x  dx, 

un=  I  tanw~2  x  (sec2  x  -  1)  dx  =  I  tan"~2  x  .  sec2  xdx-  un-^ 

so  that  un —    tan*1"1  x  -  un-o. n-l 
Other  examples  of  reduction  formulae  will  be  found  in  the  Exercises, 

but  in  many  cases  a  trigonometric  substitution  will  reduce  the  in- 
tegral to  one  of  the  forms  just  discussed. 

EXERCISES   XXIV. 

Integrate  with  respect  to  x  examples  1-24. 
JL«  OCQ  £l+  Jb       &  •  O»  •'       Si    II     .*          , 

4.    x  cos  x  ;  5.   x  sin  x  cos  x ;  6.    x2  sin  x  ; 

7.   xn  log  x  (n=%=  - 1) -,     8.    -log#;  9.   er'ei x 

xer  --      /*./,- a*  •  10 •  XX*        «X/C  •  JL&J* 

H  r»  ,  i  1  j|  "        1  1  C 
1    «c  ro  T~I  — 1  /y»    •  i  /L  /y>  C!l  Tl       •*•  *Y*    *  Ixft          _df* 
J.Ot  L  (III         .'      .  -L^T.  IV   *  •  I  •'     ̂   JLt7.        •' 

16.  J(3  +  2#-.r2);  17.  J(3  +  2^+^2);  18. 

19.   J(2ax  +  x*>;  20.      lx,      ,.9X ;  21. 

1  +  COS  X  ' 22.    e~3*cos4#;  23.    cosh  #  cos  x\  24.    sinh^sin^. 

25.    Find  the  value  of  the  integrals 

r  fir 

(i)    I    cos%  cfo? ;  (ii)    /    sin6^-  dx  ; Jo  Jo 

(iii)    /    sin6^?  cos%  dx  ;       (iv)    /    siifix  cotfx  dx  ; ./o  ^o 

r*'  r^ 
(v)    /     sin8^?  cos%  dx  ;     (vi)    /    tan6^  dx. Jo  Jo 

26.  Find  by  a  trigonometric  substitution  the  value  of 

fa  /*2« 
(i)    /    #V(^2  ~  -^2)  ̂   5       (")    /    x*J(Zax  -  x2)  dx  ; Jo  Jo 

CZa 

(iii)    /     x^fj(^ax  —  x2)  dx. Jo 

Cn  xl(($  _  x%\ 

27.  Integrate  I       „  9     '-zr  dx  by  the  substitution  #2= a2  cos ^o        *  +# 
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• 

28.  If  /(m,  n)=  \xm(\  -xfdx  show  that 
#«+i(l -#)»  n 

f(m,  n)  =  —         —J-  +  -      — :-=•/( w,  ?t  - 1 ). 
m  +  n  +  l       m  +  n  +  IJ 

Hence,  or  by  the  substitution  .v=siri20,  find  the  value  of 

/\-m(l  -x)ndx, 

Jo 

m,  n  being  positive  integers. 

29.  If  un  =    dz/(a2  +  z2)n,  prove  that 
/Y*  tyfft    ___  O \JU  A  Iv         O 

O/       TT  -         •-  L  --  7/          i 

n       ̂ 9/w        9\  rs1(n%  -i-  /*»2\w-l  ̂ ^  /9/yj  _  O\  n^     n~1% V  £iiv          ~  /  ̂*     \  w     T^  «^     /  \  A  lu  ̂ ^  "/  ̂ ^ 

30.  If  MW=  I  xn*J(a2  -  x2)  dx,  prove  that 
3 

71-1 

a2ww_2. 

-a 

31.  If  ww=  /  xnfJ(Zax  —  x2)  dx,  show  that 

/yiW — I/ O/v/y*  .^  /v»2\2          9o>     I     1 
4V  V^Jvt/iX/  iX/      I  ^IV     \^  A 

f  Di  7  i  T      i  dR 
Write      un  =  \  xn  *  {a  — (a  —  x}}R^  ax = aun-^  —  $  I  xn  l  -7- 

where  R  =  1ax  —  xi,  and  then  integrate  by  parts. 

32.  If  w»=  \xndxl^ax-xi\  show  that 

n  n 

33.  If  m,  n  are  positive  integers  find  the  value  of 
r\  i 

/    (l-xn)mdx. 

Jo 

34.  Find  the  value  of 

(i)   faVCa1  -**)<**;      (ii)   \  atJ(2ax Jo  Jo 

35.  0  J/  is  the  abscissa  and  MP  the  ordinate  at  the  point  P  (^,  •>?)  on 
the  hyperbola  x2/a?—y2/b2  =  I,  £,  77  being  both  positive.     If  A  is  the 
vertex  nearest  P  show  that  the  area  A  MP  is  equal  to 

and  that  the  area  of  the  sector  0  A  P  is 

36.  Trace  the  curve  given  by  y*=(x-  1)(#-3)2  and  find  the  area  of the  loop. 
G.c,  T 
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37.  Trace  the  curve   given  by  a^=x^(^a  —  x\  a  being  positive; 
find  the  whole  area  enclosed  by  it. x  x 

38.  Find  the  length  of  an  arc  of  the  catenary  y  =  |a(e«  +  e  ~  «)  measured from  the  point  C  where  #=0.     Show  that  the  area  between  the  two 
axes,  the  curve  and  the  ordinate  at  a  point  P  is  a  times  the  arc  CP. 

39.  Find  the  length  of  an  arc  of  the  cardioid  r=a(l  —cos  #),  the  arc 
being  measured  from  the  origin. 

40.  Find  the  length  of  an  arc  of  the  spiral  r  =  aO,  taking  s=0,  when 
r  =  0. 

41.  Find  the  length  of  an  arc  of  the  spiral  r=»aeec^a,  taking  s  =  0, 
when  0  =  0. 

§  120.  Partial  Fractions.  The  method  of  resolving  a 
rational  fraction  into  partial  fractions  is  now  found  in 
most  text-books  of  Algebra.  We  will  therefore  refer  the 

student  to  Chrystal's  Algebra,  Vol.  I.,  Chap,  viii.,  for  a  full discussion  of  the  theory,  and  will  merely  work  out  a  few 
examples.  The  fraction  will  be  supposed  to  be  a  proper 
fraction,  that  is  to  have  the  degree  of  its  numerator  in  the 
variable  x  less  than  that  of  its  denominator,  and  to  be  at 
its  lowest  terms. 

Let  the  fraction  be  F(x)lf(x)  where  F(x)  and  f(x)  are  rational 
integral  functions  of  x.  f(x)  can  be  resolved  into  a  product  of  real 
prime  factors,  each  of  which  is  a  linear  or  else  a  quadratic  function 
of  x,  but  a  factor,  linear  or  quadratic,  may  be  repeated  several  times. 

I\x)lf(x)  can  be  resolved  in  one  and  in  only  one  way  into  a  sum  of 
proper  partial  fractions  ;  these  partial  fractions  are  of  the  following 

types  : 
(i)  To  every  non-repeated  linear  factor  x-a,  of  f(x}  corresponds 

a  partial  fraction  of  the  form  A/(x  —  a). 

(ii)  To  every  r-i  old  linear  factor  (x  —  /3)r  of  f(x}  correspond  r  partial fractions  of  the  form 
Br-l 

-1     f 
(iii)  To   every   non-repeated   quadratic    factor    xz  +  yx+S    of  f(x) 

corresponds  a  partial  fraction  of  the  form  (Cx  +  D)/(x2  +  yx  4-  8). 

(iv)  To  every  r-fold  quadratic  factor  (x^  +  yx+Sf  of  f(x)  correspond 
r  partial  fractions  of  the  form 

-l~] 

The  method  of  determining  the  coefficients  A,  B,  ...  will  be  lesarned 
from  the  examples. 
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Ex.  1.  ^/(a2  -!)(#-  2). 
No  factor  of  the  denominator  is  repeated  ;  therefore 

a?  ABC 

-  2) 

Clear  
of  fractions  

;  therefore 

This  equation  being  an  identity,  we  may  give  to  x  any  value  we 
please.     Put  #+1=0,  that  is,  x—  —  1,  and  the  terms  in  B  and  C  vanish, 
and  we  get  A  ,     ,      ,  \  /     ,     nx  ,  ,_ 

l—A(-  1-1)(-  1-2)    or    .4  =  1/6. 

Similarly,  by  putting  #  =  1  we  get  B=  -1/2,  and  by  putting  #=2 
we  get  C=  4/3  and 

.r2  111141 

(a8  -!)(#-  2)    6    #+1     2    ̂ -1^3    #-2* 
Or,  to  find  .4,  multiply  both  sides  by  its  denominator  x  +  \  and  then 
put  #  +  1=0  ; 

4  - 

-  2)  *=-i' In  the  same  way,  if  x  —  a  is  a  non-repeated  factor   of  f(x)  and 
Aj(x-a)  the  corresponding  partial  fraction 

r(*-a 
L 

f(x) If  j^^)  =  (.r-a)^>(^),  then 
and 

>  that  A_r(x-a)F(xY\        _F(a)  _f\a} 
so  that  ^--- 

Ex.  2. 

The  repeated  factor  (#-l)2  gives  two  fractions,  and  the  factor 
x*-x+  1,  since  it  has  no  real  linear  factors,  gives  a  fraction  of  the 
type  (iii)  ;  hence 

A  B        Cx+D 

Clearing  of  fractions,  we  get 

Putting  j?  =  l,  we  get  A  =4.  Now  bring  the  term  in  A  to  the  left 
side  and  reduce  after  putting  4  for  A.  The  right  side  will  contain 
(.r-  1)  as  a  factor,  and  therefore,  since  the  equation  is  an  identity,  the 
left  side  must  also  contain  (#—1)  as  a  factor.  If  it  does  not,  there  is 
an  error  in  the  work.  We  get 
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Divide  by  (x-  1),  and  then  by  putting  x=\  we  find  B=  -  1.     Now 
take  the  term  in  B  to  the  left,  and  again  divide  by  (x-  1).     Then 

so  that,  since  the  equation  is  an  identity,  (7=1,  D=  -3,  and  therefore 

4  1  07-3 

Ex.  3. 

By   (iv)   and  (iii),   since   there   are   no   real  linear  factors  of  the 
denominator, 

#3-2  Ax+B         Cx+D       Ex+F 

Clearing  of  fractions, 

Put  .r24-#+2=0  and  reduce  x2  and  x*  to  linear  functions  by  means 
of  this  equation.     It  gives 

and  therefore  —  x  =  —  Ax  —  B, 

so  that  A  =  l,  B=0.     Take  the  term  in  A  and  B  to  the  left  and 
divide  by  #2+#-f2  which  must  be  a  factor.     Hence 

Put  #2+#+2=0  and  proceed  as  before.     We  get  (7=0,  D=\. 
Hence,  after  dividing  by 

and  the  fraction  is  equal  to 
x 

These  examples  show  sufficiently  the  method  of  deter- 
mining the  coefficients ;  other  methods  will  suggest  them- 

selves to  the  student,  and  he  will  find  full  details  in  the 

chapter  of  Chrystal's  Algebra  referred  to  above. 
§  121.  Integration  of  Rational  Functions.  If  F(x)/f(x)  is 

not  a  proper  fraction  it  may  by  division  be  expressed  as 
the  sum  of  a  rational  integral  function  and  of  a  rational 
proper  fraction. 

The  integral  of  a  rational  integral  function  is  a  rational 
integral  function. 
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The  integral  of  A/(x  —  a)  is  A  log  (a?  —  a). 
The  integral  of  B/(x  —  /3)r  where  r  is  ditferent  from  unity 

The  integral  of  (Cx  +  D)/(x2-{-yx  +  S)  has  been  discussed 
in  §  115  and  is  of  the  form 

X  log  (x2  +  yx  +  8)  +  ft,  tan  -  *     ,  y 
We  have,  therefore,  only  to  consider  (Cx+D)/(x2+yx+S)r. 

Writing  the  quadratic  in  the  form  R  =  (x+a)2  +  /32  the 
integral  is -a 

In  practice  it  is  usually  simplest  to  integrate  l/Rr  by  the 
substitution  x  +  a  =  /3  tan  0  ',  but  it  is  of  some  theoretical 
interest  to  get  a  formula  of  reduction.  If  we  differentiate 

1  we  find 

1  Rr 

_-(2r-3) 

by  putting  (x-t-a)2  =  R  —  /32.     Integrating  and  rearranging 
,         Cdx  x  +  a  2r  —  3     f  dx W6g 

Hence  the  integral  of  (Cx  +  D)/Rr  can  be  made  to  depend 
on  that  of  l/R,  which  is  an  inverse  trigonometric  function. 

Thus  the  integral  of  any  Rational  Function  of  x  can  be 
expressed  in  terms  of  rational  functions,  logarithms  and 
inverse  circular  functions. 

There  is  always  a  considerable  amount  of  labour  in  inte- 
grating by  the  method  of  partial  fractions.  The  student 

should,  before  resolving  into  partial  fractions,  examine 
whether  the  integral  may  be  simplified  by  a  substitution. 

f     x^dx         ,  f     udu 
hus,  —  -  =  ̂ 1-—  -  -,   u  —  x2 

)x*-x 
and  the  fraction  in  u  is  easier  to  handle  than  that  in  x. 
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§  122.  Irrational  Functions.  We  consider  one  or  two  cases 
in  which  the  integrand  is  an  irrational  function. 

(i)  When  the  integrand  contains  only  fractional  powers 
of  x  let  n  be  the  L.C.D.  of  the  fractions  ;  then  the  substitu- 

tion x  =  un  will  make  the  new  integrand  rational  in  u. 
Thus,  if  x=u6 

xr  dx 

=  6  (}u<  -  %u5  +  lu*  -  u  +  tan-1  u) 

(ii)  When  the  integrand  contains  ̂ /(ax  +  b)  but  no  other 
irrationality  the  substitution  ax-\-b  =  u2  will  make  the  new 
integrand  rational  in  u. 

(iii)  When  the  integrand  contains  *J(ax2  -+-  bx  +  c)  but  no 
other  irrationality  the  integral  may  be  reduced  to  that  of  a 
rational  function  as  follows  : 

First,  let  a  be  positive  and  write  the  root  in  the  form 

y  =  *Ja*/(ocz  +  px+q\    p  =  b/a,q  =  c/a. 
Let  *J(x2+px  +  q)  =  u  —  x  so  that,  squaring  and  solving 

The  new  integrand  will  clearly  be  rational  in  u. 
Second,  let  a  be  negative.  In  order  that  y  may  be  real 

the  linear  factors  of  ax2-\-bx  +  c  must  be  real;  if  they  were 
not  real  the  quadratic  would  be  negative  for  every  real 
value  of  x  and  therefore  y  would  be  imaginary.  We  may 
therefore  write,  since  (  —  a)  is  positive, 

y  =  >v    - For   definiteness   suppose   /3>a  (algebraically)   and   let 

Then,         u2 
/yi  __  yT,  _  M  _  '  _  •      l~t  __  /y» 
•  t*  -         -..  M          '*' i 

1-fi 
9? 

The  new  integrand  will  clearly  be  rational  in  u. 
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In  (ii),  (iii)  we  may  suppose  all  the  roots  to  be  positive. 
(See  §  123,  end.) 

The  above  analysis  shows  that  if  y  be  either  ̂ /(ax  +  b) 
or  ̂ (ax2  +  bx  +  c),  and  if  the  integrand  be  a  rational  func- 

tion f(x,  y)  of  x  and  of  y,  the  integration  of  f(x,  y)  can 
always  be  reduced  to  that  of  a  rational  function,  and 
therefore  (§  121)  requires  for  its  integration  only  rational 
functions,  logarithms,  or  inverse  circular  functions. 

(iv)  Let  the  integrand  be  xm(a  +  bxn)?. 
(a)  If  p  is  a  positive  integer  expand  (a  +  bxn)p. 
(b)  Try  the  substitution  u  =  a  +  bxn  which  gives 

I    dx 

and  the  integral  becomes 

1m 

m+i 

  ; — I  iiPt  11  __  n \    n,     ~     nil 
,  m+i  I  wr  \  w  ̂ ^  Li/ )  \A/  M/, 

no  n  J 

so  that  if  (m  + 1  )/n  is  a  positive  integer  the  binomial  may 
be  expanded  and  the  integral  obtained  in  finite  terms. 

(c)  If  (m  +  l)/n  is  not  a  positive  integer  let  x  =  I/v  and 
the  integral  becomes 

   I  ̂  -  m  -  np  -  2  /  A   i   nn)n\P  dv 

Instead  of  m  we  have  now  —(7^  +  7129  + 2)  and  therefore 
by  (6)  if  —  (m  +  np  +  l)/n  be  a  positive  integer,  that  is,  if 
(m  +  l)/7i  +  p  be  a  negative  integer  the  integral  may  be  got 
in  finite  terms.  The  substitution  is 

u  =  b  +  avn  =  6  +  ax~n. 

§  123.  General  Remarks.  From  the  discussion  now  given 
it  will  be  seen  that  integration  is  a  somewhat  haphazard 
process.  The  only  general  results  obtained  are  those  of 
§§121,  122;  in  most  cases  the  integration,  when  it  is 
possible  at  all,  has  to  be  effected  by  reducing  the  given 
integrand  by  various  methods  to  a  few  standard  forms. 
Even  for  the  cases  discussed  in  §  122  it  is  frequently  simpler 
to  take  a  special  method  for  a  given  case  than  to  apply  the 
general  theorem. 
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Much  of  the  difficulty  beginners  find  in  integration  is 
due  to  a  deficiency  in  power  of  algebraic  and  trigonometric 
manipulations.  When  the  standard  forms  have  been  com- 

mitted to  memory  the  next  step  is  to  master  the  two 
principles  of  change  of  variable  and  of  integration  by 
parts ;  but  the  student  who  has  not  a  thorough  mastery  of 
elementary  algebraic  and  trigonometric  transformations 
will  often  fail  to  see  the  reasons  that  suggest  the  particular 
devices  adopted  and  will  have  to  struggle  with  difficulties 
that  are  due,  not  to  the  nature  of  the  calculus  but  to  his 
own  deficient  algebraic  training. 

Integral  dependent  on  the  range  of  the  variable.  Another 
source  of  difficulty  requires  special  notice,  namely  that  the 
integral  may  have  one  form  for  one  range  of  the  variable 
and  a  different  form  for  another  range.  Thus  the  integral 
of  \/x  is  logo?  or  log(  —  x)  according  as  x  is  positive  or 
negative ;  in  this  case  the  integral  may  be  written  Jlog  (x2), 
a  form  which  covers  both  cases.  See  §  117,  Ex.  3,  for 
another  case. 

Again,  difficulty  may  arise  from  the  ambiguity  of  the 
square  root ;  in  that  ambiguity  the  explanation  of  the  two 
forms  for  the  integral  of  l/(a  +  b  cosx)  is  to  be  found  when 
the  inverse  cosine  is  derived  from  the  inverse  tangent. 
Thus,  if  it  be  agreed  that  the  root  is  always  to  be  taken 
with  the  positive  sign,  the  transformation  P+JQ  =  ̂ (P2Q) 
would  only  be  correct  if  P  were  positive ;  if  P  were 
negative  we  should  have  P*JQ  =  — 

EXERCISES  XXV. 

Integrate  with  respect  to  x  examples  1-24. 
^2-6^?-4  . 

•"        /f>™          T  \/™          <D\/O™          O\    '  «• 

X 

>    (x-a)(x-b)(x-cY  >    ( 
I  I  x 



EXERCISES  XXV.  297 

X  - 

iq 

#2  —  a2 20' 

23< 

25.    Transform  the  integral 

/d
x 

(x  — 

(x~ajn(x-b)n 

])y  the  substitution  u=(x-a)/(x-b)  ;  find  its  value  when  m  = 

Integrate  with  respect  to  x  examples  26-37. 

26'  ;  27> 

29'    (g+te)* ;  30'    (l+*V(l-*«);     3L 

32.         ~77~2~~  TA  '         33.    3?J(a  +  oxy,  34. 



CHAPTER  XIV. 

DEFINITE  INTEGEALS.     GEOMETRICAL 
APPLICATIONS. 

§  124.  Definite  Integrals.  In  this  and  the  two  following 
articles  we  will  state  a  few  of  the  more  important  theorems 
respecting  definite  integrals. 

THEOREM  I.  A  definite  integral  is  a  function  of  its 
limits,  not  of  the  variable  of  integration. 

This  theorem  is  obvious  from  the  geometrical  meaning  of 
the  integral ;  so  long  as  the  symbol  F  denotes  the  same 
function  the  graph  of  F(x)  with  x  for  abscissa  is  the  same 
as  that  of  F(u)  with  u  for  abscissa,  and  therefore 

a  a 

Or,  again,  if  F(x)  =  Dxf(x),  then  F(u)  =  Duf(u)  and  each 
symbol  represents  f(b)—f(a). 

THEOREM  II.     \F(x)  dx=  -  \F(x)  dx.     See  §  1 10. Jb  Ja 

THEOREM  III.  //  a  <  b  and  if  F(x)  is  positive  for  every 
value  of  x  within  the  range  of  integration,  the  integral 

I  F(x)dx 

is  positive,  not  zero;  if  F(x)  is  negative,  the  integral  is 
negative. 

For  the  area  represented  by  the  integral  is  positive  in  the 
first  case,  negative  in  the  second.  Obviously  the  theorem 
will  still  be  true  if  F(x)  is  zero  for  some  but  not  all  of  the 
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values  of  x  in  the  interval  (a,  6),  and  a  similar  observation 
is  true  in  Theorems  V.,  VI.,  VII. 

Thus  such  an  equation  as 
/••  **   - 
Jo   (tf-1)2 

-   2 
r-l 

is  absurd.  The  contradiction  arises  from  the  fact  that  the  positive 
integrand  l/(#-l)2  is  discontinuous  when  #  =  1,  the  value  1  lying  in 
the  interval  (0,  2). 

THEOREM  IV.     \F(x)  dx  =  P  F(x)  dx+\  F(x)  dx. J  a  J  a  Jc 

For  the  area  represented  by  the  integral  on  the  left,  sign  as 
well  as  magnitude  of  the  areas  being  taken  into  account,  is 
equal  to  the  sum  of  the  areas  represented  by  the  integrals 
on  the  right.  In  the  same  way, 

{  F(x)dx=  \F(x)(fa+  [FCx)fa+  \F(x)dxt Ja  Ja  Jc  jg 

and  so  on  for  any  number  of  subdivisions  of  the  interval 
(a,  6).  Of  course  one  or  more  of  the  numbers  c,  g,  .  .  .  ,  may 
be  greater  than  the  greater  or  less  than  the  smaller  of  the 
two  numbers  a,  b,  provided  F(x)  is  continuous  for  all  the 
values  considered. 

THEOREM  V.     If  a<b  and  if  0  is  the  (algebraically) 
greatest  and  L  the  (algebraically)  least  value  of  F(x)  in  the 

J
b
 

F(
x)
  

dx
<G
(b
  

— 
 

a)
  

bu
t 
 

>L
(b
  

— 
 

a)
. 

a 

For  G  —  F(x)  and  F(x)  —  L  are  positive  ;  hence  by  Th.  III. 
the  integrals 

{\G  -  F(x)]  dx  and  \\F(x)  -  L]  dx, Ja  Ja 

Jb  Cb  
Cb  Cb 

Gdx—\  F(x)  dx  and     F(x)  dx  —  \  L  dx, a  Ja  Ja  Ja 
Cb  Cb 

G(b  —  a)—  I  F(x)dx  and     F(x)dx  —  L(b  —  a), Ja  J  a 

are  both  positive,  so  that  the  integral  is  less  than  G(b  —  a) 
but  greater  than  L(b  —  a). 

The  integral  will  be  equal  to  H(b  —  a)  where  H  is  a 
number  less  than  0  but  greater  than  L  ;  but  since  F(x)  is 

or 
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continuous  it  must,  for  at  least  one  value  xl  of  x  between 
a  and  6,  be  equal  to  H.  The  value  xl  is  of  the.  form 
a  +  0  (b  -  a)  where  0  <  0  <  1  (§  73).  Hence, p>( 

Ja The  theorem  is  evident  from  the  figure;  for  the  area 
ABDEC  is  less  than  the  rectangle  G .  AB,  greater  than  the 
rectangle  L .  AB,  equal  to  the  rectangle  H .  AB  or  MP .  AB 
where  MP  is  an  ordinate  less  than  G  but  greater  than  L. 

The  value  H  or  F(x1)  is  sometimes  called  the  Mean  Value 
or  the  Average  Value  of  the  function  F(x)  over  the  range 
(6 -a).  (See  §134.) 

B 

FIC-.  55. 

THEOREM  VI.  If  a<b  and  if  for  every  value  of  x  in  the 
interval  (a,  b),  F(x)  is  (algebraically)  less  than  (p(x)  but 
(algebraically)  greater  than  \Is(x),  then 

fb  Cb 

i  F(x)dx<  I  $( 
Ja  Ja 

but  > Cb 

j  \js(x)dx. 

Ja 

Proved  in  the  same  way  as  Th.  V.  since  <f>(x)—F(x)  and 
x)  —  \fs(x)  are  positive.      For  geometrical  proof  see  the 

figure  (Fig.  55). 

THEOREM  VII.  If  a  <  b  and  if  F(x)  is  the  product  of  two 
functions  <j>(x),  ̂ (n)>  one  of  which,  </>(x),  is  positive  for 
every  value  of  x  in  the  interval  (a,  b),  then 

{b  C
b  fb 

(/>(x)\[s(x)dx<G\  (f>(x)dx  but  >L\  <f>(x)dx, a  Ja  J  a 
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where  G,  L  are  the  (algebraically)  greatest  and  least  values 
of  \fs(x)  in  the  interval  (a,  b). 

Proved  in  the  same  way  as  Th.  V.,  since  G  —  \[s(x), 
\js(x)  —  L,  and  therefore  (G  —  \js(x))  cj>(x)  and  (\fs(x)  —  L)<j>(x) 
are  positive. 

If  (j>(x)  is  negative  for  every  value  of  x  in  the  interval 
(a,  b)  we  shall  have 

fb  
Cb  

Cb 

(j>(x)  \/s(x)  dx  >  G\  cj>(x)dx  but  <Z| a  J  a  J  a 

In  both  cases,  the  function  \{s(x)  being  continuous,  we 
may  as  in  Th.  V.  write 

P  f6 
<p(x)\fs(x)dx  =  \ls(xl)\  <j)(x)dx  ...............  (A) Ja  J  a 

where  a  <  xl  <  b. 
The  theorem  expressed  in  equation  (A)  is  called  The  First 

(Integral)  Theorem  of  Mean  Value.  (See  Exercises  XXVI., 
29-31.) 

Ex.  Show  that  if  n  >  2,  the  integral 

fb      dx Jo  *J(l-xn) 
is  greater  than  '5  but  less  than  '524. 

For  every  value  of  x  within  the  range  of  integration,  the  value  0 
excepted, 

so  that  the  integral  is  less  than 

fi  1 

-77^  --  oX^=sin- Jo  ̂ /(l  -  x2)  '  .  6 

but  greater  than  \\d  —-5 

Jo 

§  125.  Belated  Integrals. 

fa
  

Ca F(x)  dx  =     F(a  —  x)  dx. o  Jo 

Let  x  —  a—  u\  then  dx=  —  du,  and  when  #  =  0,  u  =  a,  when 
x  =  a,  u  =  0,  so  that 

fa  
TO  

Ca 

F(x)dx=-\  F(a  —  u)du=\  F(a  —  u)du, 0  Ja  Jo 
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and  in  the  integral  last  written  we  may  put  x  for  u  (§  124 
Th.  1). 

A  useful  case  is 
TT  IT  IT 

Cr
e 
 r2 

/"(sin  x)  dx  =  I  /(sin  [f  —  #])  dx  =  I  /(cos  #)  dx. Jo  Jo 

THEOREM  II.          F(x)  dx  =  \  { F(  -  x)  +  ̂(o;) }  dx. J  -a  Jo 

For          fa  F(x)dx=\°  F(x)da+\F(x)dx. J -a  J -a  Jo 

In  the  first  integral  let  x  =  —  u  and  it  becomes 

-  \F(  -  u)  du  =  fV(  -  M)  dtt  =  [V(  -  a?)  dx, Ja  Jo  Jo 

from  which  the  result  follows.     Hence 

P  F(x)dx=$F(x)dxtiiF(-x) J  -a  Jo 

=  0,  if  F(-x)=-F(x). 

Y 

X'
 

a    X O 

Y 
FIG.  566. FIG.  56a. 

The  last  results  are  evident  geometrically  from  the  figures. 

THEOREM  III.     fV(a?)  dx  =  { *  { F(x} +F(a-x)}  dx, Jo  Jo 

.  that     fV(cc)  dx  =  2\2  F(x) dx,  if  F(a -x)  =  F(x\ Jo  Jo 

The  proof  is  the  same  as  for  Th.  II.  ;  divide  the  interval 
into  (0,  Ja)  and  (Jo-,  a),  and  in  the  second  integral  put 

=  a  —  u. 
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As  a  particular  case 

In 
 rf /(sin  x)  dx  =  2 1  /(sin  #)  cfce. o  Jo 

THEOREM  IV.     //  F(x)  is  periodic,  with  the  period  a,  that 
is,  if  F(x+na)  is  equal  to  F(x)/or  every  integral  value  o/n 

Jpa
  fa F(x)dx=p\  F(x)dx, o  Jo 

where  p  is  any  positive  integer. 

H 

A  B 

FIG.  57. 

C  X 

If  OA  =a  =  AB  =  BC=  ...  then  from  the  nature  of  the 
graph  the  areas  OAKH,  ABLK,  BCML,  ...  are  all  equal,  so 
that  if  OC=p  .  OA  the  area  OCMH  is  p  times  CM.##. 

Or  divide  the  range  pa  into  p  parts  each  equal  to  a,  then 

fpa 
 fa 

F(«)daj=:| o  Jo 

J
p
a
 

J^
( 

(p
-l
)a
 

In  the  integral  having  ka,  (k-\-l)a  for  limits  let  x  = 
then   dx  =  du,   and  when  x  =  ka,  u  =  Q,  when  a;  = 
u  =  a,  so  that 

f(*+l)a  fa  fa  fa 

F(x)dx=\  F(u  +  ka)du=\  F(u)du=\  F(x)dx, 
J*a  Jo  Jo  Jo 

since  F(u  +  ka)  =  F(u).     Thus  each  of  the  p  integrals  has 
the  same  value  and  the  result  follows. 

Similar  reasoning  shows  that  the  theorem  is  also  true 
when  p  is  a  negative  integer. 
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As  a  particular  case 

£pir
  PTT /(sin  x)  dx  =  p  \    /(sin  x)  dx. 

Jo 

These  theorems  are  of  great  service  in  the  evaluation  of 
integrals. 

§  126.  Infinite  Limits.  Infinite  Integrand.  Up  to  this 
point  the  limits  of  the  integral  have  been  assumed  to  be 
finite,  and  the  integrand  has  been  supposed  continuous  and 
therefore  finite  for  every  value  of  the  variable  within  the 
range  of  integration.  It  is,  however,  possible  in  certain 
cases  to  remove  these  restrictions  by  the  use  of  limits. 

A.  Infinite  Limits.     An  integral  with  one  of  its  limits 
infinite  is  defined  as  follows : 

f»  n  n 
 rb 

F(x)dx  =  L   I  F(x)da\         F(x)dx  =    L       F(x)dx, Q>  b=aoJn  J-oo  a=-ooJa 

provided  the  limits  for  b  =  oo  and  for  a  =  —  oo  are  definite  ' 
quantities. 

Fdx     T    (bdx      T   /_     1\ Ex.  1.      /    —s  =  L  /  -o  =  L  1  1  -  T  )  =  1. 
Ji     x*      b=toJi   4P      6=QO\         O/ 

.„  f*dx     T    [bdx     T  ,      , Ex.  2.  -=  L  / — =  L  log  b. 
h      X         6=oo^l     X         6=00 

In  this  case  the  limit  of  log  b  is  not  a  definite  number,  and  the 
integral  is  therefore  a  meaningless  symbol. /•» 

Ex.  3.      /    e~*cos.£G?#. Jo 

By  §  118,  ex.  3,  the  indefinite  integral  is  \e~\  —  cos  x  +  sin  x\  and we  have  to  find  the  limit  for  b  =  oo  of 

^  +  \e~\  —  cos  b  +  sin  6). 
Now  cos  6,  sin  b  are  each  never  greater  than  1,  and  the  limit  of  e~b 

is  zero  so  that  the  integral  is  equal  to  \. 

The  limit  for  #=oo  of  xne~ax,  where  a  is  positive,  is  often  needed  in 
dealing  with  these  integrals.  It  is  easy,  by  §  49,  to  see  that 

L  xne~ax=0. £=00 

See  also  Exercises  VII.  ex.  9. 

B.  Infinite  Integrand.      If  F(x)  is  continuous   for   all 
values  of  x  between  a  and  6  except  for  x  —  a  when  it  is 
infinite,  then  the  integral  of  F(x)  between  a  and  b  is  defined 
thus,  a  being  less  than  b  and  e  being  positive, 
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(bF(x)  dx  =  L  f b    F(x)  dx, Ja  e  =  Qja+e 

provided  the  limit  is  a  definite  quantity. 
If  F(x)  is  continuous  except  at  b  then,  e  being  positive, 

Jb
  

fb-e F(x)  dx  =  L        F(x)  dx. a  e  =  Qja 

.  1.      fl-^=  L  (ld,-=  L  (2  -2Ve)  =  2. 
r,  fa  dX  T        fa~e  dx  T         •  1/-I  €\ 

Ex.2.      /   _— _        =  L  I       -™   -=  L  sin-1 11--)  5 y/\       //  x»  J  _  /vvj  \           ftjO  i\CL      X   )           O  \  tt  / 

Ex 

T-, 
Ex 

the  limit  is  obviously  sin"1  1  or  7T/2. 

Ex.3,     f  *     I!  /*$-  L(i-A     . JO    XT       e  =  0^e     -^         e  =  oV  €          / 

In  this  case  there  is  no  definite  limit  and  the  integral  therefore  does 
not  exist. 

If  a  <  c  <  b  and  if  F(x)  is  continuous  except  when  x=c,  then  the 

integral  between  a  and  b  is  defined  thus,  e,  e'  being  positive, 

=  L    fe~'Fatd*+  L 

provided  each  limit  is  separately  a  definite  quantity. 

Ex.4.        l=  L-3V«  +  3)+  L  (3-3^0- e-O 

Here  the  first  limit  is  3,  the  second  is  also  3,  and  the  integral  is  6. 

f2    dx  (I     .  \       T    /         ,  1  \ 
Ex.  5.          -      1N2=  L     — 1  )+  L  (  -1  +  -   . 

JQ(X-\Y       e^O  \€  /        e'  =  0\  €/ 

In  this  case  there  is  no  definite  limit  and  the  integral  does  not  exist. 

A  change  of  variable  will  often  remove  the  difficulty  of 
an  infinite  integrand  or  an  infinite  limit ;  thus,  in  ex.  2,  we 
might  put  x  —  a  sin  0.  The  change  of  variable  is  specially 
useful  for  the  forms  given  in  §  116. 

These  exceptional  cases  of 
integrals  may  be  illustrated  by  Y 
consideration  of  the  graph  of 

F(x).  Let  F(x)=  l/xn  where  n 
is  positive ;  then  the  #-axis  is 
an  asymptote  and  the  area 

tbdx  = 

}aX
n~ 

G,C, 

n l\a n-l ^-i FIG.  58, 
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Hence,  if  TI>],  the  area  ABDC  tends  to  the  value 

l/(n  —  l)^'1  as  b  tends  to  oo ;  while  if  0<n<l  the  area 
tends  to  oo  since  1/6*-1,  that  is,  bl~n  tends  to  oo .  If  71  =1 
the  area  ABDC  is  equal  to  log(b/a)  and  therefore  tends 
to  oo  with  b. 

On  the  other  hand,  consider  F(x)  =  l/(x  —  a)n  where  n  is 
positive.     If  OA  =  a,  AE=e,  OB  =  b,  then  the  area  EBDF 
is  equal  to  (TI=|=!) 

r& f+ Ja+e —  a)n 1  —n 
Hence,  if  0  <  n  <  1  the  area  tends 

to  (6  —  a)l-n/(l  —  n)  as  e  tends  to 
zero;  while  if  n>l  the  area  tends 

to  oo  since  e1"71,  that  is,  1/e71"1  tends 
to  infinity  as  e  tends  to  zero.  If 
n  =  l  the  area  is  log{(6  —  a)/e}  and 
therefore  tends  to  oo  as  e  tends  to 
zero. 

It  is  easy  to  show  by  the  use  of 
Th.  VII,  §  124,  that  if  near  a,  F(x) 
is  of  the  form  <j)(x)/(x  —  ay\  where 
0(o?)  is  continuous,  the  area  EBDF 

and  the  corresponding  integral  tend  to  a  finite  limit  if  n  is 
a  positive  proper  fraction,  but  that  when  0(a)  is  not  zero 
the  limit  is  infinite  if  n  is  equal  to  or  greater  than  1. 

It  is  beyond  the  scope  of  this  book  to  enter  further  into 
these  exceptional  cases. 

EXERCISES   XXVI. 

Evaluate  the  following  integrals  : 
/•oo  /•<» 

1,     I    e~ax  cos  bx  dx  (a  >  0)  ;         2.     /    e~ax  sin  bx  dx  (a  >  0)  ; Jo  Jo 

FlG  59 

dx 

Pa 

'   
 
Jo 

xdx 

1. [Let  x = a  cos20 + b  sin2$J. 
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8.   j[V{(*-«)(»-*)}<fa;  9. 
• 

1n  dx 10.    /  — — — .  T0  .  o   ;  11. 
o  a2  cos% + 62  sin%  '  Jo  (a2  cos2#  +  62  sin%-)2 ' 
ft      9     •       j  rf      *     •       j i    *  /"*/""kC!^'J'»  C!l  Tl     T*  /V  -y  I    *   rf"*l"lG^  'X*  Ql  VI    'V  /Y  'V 

^  f^  V/V/O    tA/   oliJ.  »A/   t_.-vit/  j   ,-i  x^v/O    i*     OXXJL  i       (f.* l  y     •  1  x     • 
JL  (LJ»  i         ,  "  *)  9  JLU*  // 1         i  O  O        \     9 

Jo     I+e2  CDEnv  Jo  x/(l  +  e^  cos2^) 

14.     /     tan  x  dx  ;  15.     /    log  x  dx  ;  16.     /    x2  log  x  dx. J  -  1  ./o  A 

17.  Prove  that  if  m  and  w  are  positive, 

Parti  -x)ndx=  {^xn(\-x}mdx. Jo  Jo 

18.  Prove  that  if  ft  is  positive, 
/•oo  /"oo 

/    e~xxndx=n\    e-'tf^-dx. Jo  Jo 

Find  the  value  of  the  integral  if  n  is  a  positive  integer. 
t*x  sin  #  dx 

19.  If  w 

,  ,  T'TT  sin  ̂7  c?^7 prove  that  u  =  I  —  -  ^  --  ̂  Jo    1  +  COS^ 

and  then  find  the  value  of  u. 

20.  If  u=     =-  where  0<e<l, I     ,»          1  I  >»      fW    -»-V          A-. 

prove  that  u—  I  — Jo  1  + 

and  then  find  the  value  of  u. 

[b  Cb 
21.  Show  that       I  F(x)  dx  =  /  F(a  +  b  -  x)  dx. Ja  Ja 

22.  Prove  that  if  n  is  a  positive  integer 

/*Bin«ff>  PsiJ Jo  ^o 

Hence,  show  that  7r/2  lies  between 
2.2.4.4.6.6. 

1 . 3 .  3  .  5 .  5  .  7  .  ...  (2% 

and  the  fraction  obtained  by  omitting  the  last  factor  in  numerator 

and  denominator.     (This  is  often  quoted  as  Wallis's  value  of  TT.) 
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23.    Prove  that,  n  being  .a  positive  integer, 
r 

I 
Jo 

717T  01  ri    w 

00 

where  uk= 
—,  —  • 

U  +  K7T 

Show  that  uQ,  u^  M2...are  positive,  and  that  if  k  is  equal  to  or 
greater  than  1,  uk  is  less  than  l/k.  Interpret  these  results  by  con- 

sidering the  graph  of  sin  #/#,  and  show  that  the  integral  has  a  finite 
limit  for  n  =  oo  .  The  limit  is  Tr/2  but  the  proof  can  not  be  given  here. 

24.    Prove  P  ,„   dscn  .    „>!  but  <?. Jo  , 

2  ^6 /* ̂   (Jj^  I   ̂   CM  f 

9£     Prove    /   <!  I    — ;    but  *>• ^JtJ *  J-   X  Vy  Y  v  I  /    *  f\,  O\      ̂ ^     I  //    j  *^        \         '^  *-*  **      ̂ ^^ »/*         / 1  /I          •<  ̂ y  -*-  /v»«5 1          r«         /i  A         <  ̂ *  \ 
j\)    f^  i  ̂        o*v  T^  t^/  y       i/o    ̂   v  TC       tA^  / 

that  is,  <§,  but  >  19/32. 

2e- pr°ve  r./a-t+^>-573'but<-595- 
Put  &=l+u',  then  replace  w3  +  3^2  +  2  by  4w2  +  2  and  by  3w2  +  2. 

27.    If  a  and  </>  are  positive  acute  angles,  prove 
dx 

—  sin2a  sin2^)  ̂   "*"  ̂/(l  -  sin'2a 
If  a  =  <^)  =  7r/6,  show  that  the  integral  lies  between  '523  and  '541. 
More  accurate  methods  give  *52943  as  an  approximate  value  of  the 

integral. 

28.  Prove 
/•oo  /"oo  rm  -, 

(i)    [   e~*dx<\    xe-^dx-,     (ii)    I    e-x2dv<l  +  ±-. 

29.  Give  a  geometrical  interpretation  of  Th.  VII.,  §  124,  by  con- 
sidering the  volume  of  the  solid  bounded  by  the  coordinate  planes,  the 

planes  through  x  =  a  and  x=b  perpendicular  to  the  ̂ 7-axis,  and  the 
cylinders  y —  ̂>(x)  and  z=^r(x). 

30.  If  Vr(-r)  ̂ s  positive,  and  if  $(x)  is  a  positive  decreasing  function 
in  the  interval  (a,  6),  show  by  considering  the  volume  of  the  solid  of 
ex.  29  that 

f6  f£ 
(i)    I    <$>(x)^s(x)dx  =  <$>(a)  I    ylr(x)dx,  where  a<£<b', Ja  J  a 

but  that  if  <f>(x)  is  a  positive  increasing  function, 
Cb  Cb 

(ii)    /   &(x)Mx)dx  =  <i>(l>)     T\r(x)dx  where  a<£<b. 
Ja  Jj: 

31.  If  </>(.?;)  increases  (algebraically)  as  x  increases  from  a  to  6,  show 

that  in  ex.  30  (i)  we  may  put  <^(b)-^>(x)  in  place  of  </>(#),  while  if 
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)  decreases  (algebraically)  we  may  in  ex.  30  (ii)  put  <$>(a)  —  <$>(x)  in 
place  of  <£(#).  Show  that,  when  these  substitutions  are  made,  both  (i) 
and  (ii)  become 

Cb  /•£  Cb 
I  <j>  (,#)  t/r  (x)  dx  =  (j>(a)  I  \fs(x)d.v+<f)(b)l  ̂   (x}  dx. 
Ja  Ja  Jg 

In  this  case  </>(#)  may  be  either  positive  or  negative.  The  theorem 
expressed  by  the  equation  is  called  The  Second  (Integral)  Theorem  of 
Mean  Value  ;  it  is  true  even  if  ̂ r(x)  take  both  positive  and  negative 
values,  though  the  illustration  would  require  more  careful  elaboration 
to  show  this. 

Illustrate  by  an  area  when 

§  127.  Some  Standard  Areas  and  Volumes.  In  this  article 
we  collect  some  of  the  more  important  results  already 
obtained  or  easily  proved. 

1.  The  right  Circular  Cylinder.     Let  the  radius  of  the  base  be  a  and 
the  height  fi. 

volume  =  7ra2h  ;     curved  surface  =  2?raA. 

2.  The  right  Circular  Cone.     Let  the  radius  of  the  base  be  a,  the 

height  A,  and  the  slant  side  I  =  i*J(a2  +  h2). 
volume  =  ̂ 7ra2h  ;     curved  surface  =  iral. 

For  a  frustum  of  height  A,  slant  side  I,  and  with  radii  of  ends  a,  6, 

volume  =  g7r(a2  +  ab  +  62)A  ;     curved  surface  =  ir(a  +  b)l. 
Let  A  be  the  base,  h  the  height,  and  X  the  section  parallel  to  the 

base  at  distance  x  from  the  vertex  of  any  cone  ;  then 

X:  A=xz:h2, 
since  parallel  sections  are  similar  figures.  Let  V  be  the  volume  of  the 
portion  having  X  for  base  and  height  x  ;-  then  to  the  first  order  of 
infinitesimals  6  V=  X&x,  and  Dx  V  is  equal  to  X.  Hence  the  volume  of 
the  whole  cone  is 

/**  A  fh 
I  Xdx  =  p  L  z?dx  = 

For  a  frustum  of  height  h,  the  areas  of  its  ends  being  A  and  5,  the 
volume  is 

3.  The  Sphere.     Let  the  radius  be  R  ;    then,  by  §  85,  ex.  2,  the 
volume  of  a  spherical  cap  of  height  h  is 

and  tte  curved  surface  of  the  cap  is  2,7rlth.  By  putting  h  =  2R  we 
get  for  the  volume  and  the  surface  of  the  sphere  ̂ Tr/r  and  kirR* 
respectively. 

It  will  be  noticed  that  the  surface  of  the  cap  is  equal  to  the  curved 
surface  of  a  cylinder  of  the  same  height  whose  base  is  equal  to  a  great 
circle  of  the  sphere. 
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To  find  the  volume  of  a  spherical  sector,  add  to  the  volume  of  the 
cap  that  of  the  cone  whose  vertex  is  at  the  centre  of  the  sphere  and 
whose  height  is  R  —  h.  The  result  is 

Trh\R  -  IK)  +  \ir(2Rh  -  tf}(R  -h}  = %2-n-m  =  $SR, 
where  S  is  the  surface  of  the  cap.  The  result  is  more  easily  obtained 
by  supposing  the  surface  of  the  cap  divided  into  a  large  number 
of  small  areas  ;  the  sector  may  then  be  considered  as  made  up  of  a 
large  number  of  cones  having  the  same  height  R,  and  the  volume 
of  the  sector  will  therefore  be 

4.  The  Ellipse.    The  area  of  an  ellipse  whose  axes  are  2a,  26  is 

fa  46  fa 
Jo  a  Jo 

The  volume  of  the  spheroid  generated  by  the  revolution  of  the 
ellipse  about  its  major  axis  2a  is 

Ca  £2  fa 

2  I   Try^dx  =  2ir  -3  1   (a2  -  xL~)dx  =  f  7ra62. Jo  CL  Jo 

This  spheroid  is  called  "prolate."  When  the  axis  of  revolution  is 
the  minor  axis  26,  the  spheroid  is  called  "  oblate."  The  volume  of  the 
oblate  spheroid  is 

2    *****  =  2^       V  - 
The  surface  of  the  prolate  spheroid  is r  a       dg 

/    27ry-rdx9 
Jo      9dx 

2 

Let  e  be  the  eccentricity  of  the  ellipse  ;  then  a2ea  =  a2-62}  and  the 
integral  may  be  written,  since  6  =  ax/(l  —  e2), 

and  the  value  is  easily  found  to  be 

The  limit  of  this  expression  for  e=0  is  4?ra2,  which  gives  the  surface 
of  the  sphere  of  radius  a. 

For  the  oblate  spheroid  the  student  will  readily  prove  that  the 
surface  is  • 

l-€2,         l -         log 
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Since 

we  find  L  -  log  =-—-= 

e=o*     8l-e 
(§  48,  COR.) 

so  that  the  limit  for  e=0  of  this  area  is  also  47ra2. 

5.  The  Ellipsoid  x*/a2  +y2/b2  +  z2/c2  =  1. 
The  traces  of  this  surface  on  the  coordinate  planes  are  ellipses  ;  the 

section  MPQ  by  a  plane  parallel  to 
the   plane   YOZ  is    an    ellipse.      If  Yl 
OM=x  then 

and  the  area  X  of  the  quarter-ellipse 
MPQ  is 

x 

Q If  V  is  the  volume  bounded  by 
the  coordinate  planes,  the  surface 
BCQP  and  the  section  MPQ,  then 
to  the  first  order  of  infinitesimals 

and  DXV=X.    Hence  the  volume  of  the  octant  OABC  is 

FIG.  60. 

fa  irbc  [a 
Xdx=-r— o  /   (a2  — 

Jo  4a2J0  ̂  

irabc 

so  that  the  volume  of  the  ellipsoid  is  47rtt6c/3. 
The  method  of  finding  the  volume  illustrated  in  examples  2  and  5 

is  obviously  applicable  whenever  the  area  of  a  section  perpendicular 
to  the  .r-axis  is  a  known  function  F(x)  of  x  ;  the  volume  is  simply  the 
integral  of  F(x)  between  proper  limits.  (See  ex.  3,  §  85.)  The 
modification  needed  when  the  axes  are  not  rectangular  is  plain. 

Curve  Tracing. — Before  proceeding  to  the  next  set  of 
Exercises  the  student  should  read  over  carefully  the 
hints  given  in  the  earlier  chapters  for  tracing  curves; 
these,  with  the  additional  help  furnished  by  the  first  and 
second  derivatives,  should  enable  him  to  graph  the  more 
elementary  curves.  In  general  he  should  proceed  in  some 
such  way  as  the  following : 

(i)  Examine  the  equation  for  symmetry. 
(ii)  Find  where  the  curve  crosses  the  axes. 
(iii)  Find  the  finite  values  of  x  (or  of  y)  that  make  y 

(or  x)  infinite ;  these  values  usually  show  the  asymptotes 
that  are  parallel  to  the  axes.  Asymptotes  inclined  to  the 
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axes  may  in  the  simpler  cases  be  found  as  in  §  24  or  by  the 
method  of  §  106;  but  such  cases  lie  outside  elementary  work. 

(iv)  Find  the  values  of  the  one  coordinate  that  make 
those  of  the  other  coordinate  imaginary. 

(v)  Find  the  gradient  (see  §  54)  ;  note  the  turning  points, 
(vi)  Find  the  second  derivative  ;  it  determines  the  con- 

vexity or  concavity  of  the  arc  and  the  points  of  inflexion. 
It  is  often  laborious,  however,  to  find  the  second  derivative, 
and  general  considerations  will  frequently  show  the  course 
of  the  curve  without  its  use. 

For  polar  coordinates  the  procedure  is  similar.  It  is 
often  convenient,  however,  to  suppose  that  the  radius  vector 
may  take  negative  values;  thus  the  point  (  —  1,  —1)  in  the 
third  quadrant  may  be  given  in  polar  coordinates  as 
(x/2,  57T/4)  or  as  (  —  ̂ 2,  Tr/4).  In  the  second  form 
(-N/2,  7T/4),  if  LXOP  is  7T/4  and  OP  equal  to  J2, 

produce  PO  beyond  0  to  P'  so  that  OP'  =  PO  and  P' 
is  the  point  (  -  </2,  7r/4).  See  Exer.  XXVII,  ex.  23. 

The  general  course  of  the  curve  should  always  be  found 
before  attempting  to  find  an  area,  or  arc,  etc.  In  evaluating 
the  integrals  substitutions  will  usually  be  necessary,  and 
the  student  will  find  that  sometimes  a  considerable  amount 
of  labour  will  be  saved  by  choosing  a  good  substitution. 

Even  though  the  curve  is  given  in  rectangular  coordinates 
a  change  to  polars  will  sometimes  simplify  the  integrations. 

EXERCISES    XXVII. 

1.  The  parabola  y2  =  4cu7  revolves  about  the  ̂ -axis  ;  find  the  volume 
and  the  surface  of  the  segment  cut  off  from  the  solid  by  a  plane 
perpendicular  to  the  #-axis  through  the  point  where  x=h. 

2.  Find  the  volume  cut  off  from  the  paraboloid 

by  a  plane  perpendicular  to 
the  #-axis  through  the  point 
where  x  =  h. 

3.    Find  the  area  enclosed 
by  the  curve  (Fig.  61) 

Symmetry  abcut  both  axes ; 
#2^g-a2  ;  max.  of  y  =  b/2,. 

Find  also  the  volume  of  the  solid  generated  by  the  revolution  of  the 
curve  about  the  ̂ 7-axis. 
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4.  Find  the  area  enclosed  by  the  curve  C2y2=x2(x-a)(b-x\  where 
6>a>0. 

If  x  is  less  than  a  or  greater  than  6,  y  is  imaginary  except  when  x=0 
and  then  y—0.  The  curve  is  therefore  a  closed  curve  symmetrical 
about  the  .r-axis  ;  the  origin  is  called  an  isolated  point  because  its 
coordinates  satisfy  the  equation,  while  there  is  no  other  point  nearer 
the  origin  than  (a,  0)  which  lies  on  the  curve. 

5.  Find  the  area  of  the  curve 
(**     i          O\O  9      O     i      7  O      O  %  IT 

/y      I    ')/<«  •«      -  s~f£>  'v*u    i     /  L—  i /—  % 
•A/  1         "I         I  ~~  t/V     iX/  I        I/       I/       •  ^ 

Change  to  polar  coordinates.     The 
origin  is  an  isolated  point. 

6.  Trace  the  curve 
A-3/2  —   /v»  /  /y»  ̂   /¥  IIV/Tf   —    ̂   I 
t/M       '^~«A/   \*V  W/l\  A^W/  »V  y 

where  a  and  6  are  positive.. 
y  is  imaginary  (1)  if  #>2a ;   (ii)  if 

The   curve   consists    of   an    infinite 
branch  and  an  oval  as  in  Fig.  62. 

7.  Find  the  area  of  the  loop  of  the 
curve  16a3y2  =  &2#2(a  — 2#)  where  a,  b 
'are  positive. 

8.  Trace  the  curve  ky2=(x -d)(x-  b)(x -  c)  where  c>6>a>0, 
Consider  the  forms  for  which  (i)  a  =  b  ;  (ii)  fe  =  c  ;  (iii)  a=b  =  c. 

The  general  form  consists  of  an  oval  and  an  infinite  branch  like 
Ex.  6,  only  the  oval  lies  to  the  left  of  the  infinite  branch.  When 
a  =  b  the  oval  shrinks  up  to  an  isolated  point  at  (a,  0)  ;  when  a  =  b  =  c 
the  curve  is  the  semi-cubical  parabola,  the  point  («,  0)  being  a  cusp. 
The  area  of  the  oval  in  the  general  case,  a,  6,  c  unequal,  cannot  be 
expressed  in  terms  of  the  elementary  integrals. 

9.  Trace  the  curve  y2(a-x)—xz(a+x)  ;  find  (i)  the  area  of  the  loop, 
(ii)  the  area  between  the  curve  and  the  asymptote  (Fig.  63). 

Here  the  gradient  is  zero  when  x  is  (1  ±  >/5)  or/2,  but  the  value 
/2  makes  y  imaginary. 
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10.    The  "cissoid"  is  the  curve  given  by  the  equation  y2(2a  —  x)=x3; 
find  the  whole  area  between  the  curve  and  its  asymptote  (Fig.  64). 

Find  also  the  volume  of  the  solid  generated 
by  the  revolution  of  the  cissoid  about  its 
asymptote. 

If  PM  is  perpendicular  to  the  asymptote  the 
volume  is 

2  {  °°  vPM2  dy  =  2?r  f°°  (2a  -  xf  dy. Jo  Jo 

To  integrate  let  #=2asin20,  then 
y  =  2a  sin3#/cos  0, 

and  the  limits  for  6  are  0  and  ?r/2. 
11.   Find  the  area  between  the  curve 

xyz=a\a  —  x) 

and  its  asymptote  ;  also  the  volume  of  the  solid 
generated  by  the  revolution  of  the  curve  about 

FIG.  64.  its  asymptote. 

12.  Find  the  area  of  a  loop  of  the  curve  y2(a2  +  ̂ 72)=a72(a2-^2). 

13.  The  figure  bounded  by  a  quadrant  of  a  circle  of  radius  a,  and 
the  tangents  at  its  ends  revolves  about  one  of  these  tangents  ;   find 
the  volume  of  the  solid. 

14.  An  arc  of  a  circle  of  radius  a  revolves  about  its  chord  ;  if  the 
length  of  the  arc  is  2aa  show  that  the  volume  of  the  solid  is 

27ra3(sin  a  —  J  sin3a  —  a  cos  a), 
and  that  the  surface  of  the  solid  is 

47r«2(sin  a  —  a  cos  a). 

15.  If  s  is  an  arc  of  the  curve  an~ly=xn  show  that 

Show  that  the  arc  can  be  expressed  by  means  of  the  elementary 
functions  when  n  is  of  either  of  the  forms  (2&+l)/2&  or  2£/(2&-l) 
where  k  is  any  integer,  positive  or  negative. 

16.  Find  the  area  between  the  graph  of  4/(e*  +  e~a;)2  and  the  #-axis. 
17.  Find  the  whole  area  enclosed  by  the  curve 

Put  #=asin3#,  then  y  =  6cos3#,  and  the  area  is 
fa,  f% 

4  1   ydx=\Zab\    sin2 Jo  '  Jo 
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18.    The  cycloid  is  the  curve  given  by  the  equations  (§  146) 

Find  (i)  the  area  between  the  .r-axis  and  one  arch  of  the  curve  ; 
(ii)  the  length  of  the  arch  from  0  =  0  to  @  =  a  ;  (iii)  the  volume  of  the 
solid  generated  by  the  revolution  of  the  arch  about  the  .r-axis  ;  (iv)  the 
volume  of  the  solid  generated  by  the  revolution  of  the  arch  about 
the  tangent  at  the  highest  point  (or  vertex)  of  the  arch,  namely, 
where  8  =  TT. 

f  r  r7o  f) 

Here  \ydx=a?t  1(1  -cosff)2dO  ;  '^  =  2 

19.    Find  the  volume  of  the  tetrahedron  formed  by  the  coordinate 
planes  and  the  plane 

z/c=I. 
20.    Find  the  volume  of  the  cono-cuneus  determined  by  the  equation 

which  is  contained  between  the  planes  #=0  and  x=a. 

21.    Find  the  perimeter  of  the  curve 2  £  -f 

—  n  ** 

If  .r=asin3$,  then  y  =  acos3#  and  ds/dO=3a sin  Ocos  9 ;   the  peri- 
meter is  r\ 

4  I    3asin0cos0d0=6a. 

Jo 
22.  The  polar  equation  of  a   conic,  the  focus  being  the  pole,  is 

r(l+ecos  9)  =  l.     Find  the  area  bounded  by  the  initial  line,  the  curve 
and  the  radius  vector  for  v/hich  9  =  a,  where  a  <  TT,  (i)  for  the  para- 

bola, (ii)  for  the  ellipse. 

23.  Show  that  the  curve  r=asin30  consists  of  three  loops  of  equal 
area  lying  within  a  circle  of  radius  a, 
and  find  the  area  of  a  loop. 

As  9  increases  from  0  to  Tr/3,  the 
graphic  point  describes  the  loop 
OABCO  ;  as  9  increases  from  7r/3  to 
2?r/3,  r  is  negative  and  the  graphic 
point  describes  the  loop  ODEFO  ;  as 
9  increases  from  27T/3  to  TT,  r  is  again 
positive  and  the  graphic  point  de- 

scribes the  loop  OGHKO.  A  further 
increase  of  9  gives  no  new  arc. 

24.  Find  the  area  enclosed  by  all 
the  loops  of  the  curve  r=asiunO  (i) 
when  n  is  an  odd  integer,  (ii)  when  n 
is  an  even  integer. 

25.  Find  the  area  of  a  loop  of  the  curve  ̂ cos  #=«2sin  30. 

26.  Find  the  area  of  the  loop  of  the  curve  r  cos  9= a  cos  20. 
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§  128.  Closed  Curves.  Let  (7P1DP2  be  a  curve  that  can 
not  be  cut  by  a  straight  line  in  more  than  two  points,  and 
let  each  ordinate  be  positive;  let  AC,  BD  be  the  tangents 

parallel  to  the  ̂ /-axis,  OA  =a,  OB  =  b. 
The  area  enclosed  by  the  curve  is 

(1) 

o, 

where  Pl  and  P2  move  along 
as  x  increases  from  a  to  6. 

The  integrals  (1)  may  be  written 

and  CP2D  respectively 

(2) 

Suppose  now  that  the  coordinates  x  and  y  of  a  point  on 
the  curve  can  be  expressed  as  functions  of  a  variable,  t  say, 

such  that  as  t  increases  from  t^  to 

t2  the  point  (x,  y)  travels  com- 
pletely round  the  curve.  As  t 

increases  from  t^  to  if  let  the  point 
(x,  y)  travel  from  C  to  D  along 
the  arc  CP1D-)  as  t  increases  from 
if  to  t2  let  the  point  (x,  y)  travel 
from  D  to  G  along  the  arc  DP2G. 
We  might,  for  example,  suppose  t 
to  be  an  arc  of  the  curve  measured 

from  C ;  then  ̂   =  0,  if  =  arc  CPl  D, 
t2  =  whole  perimeter.  If  we  make  t  the  variable  of  integra- 

tion, (2)  becomes 
[•/'  ?  ft  ^ i  «  ft  /y»  I  &2  fiflfl 

\AJiAj     -i,     .  Tt/fi-k     \XMt     -I.  /Q\ 

•w 

j* 

The  second  integral  in  (3)  is  negative,  since  MP2  is  positive 
and  dx/dt  is  negative  as  t  increases  from  if  to  t2.  When  t 
represents  an  arc  of  the  curve  dx/dt  is  the  cosine  of  the 
angle  which  the  tangent  at  (x,  y)  makes  with  the  ic-axis, 
the  angle  being  measured  as  in  §  92.  We  may  combine  the 
two  integrals  of  (3)  into  one  and  write  as  the  expression  for 
the  area  of  the  closed  curve .(4) 
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Put  x—h-acost)  ?/  =  £  +  /?  sin  t  ;  as  t  varies  from  0  to  STT,  the  point 
,  y)  travels  round  the  curve  in  the  direction  CP-^DP^.     The  area  is r sin  t)  a  sin  tdt  =  af3\     sin2Z  dt  =  Trot/?. 

The  restriction  that  the  curve  is  to  be  cut  in  not  more 
than  two  points  by  a  straight  line  is  easily  removed. 

Thus,  when  the  point  (x,  y)  travels  in  the  direction 

shown  by  the  arrows,  the  area  swept  out  by  'the  ordinate 
of  the  point  is 

AGEM-NFEM+NFDB-ACGDB, 

which  is  clearly  the  area  enclosed  by  the  curve.     Along  the 
arcs  EF,  DGC,  dx/dt  and  the  corre- 

sponding   integrals    are    negative ; 
the    areas    NFEM,    AGGDB    are 
therefore  to  be  subtracted. 

We  might  have  written  (1)  in 
the  form 

a 

.  N     M 
FIG.  67. 

B 
If  as  t  increases  from  if  to  t%  the 
point  (x,  y)  travels  completely 
round  the  curve  in  the  direction  CP2DPV  the  area  will  be 

dx  -, .  /  A'\   (4) 

f
t
 

t 

The  area,  as  given  by  (4)  or  (4')  is  a  positive  number ;  if, 
however,  we  agree  to  give  the  area  a  sign,  the  integral r  dx  ,. 

  (5) 

taken  round  the  curve,  that  is,  the  range  of  t  being  such 
that  the  point  (x,  y)  travels  completely  round  the  curve, 
will  always  give  the  algebraical  measure  of  the  area. 

In  exactly  the  same  way  as  (4),  (4')  are  established,  it 
may  be  proved  that  the  integral 

  (6) 
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taken  round  the  curve  will  give  the  algebraical  measure  of 
the  area.  If,  as  t  increases  from  ̂   to  t2,  the  point  travels  in 
the  direction  CP^P^  the  integral  (5)  is  positive  and  (6)  is 
negative,  and 

dx 

f 

if  the  point  travel  in  the  direction  CP2DPl  itv  is  (5)  that  is 
negative  and  (6)  that  is  positive. 

The  direction  of  motion  of  the  point  (x,  y)  is  of  course 
arbitrary  ;  in  mathematical  physics  it  is  customary  to 
choose  the  number  that  measures  the  area  to  be  positive 
when  the  area  lies  to  the  left  of  an  observer  who  moves 
round  the  curve  in  the  direction  corresponding  to  in- 

creasing t.  If  we  adopt  this  convention  we  tind  for  the 
area  A  of  a  closed  curve 

f  dy  7  ,         f  dx  7,     .  f  /  dy       dx -- 
the  integral  being  taken  round  the  curve  in  the  direction  in 
which  t  increases.  The  integrals  in  (7)  are  often  abbrevi- 

ated to 

A  =  \xdy  =  —  \ydx  =  ̂ \(ocdy  —  ydx). 

There  is  no  difficulty  now  in  removing  the  restriction 
that  the  coordinates  are  to  be  positive  ;  the  expressions  (7) 
always  give  the  algebraical  measure  of  the  area.  Of  course 

FIG.  68. 

it  is  understood  that  the  point  (x,  y)  travels  round  the  curve 
in  a  direction  determined  once  for  all ;  the  sign  of  A  given 
by  (7)  is  positive  for  the  direction  (7P2DP1;  if  the  direction 
be  CP^DP^  the  sign  will  be  negative. 
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The  theorem  includes  cases  in  which  the  curve  cuts 
itself;  thus,  if  the  point  travels  round  the  figure  of  eight 
in  the  direction  of  the  arrows,  the  integral  (7)  is  equal  to 
A2  —  Av  For  the  other  figure  the  integral  gives  the  sum 
of  the  areas  of  the  two  loops  ;  f  Or  the  inner  area  is  taken 
twice. 

§  129.  Area  swept  out  by  a  moving  Line.  Let  AB  be  a 
straight  line  of  length  I,  and  let  it  be  displaced  to  a  close 

position  AB',  sweeping  out  an  area  ABB'  A;  this  area  will 
be  taken  as  positive  or  negative  according  as  it  lies  to 
the  left  or  to  the  right  of  an  observer  moving  round  the 

boundary  in  the  direction  ABE'  A'. Draw  AC,  EG  parallel  to  AE  and  to  the  chord  A  A 

respectively;  let  AXf  be  parallel  to  a 
fixed  line  and  let  the  angles  X'AB, 
CAB'  be  a  and  So.  To  the  first  order 
of  infinitesimals  the  area  ABB'  A,  Sz 
say,  is  equal  to  the  sum  of  the  paral- 
lelogram  AC  and  the  triangle  AGE'. 

The  motion  of  AE  may  be  resolved    /  -  -, 
into  (i)  a  translation  to  AC,  (ii)  a  rota- 
tion  about  A  to  the  position  A'E'.    Let 
h  be  the  altitude  of  the  parallelogram,  then  to  the  first 
order  of  infinitesimals 

Pda  ..........................  (1) 

Let  P  be  a  fixed  point  in  AB;  AP  =  a  =  A'Pl  =  A'P'i  and consider  the  displacement  of  P  normal  to  AB.  For  the 
translation  the  normal  displacement  is  (not  PPl  but)  h  ;  for 
the  rotation  it  is  ada.  The  total  normal  displacement,  ds 
say,  of  P  is  therefore 

ds  =  h  +  ada  ...........................  (2) 

From  (2)  h  =  ds  —  ada  ;  therefore  (1)  becomes 

dz  =  lda+(#*-al)da  .....................  (3) 
If  we  suppose  the  variables  to  be  functions  of  t,  as 

in  §  128,  we  have <*> 
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Equation  (4)  is  general,  provided  the  variables  are  given 
the  proper  signs,  ds  and  ds/dt  will  be  taken  positive  when 
the  motion  of  P  is  to  the  left  of  an  observer  looking  along 
AB  from  A  to  J5;  positive  rotation  (a)  is  counter  clockwise. 
The  constant  a  will  be  positive  when  P  lies  in  AB  or  in 
AB  produced  beyond  5;  negative  when  it  lies  in  BA 
produced  beyond  A. 

As  t  increases  from  ̂   to  £2  the  area  swept  out  by  AB  is 

7\P2<^a 
—  ai)\    -rr 

B 

(5) 

where  s  is  the  total  normal  displacement  of  P  during  the 
motion  and  alt  a2  are  the  initial  and  final  values  of  a.  s  is 

not,  in  general,  the  same  thing  as  the  length  of  P's  path. 
Suppose  now  that  B  describes  a  closed  curve  C  and  let 

the  area  of  the  curve  be  also  denoted  by  C. 
(i)  When  B  makes  a  complete  circuit  of  C  let  A  move  to 

and  fro  along  an  arc  EF, 
returning  to  its  initial  posi- 

tion when  B  returns  to  its 
initial  position  ;  in  (5)  a2  =  aa 
and  z  is  simply  equal  to  C, 
so  that 

0=Zs  ...............  (6) 

where  s  is  the  total  normal  dis- 
placement of  P.  For,  clearly, 

the  integral  (5)  gives  the  area  ABDGH  diminished  by  the 
area  ABKGH.  In  this  case  s  is  independent  of  a,  that  is 
of  the  position  of  P  on  A  B. 

FIG.  70. 

FIG.  71.  FIG.  72. 

(ii)  Suppose  that  while  B  makes  a  complete  circuit  of  C 
travels  round  a  closed  curve  (7,     If   (7  is  outside  C 
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(Fig.  71)  ax  and  a2  will  be  equal  ;  (5)  will  be  Is  but  the  area 

swept  out  by  AB  will  be  C—C',  so  that 
C-C'  =  ls  ............................  (7) 

If,  however,  C  completely  encloses  C'  (Fig.  72)  then  a2  —  ax 
will  be  2-7T  and  we  shall  have 

The  signs  of  the  numbers  C,  C'  are  supposed  to  be  deter- 
mined by  the  convention  of  §  128  (7). 

§  130.  Planimeters.  The  investigations  in  the  last  two 
articles  contain  the  theory  of  several  instruments  that  have 
been  devised  for  mechanically  evaluating  the  area  of  a  closed 

curve  ;  the  best  known  of  these  is  Amsler's  Polar-Planimeter. 
Essentially  the  polar-planimeter  consists  of  two  bars  OA, 

AB  freely  jointed  at  A,  the  bar  OA  rotating  about  a  fixed 
point  0.  If  B  is  made  to  describe  a  closed  curve,  A  will 
move  along  the  circumference  of  a  circle.  When  A  merely 
oscillates  along  the  circumference,  not  making  a  complete 
revolution,  the  area  enclosed  by  the  curve  which  B  describes 
is,  by  (6)  of  §  129,  Is.  In  this  case  s  is  independent  of  the 
position  of  P  on  the  bar  AB. 

To  find  s  a  wheel  with  axis  parallel  to  AB  is  attached  to 
AB',  the  wheel,  as  B  describes  its 
curve,  partly  slides  and  partly  rolls 
The  sliding  and  the  rolling  motions 
are   independent,  and   the   sliding 
motion  has  no  effect  in  the  way  of 
turning   the   wheel.      The   normal 
displacement  of  P  is  therefore  equal 
to  the  circumference,  ZTTT  say,  of  „      _„ 
the    wheel    multiplied    by   n,   the 
number  of  turns  made  by  the  wheel  while  B  describes  its 
curve  ;  that  is,  s  =  Ztrrn.  A  counter  is  provided  that  registers 
n  ;  n  of  course  may  be  integral  or  fractional. 

If  we  suppose  the  curve  G  so  large  that  the  circle  of 
radius  OA  lies  wholly  inside  it  then,  by  (8)  of  §  129, 

that  is,  C  =  ZTrlrn  +  27r(^2  -  a 
G.C.  X 
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since  s  =  2?rrti.     All  the  numbers  except  n  are  constants  of 
the  instrument. 

For  information  on  Planimeters  the  student  is  referred 

to  Henrici's  "  Report  on  Planimeters,"  Brit.  Ass.  Rep.  1894. 
The  method  of  proof  followed  in  §§  128,  129,  is  essentially 

that  given  by  Appell  in  his  Elements  d'  Analyse  Mathe'- matique. 

EXERCISES    XXVIII. 

1.  Show  that  in  polar  coordinates  the  area  of  a  closed  curve  is 
given  by  the  integral 

taken  round  the  curve.  Prove  the  result  (i)  by  use  of  the  polar 
formula  for  area  ;  (ii)  by  transformation  of  the  last  integral  in  (7), 
§  128,  by  putting  #=?*cos  0,  y=rsin  6.  (See  Exer.  XII.,  ex.  15.) 

2.  If  the  coordinates  of  the  vertices  of  the  triangle  OA  B  are,  when 
taken  in  the  order  0,  A,  B,  (0,  0),  (#,  y\  (#+6X  y  +  &y)  respectively, 
prove  geometrically  that  the  area  of  the  triangle  is  ̂ 0*%-yo#),  in  sign 
and  in  magnitude.    Apply  the  result  to  establish  the  theorem  of  ex.  1. 

3.  Find  the  area  common  to  the  two  parabolas  y2=4ax,  x2=4ay. 

4.  Find  the  area  between  the  asymptote  y  =  a,  the  y-axis  and  the 
branch  of  the  curve  y2(a2+#2)  =  a2#2  that  lies  in  the  first  quadrant. 

The  area  is  equal  to 

L 
6=00  ./O  6=ao 

Find  the  area  by  integrating  with  respect  to  y, 

5.  The  "tore"  or  the  "anchor-ring"  is  the  solid  formed  by  the revolution  of  a  circle  about  a  straight  line  in  its  plane.  Let  a  be  the 
radius  of  the  circle,  the  y-axis  the  axis  of  revolution,  and  let  the  centre 
of  the  circle  be  on  the  #-axis  at  a  distance  c  from  the  origin.  The 
coordinates  of  any  point  on  the  circle  may  be  taken  as 

x  =  c  +  a  cos  t,    y  =  a  sin  t. 
If  V  is  the  volume  and  S  the  surface  of  the  tore,  then,  when 

ci?a,  prove 
/"2ir (i)  P=  TT  /     (c  +  a  cos  ffa  cos  t  dt  =  27r2a2c  =  AL  ; 

Jo 

(ii)  £  = 
where  A  is  the  area  and  C  the  perimeter  of  the  circle,  and  L  is  the 
circumference  2?rc  of  the  circle  described  by  the  centre  of  the  revolving 
circle. 
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6.  The  curve  r  =  3  +  2  cos  0  consists  of  a  single  oval  ;  trace  the  curve 
and  find  its  area. 

7.  The  curve    r  =  2  -1-3  cos  8    consists   of   two   ovals   (Fig.   74);    if 
cos  a  =  -  §  (0  <  a  <  TT),  show  that  the 
area  of  the  large  oval  is 

A  =*g-a  +  12  sin  a  +  1  sin  a  cos  a, 
and  of  the  small  oval  is 

tyir  -  A. 
Show  also  that  the  integral  of  ̂ r'2 

from  0=0  to  0=27r  gives  the  sum  of 
these  two  areas. 

Examples  6,  7  show  the  nature  of 
the  curve  r=a  +  6  cos  0  for  a  >  b  and 
a  <  b  respectively. 

8.  How  may  the  curve  given  by  the  equation  f(mx,  ny)=0,  where 
m  and  n  are  constants,  be  deduced  from  that  given  by  /(#,  v)=0  ?    If 
the  second  curve  is  closed,  show  that  the  first  is  also  closed  and  that 
the  area  of  f(mx,  ny)  =  Q  is  equal  to  that  of  /(#,  #)  =  0  divided  by  mn. 

Let  mx=x',  ny=y',  and  therefore  x'dy'  =  mnxdy.  Now  apply  (7), 
§  128  ;  the  integral  of  x'dy'  round  the  curve  f(x',  y')  =  0,  (which  is  the 
same  thing  as  the  integral  of  xdy  round  the  curve  /(#,  y)  =  0),  will  be 
equal  to  the  integral  of  mnxdy  round  the  curve  f(mx,  ny)-=0,  that  is, 
to  mn  times  the  area  enclosed  by  that  curve  (since  mn  is  constant  and 
the  integral  of  xdy  is  the  area). 

9.  Apply  the  method  of  ex.  8  to  deduce  from  Exer.  XXVII.,  ex.  5, 
the  area  of  the  curve  (mV2  +  n2y2)2  =  a?x2  +  62^2. 

10.  "When  AB  (§  129)  describes  one  complete  revolution,  show  that 
P  describes  a  curve  which  encloses  an  area  C"  given  by 

(i)  C"  =  (aC+bC')/(a  +  b)-7rab, 

where  PB  =  b  and  a,  (7,  C'  denote  the  same  quantities  as  in  §  129. 
Show  also  that  if  the  ends  J,  B  move  on  a  closed  oval  curve  C 

(ii)  'C  -  C"  =  irab.  (Holditch's  Theorem.) 
Use  equation  (8),  §  129.  Put  l=a  +  b  and  we  get  C-  C"  ;  then  put 

l=a  and  we  get  C"  -C'.  The  elimination  of  s  gives  (i).  To  find  (ii), consider  the  areas  swept  out  by  AP  and  BP, 



CHAPTER   XV. 

INTEGRAL  AS  LIMIT  OF  A  SUM. 

DOUBLE  INTEGRALS. 

§  131.  Integral  as  the  Limit  of  a  Sum.  It  is  instructive 
and  for  some  applications  necessary  to  consider  an  integral 
as  the  limit  of  a  sum.  F(x)  is,  as  usual,  understood  to  be 
continuous. 

In  the  first  place,  suppose  a<b  and  F(x)  a  positive 
increasing  function  ;  these  restrictions  will  afterwards  be 
removed.  Between  a  and  b  insert  (n  —  1)  values  in  ascend- 

ing order  of  magnitude,  xv  x2,  XB)  ...  ,  xn-i,  and  form  the 
differences  (xl  —  a),  (x2  —  031),  (xs  —  x2),  ...  ,  (b  —  xn  _  i)  ;  these  n 
differences  are  all  of  the  same  sign,  in  this  case  positive, 
and  their  sum  is  b  —  a.  The  interval  b  —  a  is  thus  divided 
into  n  sub-intervals. 

Now  multiply  each  sub-interval  by  the  value  of  F(x)  at 
the  beginning  of  that  sub-interval  and  add  the  n  products. 
We  get  the  sum 

F(a)(xl  -  a)  +  F(x1)(x2  -  xj  +  F(x2)(x3  -  x2)  +  .  .  . 
+  F(xn-l}(b-xn-'()...^  .....  (1) 

or,  in  the  ordinary  notation  of  differences  §a, 

The  sum  (!')  may  be  more  compactly  written '  r  ~  f  > 

..............................  (2) 
x=a 

The  symbol  2F(x)Sx  means  "  the  sum  of  all  the  terms  of 
the  type  F(x)Sx"  and  is  read  "  sigma  F(x)Sx."  In  inter- 

preting the  symbol,  the  manner  in  which  the  interval  b  —  a 
has  been  divided  has  to  be  gathered  from  the  context ;  the 
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end  of  the  interval  from  which  the  division  begins  is 

indicated  by  "x  =  a"  the  other  end  by  "x  =  b"  and  each 
difference  Sx  has  the  same  sign  as  b  —  a,  in  this  case  positive. 

We  wish  to  find  the  limit  of  the  sum  (1)  or  (2)  for  n 
increasing  indefinitely,  each  difference  Sa,  Sxv  ...,  at  the 
same  time  diminishing  indefinitely.  To  find  the  limit  con- 

sider the  graph  of  F(x),  (Fig.  75). 
Let  QA—a,  OAl=x1...,  OB=b;  then  AC  —  F(a\ 

AlCl  =  F(x1)...)  An.lCn^l  =  F(xn.l))  BD  =  F(b).  CEV 
G^fr  ... ,  Cn-iEn  are  parallel  to  the  cc-axis.  The  sum  (1) 
is  clearly  the  area  enclosed  by  the  rectangles  AEV  A^E^ 
...  ,  An-iEn  and  differs  from  the  area  ABDG  by  the  sum 
of  the  curvilinear  triangles  GE^C^  G^E2GZy  ...  ,  Gn.iEnD. 

FIG.  75. 

Draw  GE  parallel  to  AB  to  cut  BD  at  E  and  produce 
CE  to  F  so  that  EF  may  be  equal  to  the  greatest  of  the 
sub-intervals  AAV  AlA2t  ...  ,  and  complete  the  rectangle 
EFOD.  Let  z  denote  the  area  ABDC',  then  the  difference 
between  z  and  the  sum  (1)  is  less  than  the  sum  of  the  n 
rectangles  CE1.E1CV  CJ£2  .  E2C2,  ...,  Cn-iEn.EnD,  and 
therefore  less  than  the  rectangle 

or  the  rectangle  EF.  ED,  that  is,  EF{F(b)-F(a)}. 
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If  n  increases  indefinitely  and  if  at  the  same  time  each 
sub-interval  diminishes  indefinitely,  the  limit  of  EF  will  be 
zero  and  therefore  the  limit  of  (1)  will  be  z.  Hence 

x=b 

L  ̂ F(x)8x  =  z  =  vrea,ABDC.   (3) =  ao  x=a 

We  may,  of  course,  write 

—  z,  approximately. 
x=a 

It  is  easy  now  to  remove  the  restriction  that  F(x)  should 
be  positive  and  increasing  or  that  a  should  be  less  than  6. 

If  a<b  and  F(x)  positive  and  decreasing  the  only  change 
is  that  z  is  less  than  the  sum  (1);  if  F(x)  is  sometimes 
increasing  and  sometimes  decreasing  we  can  combine  the 
results  for  the  cases  of  increasing  and  of  decreasing  F(x). 

If  a  >  b  and  F(x)  positive,  each  of  the  differences  (xl  —  a), 
(#2  —  0^),  ...  is  negative  and  the  limit  gives  the  area  with 
negative  sign. 

Lastly,  if  F(x)  is  negative  the  limit  is  still  the  area  if  the 
appropriate  sign  be  chosen  as  in  §  80. 

In  regard  to  the  sub-intervals  we  may  if  we  please 
suppose  them  all  equal,  each  therefore  being  (6  —  a)/n ;  the 
only  restriction  on  the  sub-intervals  is  that  each  must  have 
zero  for  limit  when  n  tends  to  infinity  as  limit. 

We  have  supposed  F(x)  in  the  sum  (1)  to  have  its  value 
at  the  beginning  of  each  interval ;  but  the  limit  will  be  the 
same  if  we  take  the  value  at  the  end  or  at  any  inter- 

mediate point  of  each  interval,  as  may  be  proved  by  §  87, 
Th.  II.  For,  restricting  attention  to  the  case  a  <  6,  F(x) 
positive,  since  the  others  can  be  easily  deduced  from  this,  if 
of,  x(y  x%...  are  values  of  x  within  or  at  the  end  of  the  inter- 

vals (aTj  —  a),  (#2  — #]},  (#3  — #2)...  respectively,  we  may  take 

ft  =  F(af)(xl  -  a),    ft  =  F(xf  )(x2  - 
yl  =  F(a)(x1  -  a),      y2  =  F(x1)(x2  - 

and  the  conditions  of  that  theorem  apply  since,  F(x)  being 
continuous,  the  limit  for  n  =  <x>  of  ft/y1?  ft/72-"  ̂ s  unity- 

Having  proved  that  the  limit  of  (1)  is  the  area  z,  we  can 
now  show,  as  in  §  80,  that  the  derivative  of  that  limit  with 
respect  to  6  is  BD,  that  is  F(b),  and  therefore  we  can  apply 
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all  the  theorems  respecting  integrals  to  the  limit  of  the 
sum  (1).  The  origin  of  the  ordinary  notation  for  integrals 

is  also  obvious,  the  I  being  a  form  of  the  initial  letter  of 

the  word  "sum";  it  will  be  remembered,  however,  that  the 
integral  is  not  a  sum  but  the  limit  of  a  sum.  (See  §  132, 
ex.  2). 

S  132.  Examples. 

rt, Ex.  1.     Evaluate  /  x*dx. 
Jb 

Divide  the  interval  b  into  n  equal  parts  ;  in  the  notation  of  §  131, 

0  A  =  0,     OA  !  =  bin,  OA2  =  26/w,  .  .  .,     OAn^  =(n  -  l)b/n. 
The  sum  (1)  becomes 

n  n 

63f '  IV 

and  the  limit  is  clearly  63/3. 

Ex.  2.     Show  that  if  in  §  131,  (2),  we  put  F(x)=f'(x),  the  limit 
will  be  /(&)  -/(a). 

By  the  definition  of  a  derivative, 

a  ;    /(*  +  &*)  -/(*)-/(#)&?  +  O&F,  .....  (A) 

where  a  vanishes  with  8x.  Give  successively  to  x  and  S#  in  (A)  the 
values  in  §  131  ;  a  will  not  usually  have  the  same  value  for  all  values 
of  x,  and  we  therefore  use  suffixes.  Hence OiS«  5 

i  +  a28^i  5 

* 

Add:  /.  /(&)-/(a)=2/(#)&e  +  jR, 

Let  a!  be  the  greatest,  numerically,  of  the  quantities  ctj,  <x2,  ...  ; 
then,  numerically, 

R  <  a(8a  +  6X  4- . . .  4-  8xn-i)     or     a'(b  -  a). 
Since  every  a,  and  therefore  a',  has  zero  for  limit,  R  will  have  zero  for limit  and  the  result  follows. 
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Ex.  3.     Find  the  limit  for  n  =  00  of 

~l     O     I     •  •  •     > 

We  may  write  this  sum 

_1_    1     J^     1        1_    1  1 

r» !+?'»  1+?'*  "'  i+? n  n  n  n 

<5T      1          1 
or  2 

Consider  the  function  F(x)  =  \jx ;  in  §  131,  let  each  difference  be 
1/Ti,  let  a=l,  6  =  2,  and  the  above  sum  will  be  the  same  as  (1),  §  131, 
if  we  suppose  the  values  of  F(x)  to  be  those  at  the  end  of  each  interval. 
Hence  the  required  limit  is 

/3/7r      I
-  -12 

_  f  -[log*]  -logs-ew. 
§  133.  Approximations.  The  method  of  evaluating  an 

integral  by  first  finding  the  function  of  which  the  integrand 

is  the  derivative  would  "fail  if  we  could  not  find  such  a 
function.  An  important  case  in  which  that  method  can  not 
be  used  is  that  in  which  the  integrand  is  given  only  by  its 
graph,  as  often  happens  in  physical  applications.  Methods 
have  therefore  been  devised  for  determining  approximately 
the  value  of  the  integral  when  only  a  limited  number  of 
values  of  the  integrand  are  known ;  it  is  assumed  that  the 
integrand  may  be  treated  as  a  continuous  function,  though 
if  only  a  limited  number  of  values  of  the  integrand  are 
known,  the  analytical  expression  for  the  function  can  not 
be  given.  The  rules  now  to  be  stated  can  be  applied  even 
when  the  analytical  form  of  the  function  is  known,  though 
in  general  more  powerful  methods  are  available  in  that 
case,  in  particular  the  method  of  expansion  in  series. 

Let  AB  be  divided  into  n  equal  parts,  each  part  being 
equal  to  hy  and  suppose  the  (n  +  l)  ordinates  at  A,  B  and 
the  points  of  division  to  be  known;  let  these  be  yv  y2,  ys,  .... 
The  calculation  of  the  integral 

Cb 

F( 

Ja 

  (1) 

is  then  equivalent  to  finding  the  area  ABDC  (Fig.  76). 
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The  most  obvious  method  is  to  replace  the  graph  by  the 
inscribed  polygon  (7CU7g...,  The  area  of  the  first  trapezium 
is  ̂ (^-hyg),  and  this  area  may  be  assumed  to  differ  but 
little  from  that  of  the  corresponding  strip  of  ABDC. 
Adding  together  all  the  trapeziums,  we  get,  as  an  approxi- 

mation to  the  area,  and  therefore  to  the  integral  (1) 

A    A,  A5 B 

(2) 

If  the  graph  is,  as  in  the  figure,  convex  upwards  through- 
out the  value  Al  is 

in  defect;  if  the 
graph  is  concave 
upwards,  Al  is  in 
excess. 

Through  the 
ends  of  the  even 

ordinates  y%,  y±  ... 
let  tangents  be 
drawn  and  pro- 

duced to  meet  the 

adjacent  odd  ordin- 
ates; if  the  number  _ 

of  ordinates  is  odd, 
2n  +  1  say,  we  shall 
get  n  trapeziums 
whose  sum  exceeds 

ABDC  in  area  when  the  graph  is  convex  upwards  through- 
out. The  area  of  the  first  trapezium  is  Zhy2,  of  the  second 

2%4,  and  so  on.  Hence  we  get  another  approximation 

42  =  2&(2/2  +  2/4+..  .+3ft»)....'  ...............  (3) The  value  of  the  integral  (1)  always  lies  between  Al  and 
A2  when  there  is  no  point  of  inflexion  on  the  arc  CD, 
and  the  difference  ±(Al  —  A2)  gives  a  measure  of  the  error 
involved  in  either  approximation.  The  formula  (2)  is 
usually  referred  to  as  the  Trapezoidal  Rule. 

A  formula  that  is  in  practice  more  accurate  than  (2)  or 
(3)  is  got  as  follows  :  By  §  72  we  may  write 

F(x)  =  F(c)  +(x-  c)F'(c)  +  J  (a  - 

FIG.  76. 
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If  x  —  c  is  small  we  may  assume  that  F"(x^)  differs  but 
little  from  F"(c)  ;  if  F(x)  were  of  the  second  degree  F"(x^) 
would  be  simply  F"(c}.  The  equation 

y  =  F(c)  +  (x-  c)F'(c)  +  J0»  -  cW"(c)  ............  (4) 
represents  a  parabola  ;  we  therefore  replace  a  short  length 
of  the  graph  of  F(x)  by  this  parabola. 

Now  consider  the  double  strip  AA^C^O;  for  convenience 
let  OAl  =  c,  OA=c  —  h,  OA2=c+h;  then  using  (4)  as  the 
value  of  F(x)  along  the  arc  CC^  we  find  for  the  area  of 
A  ̂±2^/2 

fc+
k  Ch 

F(x)dx=      F(tf+c)daf=2hF(c)+yi*F"(c)  ......  (5) c-h  J  -h 

where,  to  integrate,  we  put  x  =  x'  +  c.  We  can  now  express 
(5)  in  terms  of  h  and  yv  y2,  ys,  assuming  F(x)  to  be  given 
by  (4).  For  F(c)  =  y2  and 

=  F(c  -h)  =  F(c)  -  hF'(c 

=  F(c  +  h)  =  F(c)  +  hF'(c 
By  addition 

and  (5)  becomes  i^(2/i  +  %2+  2/s) 

Suppose  now  ABDC  divided  into  an  even  number,  2n,  of 
strips  by  an  odd  number,  2w  +  l,  of  equidistant  ordinates. 
The  formula  (6)  may  be  applied  in  succession  to  the 
n  double  strips  ;  the  sum  of  the  n  expressions  is,  the  terms 
being  rearranged, 

Formula  (7)  is  known  as  Simpson's  Rule,  which  may  be stated  thus  :  Let  the  area  be  divided  into  an  even  number 

of  strips  by  equidistant  ordinates  ;  find  (i)  the  sum  of  the 
extreme  ordinates,  (ii)  twice  the  sum  of  the  other  odd 
ordinates,  (iii)  four  times  the  sum  of  the  even  ordinates; 
add  the  three  sums  thus  obtained  and  multiply  this  total 
sum  by  one-third  of  the  common  distance  between  the 
ordinates. 
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Let  u 

then  in  terms  of  h,  u,  v,  w,  we  find 

and  therefore  A3  =  f  Al  +  -^12  ..........................  (8) 
Suppose  the  graph  convex  upwards  and  the  ordinates 

positive,  so  that  J.1<area  ABDG<  J.2;  then 

The  error  in  the  Simpson  Rule  is  therefore  less  than 

f^g-^j)   or  $h(2v  —  2w  —  u)   '....(9) 
Formula  (8)  shows  that  in  Simpson's  Rule  greater  weight 

is  given  to  the  inscribed  than  to  the  circumscribed  polygon. 
These  methods  of  approximation  apply  of  course  to  a 

definite  integral,  whether  F(x)  be  considered  as  the  ordinate 
of  a  curve  or  not;  for  example,  F(x)  might  be  a  radius 
vector  and  x  the  vectorial  angle  in  a  curve  given  by  its 
polar  equation.  The  values  of  the  function  for  equidifferent 
values  of  the  argument  then  take  the  place  of  the  ordinates 
2/p  y2,  —  A  very  important  practical  case  is  that  of  the 
mensuration  of  solids ;  yv  y2,  ...  are  then  the  areas  of  equi- 

distant sections.  (See,  for  a  good  statement  of  Simpson's 
Rule  for  practical  mensuration,  Lodge's  Mensuration  for 
Senior  Students :  London,  Longmans.) 

Ex.    Calculate  /  — . Ji    X 

Let  2w-f-l  =  ll;    h  =  'l  ;    a  =  l  •    6  =  2.     An  easy  calculation  gives 

w  =  l'5;     v  =  3-459  5394;     w>=2'728  1746. 

The  exact  value  of  the  integral  is  log  2,  that  is,  '693  147.  The  value 
of  2(^j  -  J2)/3  is  '001  242,  while  ̂ 3-log  2  is  '000003.  As  a  rule,  the 
error  in  Simpson's  formula  is  considerably  less  than  that  given  by  (9). 

EXERCISES   XXIX. 

1.  If  in  §  133  F(x)  is  the  area  of  a  section  of  a  surface  made  by  a 
plane  perpendicular  to  the  #-axis,  and  if  the  ordinates  y^  y2,  •••  be 
replaced  by  the  sections  Slt  SZt  ...,  the  expressions  (2),  (3),  (6),  (7)  give 



332      AN  ELEMENTARY  TREATISE  ON  THE  CALCULUS. 

the  volume  intercepted  between  the  surface  and  the  corresponding 
planes.  Thus  (6)  gives  for  the  volume 

7=^  +  4^  +  £3),  ...............................  ..(i) 
where  S^  S3  are  the  areas  of  the  end  sections,  S2  that  of  the  mid- 
section,  and  2h  the  distance  between  the  end  sections.  The  value  (i) 
is  exact  when  F(x)  is  a  quadratic  function  of  x. 

Apply  the  formula  to  obtain  the  results  regarding  volumes  in  §  127. 
Apply  it  also  to  the  solid  formed  by  the  revolution  of  a  parabola  about 
its  axis. 

2.  Show  that  the  formula  (i)  holds  for  a  prismoid. 
A  prismoid  is  a  solid  whose  lower  and  upper  bounding  surfaces  are 

polygons  with  the  same  number  of  sides  and  with  corresponding  sides 
parallel,  and  whose  lateral  bounding  surfaces  are  trapeziums. 

3.  If  d1  is  the  head  diameter,  d2  the  bung  diameter,  and  h  the  depth 
of  a  cask,  show  that  when  the  curve  of  the  cask  is  a  parabola,  the 
volume  is 

When  the  upper  and  lower  halves  of  the  cask  are  equal  frustums  of 
a  paraboloid  of  revolution,  the  greatest  bases  being  joined  in  the 
middle  of  the  cask,  show  that  the  volume  is 

4.  If   F(x}  =  A  +  B(x-c)+C(x-cY+D(x-c)\  show  that  formula 
(6)  of  §  133  still  holds. 

5.  If  F(x)  =  A  +  Bx+  Cafl  +  Da?  and  if  y»  y^  yz,  y±  are  the  values  of 
F(x)  when  x  has  the  values  a,  a  +  A,  a  +  2A,  a  +  37*  respectively,  show 
that  the  area  between  the  curve,  the  #-axis,  and  the  ordinates  ylt  y±  is 

The  formula  is  sometimes  called  Simpson's  Second  Rule.     To  prove 
it  most  simply,  put  x=a  +  ht  ;  then  F(x}  takes  the  form 

and  y^  y%,  y^  y±  are  the  values  of  (f>(t)  for  t  equal  to  0,  1,  2,  3,  and  the 
area  is  ra+sh  rs 

I       F(x}dx  =  h  I   <^>(f)dt. 
Ja  Jo 

6.  Show  that 
ft  ft 
I    log  sin  x  dx  =  -  /   x  cot  x  dx, J  o  Jo 

and  calculate  the  value  of  the  integral  by  Simpson's  rule.     The  exact 
value  of  the  integral  is  -  \ir  log  2.     For  let  the  integral  be  u  ;  then 

u  =  /   log  sin  x  dx  —  I  log  cos  xdx  =  \\  (log  sin  x  +  log  cos  x)  dx, Jo  Jo  Jo 



MEAN  VALUES.  333 

so  that 
fS  Tj-  f* 

2u  =  I   log  (-|  sin  2#)  dx  =  ̂ .  log  ̂   4-  /   log  sin  2#  dx  ; 
Jo  '2t  Jo 
rf  rw  rl 

also  /    log  sin  2#  dx  =  \\  log  sin  z  dz  =  I   log  sin  z  dz = w, Jo  ./o  Jo 

from  which  the  result  follows. 

ft 
7.  Show  that          /   logtan^?c^=0.     (No  integration  is  necessary.) Jo 

8.  Show  that  the  limit  when  n  is  oo  of 
r=n-l  l 

2 r=0 

is  ir/2. 

9.  Show  that  the  limit  when  n  is  QO  of 
r=n-]       m 

18   7T/4. 

§  134.  Mean  Values.    The  arithmetic  mean  of  n  quantities 

2/i,  2/2>  —  »  2/«,is  (2/1  +  2/2+  --+yn)M.  Let  i/p  y2,  ...  ,  yn  be 
the  values  of  ̂ (^)  for  x  equal  to  a,  a-f/i,  ...,  b  —  h,  the 
interval  b  —  a  being  divided  into  ̂   parts  each  equal  to  h; 
the  limit  for  ?i  =  oo  of  the  arithmetic  mean  of  yv  y2,  ...  ,yn 
is  called  the  mean  *value  of  the  function  F(x)  over  the  range 
b  —  a. 

The  mean  value  may  be  expressed  as  an  integral  ;  for 

The  numerator  of  the  fraction  on  the  right  is 

and  the  limit  of  it  for  n  =  oo  (and  therefore  h  =  0)  is 

F(x)dx  ; a 
and  the  Mean  Value  is 

b  (2) 

[
b
 

J 

—  aja 

Ex.  1.     The  mean  value  of  the  ordinate  of  a  semicircle  of  radius  a  is 

ia=-7854a. 4 

In  this  case  the  diameter  is  divided  into  n  equal  parts.  If,  however, 
the  semi-circumference  is  divided  into  n  equal  parts,  so  that  the  inde- 

pendent variable  of  the  function  is  the  arc  aO  from  one  end  of  the 
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diameter  to  the  point  from  which  the  ordinate  is  drawn,  the  mean 
value  is,  since  the  ordinate  is  a  sin  0, 

i  r  . —  /  a  si 
irajo 

2 
sin  6  adO  =  -a  =  '6366a. 

7T 

In  speaking  of  mean  values,  therefore,  it  is  essential  that  the  inde- 
pendent variable  should  be  clearly  indicated. 

Ex.  2.  For  the  harmonic  curve  y  =  asin#,  find  (i)  the  mean  ordi- 
nate, (ii)  the  square  root  of  the  mean  of  the  square  of  the  ordinate  for 

the  range  from  #=0  to  #=TT. 
1  Cw  2 

(i)  mean  ord.  =  -  I  a  sin  x  dx  =  -a  =  '6366a. 7TJO  7T 

In  case  (ii)  the  function  is  y2,  and  the  mean  value  of  y2  is 

-  I  a2  sin2#  dx  =  Aa2, 
TTJo 

and  the  square  root  of  this  mean  is  a/^/2  or  *7071a. 
In  the  theory  of  alternating  currents  the  important  mean  is  not  (i), 

but  (ii)  ;  the  latter  is  sometimes  called  the  mean-square  value  of  the 
ordinate. 

If  the  interval  b  —  a  is  divided  into  n  sub-intervals 
hv  hz,  ...  ,  and  if  yv  y2,  ...  are  the  values  of  F(x)  at  any 
point  of  the  intervals  hv  h2,  ...  respectively,  the  limit  for  n 
infinite  (and  each  sub-interval  hv  hz,  ...  zero)  of (y  A + 

+y«ft»)/(&— < is  still  given  by  (2). 
The  integral  (2)  may 

be  taken  as  the  gene- 
ral definition  of  the 

mean  value  of  F(x). 

§  135.  Double  In- tegrals. Let  EFGH 

(Fig.  77)  be  a  plane curve,  and  let  f(x,  y) 

be  a  single-valued 
continuous  function 

of  x  and  y  for  all 
points  within  or  on 
the  curve.  Let  AH, 
BF,  and  CE,  DG  be 
the  tangents  parallel 

to  the  axes;  we  suppose  that  no  straight  line  cuts  the  curve 

B    X 

FIG.  77. 
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in  more  than  two  points  ;  any  curve  that  does  not  satisfy 
this  condition  may  be  divided  into  partial  areas,  each  of 
which  satisfies  it. 

Let  AB  be  divided  into  m  and  CD  into  n  sub-intervals, 
and  through  the  points  of  division  let  parallels  be  drawn  to 
the  axes.  The  area  bounded  by  EFGH  will  thus  be  divided 
into  partial  areas  ;  these  areas  are  rectangles,  though  near 
the  boundary  EFGH  the  rectangles  will  contain  points  that 
lie  outside  the  curve. 

Let  xr,  xr+Sxr  be  the  abscissae  of  two  consecutive  points 
of  division  on  AB  and  ys)  ys  +  8ys  the  ordinates^-of  two 

consecutive  points  of  division  on  CD  ;  and  let"$T  S'  be  the 
points  (xr,  ys),  (xr+Sxr,  ys+Sys). 

Multiply  Sxr  Sys,  the  area  of  the  rectangle  SS',  by  f(xr,  ys), the  value  of  f(x,  y)  at  S,  and  form  the  sum 

^f(%r,  y,)  Sxrfys  .....  ....................  (1) 

for  all  points  such  as  S  within  or  on  the  boundary  of  EFGH. 

Geometrically,  z  =/(#,  y)  represents  a  surface  ;  the  typical  term 
f(xr,  #«)6\rrSy,  of  the  sum  (1)  is  the  volume  of  a  parallelepiped  whose 
base  is  the  rectangle  8xr  Sys,  and  height  the  ̂ -coordinate  f(xr,  .?/*)  of  the 
point  in  which  the  normal  from  S  to  the  rectangle  meets  the  surface  ; 
the  sum  (1)  is  therefore  approximately  equal  to  the  volume  of  the  solid 
bounded  by  the  surface,  the  plane  XOY  and  the  cylinder  formed  by  a 
straight  line  which  moves  round  the  boundary  EFGH,  remaining 
always  perpendicular  to  the  plane  XOY.  (Compare  Figs.  48,  49.) 

We  wish  to  find  the  limit  of  (1)  for  m  and  n  each  in- 
creasing indefinitely,  each  element  Sxr,  Sys,  and  therefore 

each  area  SxrSys  at  the  same  time  diminishing  indefinitely. 
Seeing  that  there  are  two  sets  of  increments  we  may  appro- 

priately represent  (1)  as  a  double  summation 

the  one  2  referring  to  Sys  and  the  other  to  Sxr. 
First,  keep  xr  and  Sxr  constant,  that  is,  find  the  limit  for 

71=00  ; 

CMP' 
L   S/Ov,  y,)8y,=  \     f(xr,y)dy  ...............  (3) n  =  oo  J  MP 

by  the  definition  of  the  integral  of  a  function  of  one  vari- 

able y.  The  integral  (3)  will  contain  xn  MP,  MP'  ';  MP 
and  MP'  are  functions  of  OM  or  xr  determined  by  the 
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equation  of  the  curve  EFQH.     Hence  (3)  is  a  function  of 
xr  and  may  be  denoted  by  <f)(xr). 

Geometrically,  <^xr)  is  the  area  of  the  curve  of  section  of  the  solid 

defined  above,  made  by  a  plane  through  PP'  perpendicular  to  XO  Y ; 
and  <£(#r)  &*V  is>  to  the  first  order  of  infinitesimals,  the  volume  of  the 
slice  of  the  solid  of  thickness  ftxr. 

Next  find  the  limit  for  m  =  oo .     We  get 

^                    COB 
L  2jfar<l>(Xr)**\    <t>(x)dx   (4) m=oo  J  OA 

Hence,  finally,  the  limit  of  (1)  is  expressed  by  (4)  and  that 
limit  is  the  volume  of  the  solid  already  mentioned. 

Since  <J>(x)  is  itself  an  integral  the  expression  (4)  is  a 
double  integral  and  this  double  integral  is  denoted  by  the 
symbol COB      FMP 

dx\      f(x,y)dy  ........................  (5) J  OA      JMP 

The  mode  of  establishing  (4)  shows  that  (5)  which  is 
merely  the  fuller  symbol  for  (4)  means,  integrate  /(x,  y)  as 

to  yfrom  y  =  MP  toy  =  MP',  treating  x  as  a  constant  during 
this  integration;  then  integrate  the  result  as  to  x  from 

We  might  also  find  the  limit  of  (1)  by  making  first  m, 
then  n  infinite  ;  the  result  would  be  stated  in  the  form 

OD          CNV 

dy\ 

oc      JN 

........................  (6) 
oc        NQ 

In  (6)  the  integration  is  first  carried  out  as  to  x,  treating  y 
as  a  constant  during  this  operation  ;  then  the  result  is  inte- 

grated as  to  y.  Clearly  the  double  integrals  (5)  and  (6)  are 
equal  since  they  represent  the  same  volume. 

When  the  area  is  the  rectangle  A1B1C1D1  the  limits  MP, 

MP'  of  y  in  (5)  are  constant  and  equal  to  00,  OD  respec- 
tively, and  the  limits  NQ,  NQ'  of  x  in  (6)  are  also  constant 

and  equal  to  OA,  OB  respectively.  Hence,  writing  a,  b, 
a',  V  for  OA,  OB,  OC,  OD, 

Jb        CV  fb'        n 

<&    /(x,y)fy=\  dy\  f(x,y)dx,  ............  (7) a       J  (i  Ja        Ja 
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that  is,  when  the  limits  are  all  constants  the  limits  of  y  and 
the  limits  of  x  are  the  same  in  whatever  order  the  integra- 

tions are  effected.  When  the  limits  are  not  all  constants 
the  limits  of  y  (or  of  x)  in  (5)  are  not  the  same  as  the  limits 
of  y  (or  of  x)  in  the  equal  integral  (6). 

The  geometrical  representation  of  the  meaning  of  the  double  integral 
is  very  helpful.  Other  illustrations  might  of  course  be  given  ;  for 
example,  f(x,  y)  might  be  taken  as  representing  the  (variable)  density 
of  a  surface  distribution  of  matter  over  the  area  EFGH,  and  then  the 
integral  would  give  the  total  mass. 

§  136.  Notations  for  Double  Integrals.  Polar  Elements. 
The  forms  (5),  (6)  indicate  clearly  the  order  in  which  the 
integrations  are  to  be  carried  out.  Other  notations  are, 
however,  in  use  which,  though  not  so  expressive,  are  often 
convenient.  Thus  the  form 

if f(x,y)dxdy   (8) 

with  the  addition  "  the  integration  being  extended  over  the 
area  EFGH "  (or  a  similar  phrase)  is  used  as  an  equivalent 
either  of  (5)  or  of  (6). 

Instead  of  (5)  we  also  find 

JO
Bf
MP
 

f(x
,  y)d

x  
dy OAJ

MP 

with  the  convention  that  the  first  integration  is  made  with 

respect  to  the  variable  on  the  right,  namely  y,  between  the 

limits  named  on  the  symbol  I  that  stands  next  the  integrand, 

that  is,  MP,  MP'.  But  there  is  n*)t  complete  agreement  as to  this  convention. 

Again,  we  might  suppose  the  area  enclosed  by  EFGH  to 
be  divided  into  partial  areas  other  than  rectangles.  If  SS 
be  the  type  of  such  an  area,  and  if  (x,  y)  be  the  coordinates 
of  any  point  within  or  on  the  boundary  of  SS,  the  sum 

S/(*.y)«s   (i') 
would  replace  (1).  Geometrically  (!')  would  give  approxi- 

mately the  volume  of  the  solid  defined  in  last  article ;  the 
limit  obtained  by  supposing  the  number  of  the  areas  SS  to 
increase  indefinitely,  while  the  size  of  each  area  SS  at  the 
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same  time  diminishes  indefinitely,  would  give  the  volume  of 
the  solid  and  would  be  denoted  by 

............................  (9) 

the  integration  being  extended  over  the  area  EFGH. 
It  is  easy  to  see,  by  Th.  II.,  §  87,  that  (x,  y)  may  be  any 

point  within  or  on  the  boundary  of  SS,  so  far  as  the  limit 

(9)  of  the  sum  (!')  is  concerned  ;  it  is  of  great  importance 
to  bear  this  remark  in  mind,  as  the  principle  involved  is 
constantly  used  (see  for  instance  ex.  3,  §  137). 

If  we  take  for  SS  the  area  bounded  by  two  circular  arcs 
of  radii  r  and  r  +  Sr,  and  two  radii  making  angles  0  and 
0  +  SO  with  the  initial  line,  where  r,  0  are  polar  coordinates, 

so  that    dS  =  rdrdO. 

If  f(x,  y)  becomes  F(r,  0)  when  r  cos  0,  r  sin  0  are  put  for 
x,  y,  we  should  get  instead  of  (9),  or  the  equivalents  (5),  (6), 

\F(r,  0)rdrdO,  .....................  (10) 

if- 
the  integration  being  extended  over  the  area  EFGH.  In 
integrating  with  respect  to  0,  r  is  to  be  kept  constant ;  the 
^-integration  would  therefore  give,  in  the  geometrical  re- 

presentation, the  area  of  a  cylindrical  section  of  the  solid. 
Before  evaluating  an  integral  such  as  (10),  the  curve  EFGH 
should  be  drawn,  and  care  has  to  be  ta'ken  so  that  there 
may  be  no  omission  or  inclusion  of  areas  other  than  those 
belonging  to  the  curve.  The  same  remark  applies  to  most 
integrations. 

The  reader  will  have  little  difficulty  in  extending  these 
results  to  triple  integrals, 

z)dxdydz    or    \f(x,y,z)dv   (11) 

dx  dy  dz  or  dv  may  be  taken  as  an  element  of  volume,  and 
f(x,  y,  z)  might,  for  example,  denote  the  density  at  (x,  y,  z). 
Integration  with  respect  to  z,  keeping  x,  y  constant,  would 
give  the  mass  of  the  column  standing  on  the  base  dx  dy ; 
then  the  ̂ -integration,  keeping  x  constant,  would  give  the 
mass  of  a  slice  of  thickness  dx  perpendicular  to  the  #-axis, 
and  lastly  the  ̂ -integration  would  give  the  total  mass. 
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Ex.  1.     Find   the    volume    of   the    tetrahedron    bounded   by    the 
coordinate  planes  and  the 
plane  Z 

where  a,  b,  c  are  positive. 
The  curve  EFQH  is  in 

this  case  the  triangle 
OAB  ;  the  equation  of 
AB  is 

and 

while  MP  in 
zero. 

135  is  here 

FIG.  78. Hence    using    (5),    the 
volume  is 

fa_,    {*"* ,         Ca  i   FA     A       1  tT\MP I   dx\   zdy  =  c\    dx    (  1  —  }y~^t  T~ Jo       Jo  Jo        L\       a/        2  b  -Jo 

1      Ca  (       x\2         1 

=  26V0  V1"^/    ̂ =6a  C' 

Obviously  |6c(l  —x/a)2  is  the  area  of  the  triangle  LMP'. 

Ex.  2.     Find  the  value  of  /  %2dv  taken  throughout  the  volume  of 

the  ellipsoid  a 

faMv  =  (a*dx  fjdydz  =  T  x*dx  [jrbc  (l  -  ̂)], 

since,  in  integrating  as  to  y  and  zy  x  is  constant  and   /  \dydz  is  the 

area  of  the  section  perpendicular  to  the  #-axis.  Integrate  now  as  to 

x  ;  the  result  is  47ra*6c/15. 
The  mean  value  of  the  function  x2  throughout  the  volume  of  the 

ellipsoid  is  the  above  value  divided  by  the  volume,  that  is,  «2/5. 
In  general,  the  mean  value  of  a  function  f(x,  y)  over  an  area  EFGH 

(Fig.  77)  is  the  value  of  the  integral  (5)  or  (6)  divided  by  the  area  ; 
and  a  similar  definition  holds  for  the  mean  value  throughout  a  volume. 
If,  in  the  example,  x2  is  the  density  at  (#,  y,  z)  of  a  mass  occupying  the 
volume  of  the  ellipsoid,  then  a2/ '5  is  the  mean  density  of  the  mass. 
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Ex.  3.     If  /(#,  y)  is  the  product  of  a  function  <£(#)  of  x  alone,  and 
of  a  function  ̂ r(y)  of  y  alone,  it  follows  at  once  from  §  135  that  the 
integral  of  the  product  <$>(x)  ̂ (y}  taken  over  the  rectangle  A^ 
(Fig.  77)  is  equal  to  the  product  of  the  integrals 

rb  rv 
I   <j>(x)dx  and    J 

J  a  •>  a' 

Now  let 

=  r*-*d*-  {*  e- 

•(i) 

It  follows  that  U2,  the  product  of  these  two  integrals,  is  equal  to 
the  integral 

,   (ii) 
taken  over  the  square 
OABC  of  side  OA  =  a 
(Fig.  79). 
Draw  the  arcs  ADC, 

EBF  from  the  centre  0 
with  the  radii  OA=  a, 
OB=a*jZ.  The  integral 
(ii)  is  greater  than  the 
integral  of  the  same  func- tion over  the  area  OADC 
and  less  than  that  over 
the  area  OEBF.  These 
two  integrals  can  be 
found  by  changing  .to 
polar  coordinates  ;  dxdy 

E  X  is  replaced  by  rdrdO  and 
g-Car+y2)  ky  e-i*  an(j  ̂   ke_ 
comes,  for  the  area  OADC, 

FIG.  79. 

since  the  integral  of  e~**r  is  -Je~*"2.     When  the  area  is  OEBF,  the 

integral  is    (l  —  e"2 

U2  lies  between  these  two  values ;  but  when  a  tends  to  infinity 
both  values  tend  to  ir/4  ;  and  therefore  also  U2  tends  to  ?r/4,  and  U  to Hence f°°  C 

I   e~*?dx=~L   I JO  a=<xJo 

This  example  is  a  particular  case  of  an  integral  of  great  importance 
(see  Ex.  XXX.  21),  and  the  transformation  is  worthy  of  careful 
attention. 
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§  137.  Centres  of  Inertia.  It  is  shown  in  works  on 
mechanics  that  the  coordinates  (x,  y,  z)  of  the  centre  of 
inertia  of  a  set  of  n  particles  of  masses  mv  m2,  ...  ,  mn 
situated  at  the  points  (xv  yv  z^  (xz,  y2)  z2),  ...,  (xn>  yn,  zn) 
are  given  by  the  equations 

_     11        22     .  .  .        nn  _  . 

m1  +  m2+...+mn        '  2m* with  similar  expressions  for  y,  z. 
For  a  continuous  distribution  of  matter  the  volume 

density  p  at  the  point  (x,  y,  z)  is  the  limit  for  Sv  =  0  of 
Sm/Sv  where  Sm  is  the  mass  of  the  volume  Sv  surrounding 
the  point  ;  hence  to  the  first  order  of  infinitesimals 

Sm  =  pSv. 

When  the  mass  is  supposed  concentrated  in  a  surface  or 
in  a  line  we  have  in  a  similar  way  Sm  =  (rSS,  Sm  =  \Ss 
where  a-  and  A  are  the  surface  density  and  the  line  density 
at  a  point  and  SS  and  8s  elements  of  area  and  of  length 
including  the  point. 

A  continuous  mass  may  be  supposed  to  be  divided  into 
n  elements  Sm  ;  if  (x,  y,  z)  are  the  coordinates  of  any  point 
in  the  element  Sm  then  the  coordinates  of  the  centre  of 
inertia  of  the  mass  are  given  by 

T  \xdm x=L  ^^  —  =^  —  .......................  (2) 
w=00  2om      \dm 

with  similar  expressions  for  y,  z.     The  integrations  in  (2) 
are  to  be  extended  through  the  total  mass. 

For  volume,   surface,   and     line   distributions   equations 
(2)  take  the  forms 

\xpdv    \xa-dS     \x\ds  ,^\ 

}pdv  '     \o-dS  '     \\ds 
respectively;    the   denominator  is  in  each  case   the  total 
mass. 

The  terms  mass-centre,  and  centroid  are  sometimes  used 
as  equivalent  to  centre,  of  inertia.  The  centroid  of  a 
volume,  area,  or  line  is  the  centre  of  inertia  of  a  mass  of 
uniform  density  occupying  the  volume,  area,  or  line. 
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Ex.  1.     A  circular  arc  of  uniform  density,  BAG  (Fig.  80). 
Let  0  be  the  centre  of  the  circle ; 

OA  =  a,  L  COB  =  2a.  Let  OA  bisect 
the  angle  COB,  and  take  OA  as  the 
.r-axis. 

By  symmetry,  y=0. 
Let  LXOP=6; 

OM=x=acos  0 

B,rcAP=s=a6 ; 
ds  =  adO. 

The  linear  density  X  is  constant ; 
hence  the  total  mass  is  2Xaa. 

Also =\l J  —  a. 

and  therefore 

x = 2X«2  sin  a/2  \aa=a  sin  a/a. 

Ex.  2.     A  plane  lamina  of  uniform  density  o-,  in  the  form  of  a 
quadrant  of  an  ellipse,  OAPB  (Fig.  81). 

In  a  case  like  this  the 
use  of  a  double  integral 
may  be  avoided  ;  for  we 
may  take  a  narrow  strip 
NPP'N',  of  breadth  dy, 
parallel  to  OA  as  the  ele- 

ment of  mass.  The  centre 
of  inertia  of  the  strip  is 
at  its  middle  point,  and 
therefore  the  moment  of 
the  strip  about  OB  is 

^x .  <rx  dy  or 
The  total  mass  is 

7T(ra&/4, 

and  therefore 

B 

N'
 

N 

X 

FIG.  81. 

and  therefore  #=4a/37r. 

In  the  same  way,  y  =  46/3?r,  taking  the  strip  M'MPP'  as  element. 
When  the  density  is  not  uniform,  the  above  method  usually  fails. 

Suppose  <r=kxy  (k  constant)  ;  the  total  mass  M  is 
f  r  Ca  CON  fa 

M=  I  I  kxy  dxdij=k\  xdx\     ydy  =  \k\  x . 
J  J  Jo  Jo  'Jo 

and  since  0^2=y2  =  62(l  -^2/a2),  we  readily  find  M= 



MOMENTS  OF  INERTIA.  343 

Again, 
f  f  f*         f°N 

MX  =  I  \  x  .  Tcxy  dxdy  =  k\  x^dx  I     ydy  = 

and  therefore  x=^a.     Similarly,  y=^>. 

Ex.  3.     A  circular  sector  of  uniform  density. 
Take  the  notation  of  ex.  1.  We  may  take  as  element  the  small 

sector  OPQ.  The  centre  of  inertia  of  OPQ  may  be  taken  as  the  point 
(fa,  0),  and  the  moment  about  0  Y  of  the  element  is 

fa  cos  0  .  <r|a  W  =  ̂cra3  cos  6  dO. 
The  total  mass  M  is  ora?a  ;  y=0  from  symmetry  ;  and  x  is  given  by 

/
a
.
 

co
s 
 

O
d
O
=
 

§c
ra
3 
 

si
n 
 

a,
 

-a
 

,,  -     o    sin  a 
so  that  x  =  4a   • a 

When  the  density  is  not  uniform,  double  integration  will  usually  be 
required. 

The  centre  of  inertia  of  OPQ  was  taken  on  OP ;  as  has  been  indi- 
cated several  times,  it  does  not  matter  for  the  limit  whether  we  take 

the  point  as  (fa,  6)  or  (§a,  0')  where  &  is  a  value  between  6  and  0  +  80. 
Simplifications  of  this  kind  are  of  constant  occurrence  ;  a  similar  one 
was  made  in  ex.  2  when  the  centre  of  inertia  of  NPP'N'  was  taken  at 
the  middle  point  of  NP. 

Ex.  4.     A  uniform  right  circular  cone. 
From  symmetry  the  centre  of  inertia  is  in  the  axis.  Take  a  section 

perpendicular  to  the  axis  at  a  distance  x  from  the  vertex  ;  if  A  is  the 
height  and  A  the  area  of  the  base  of  the  cone,  this  section  is  x2A/h2. 
We  may  take  as  element  of  mass  the  slice  between  this  section  and  the 
parallel  section  at  distance  #+8#  from  the  vertex. 

The  total  mass  M  is  $phA,  and 
Ch        x* 

=j  x .  p  j-p MX 

and 

If  the  density  is  not  uniform,  double  or  triple  integrals  may  be 
required  since  the  element  of  mass  could  not  be  chosen  as  above.  If, 
however,  the  density  is  a  function  of  x  alone,  the  method  still  applies  ; 
for  example,  if  p=kx,  the  student  may  prove 

*» 

A  f 
M=r2l 

§  138.  Moments  of  Inertia.  If  rv  r2, . . . ,  rn  are  the  distances 
from  an  axis  OR  of  n  particles  of  masses  mv  w2, . . . ,  mw 

the  sum  m^2 + m^2  +  +  m  A2? 
or,  in  the  notation  of  a  sum,  Zwr2,  is  defined  in  works  on 
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mechanics  as  the  moment  of  inertia  of  the  set  of  particles 
about  the  axis  OR. 

When  the  masses  form  a  continuous  body  the  summation 
is  replaced  by  integration,  as  in  the  case  of  centres  of  inertia. 

If  the  total  mass  of  the  system  is  M  and  if  k  is  chosen  so 
that  p 

M;2  =  2rar2   or  Mc2=  \rzdm, 

the  quantity  k  is  called  the  radius  of  gyration  of  the  system 
about  the  axis.  The  moment  of  inertia  is  often  denoted  by  I. 

The  work  of  finding  moments  of  inertia  is  simplified  by 
the  following  theorems  : 

(i)  If  OX,  OF,  OZ  are  three  rectangular  axes,  and  if 
Ix,  Iy,  Iz  are  the  moments  of  inertia  about  OX,  OF,  OZ 
respectively  of  a  plane  lamina  lying  in  the  plane  XO  F,  then 

•*  z  =  -*•  x~T  •*•  y 

(ii)  If  IR  is  the  moment  of  inertia  about  any  axis  OR, 
10  the  moment  about  a  parallel  axis  through  the  centre  of 
inertia  0  and  a  the  distance  between  these  axes, 

where  M  is  the  total  mass  of  the  system, 
The  proofs  of  these  theorems  are  very  simple  and  may  be 

left  to  the  reader;  they  may  be  found  in  any  work  on 
mechanics. 

Ex.  1.  A  thin  straight  rod  of  uniform  density  about  an  axis 
through  one  end  perpendicular  to  the  rod. 

Let  x  be  the  distance  from  the  axis  of  a  point  on  the  rod,  X  the 
linear  density,  I  the  length  of  the  rod.  For  the  element  of  mass  we 
may  take  \S#  ;  hence 

/=  P#2  .  \dx  =  \\V  =  \Ml\ 

where  M=\l  is  the  mass  of  the  rod.     The  radius  of  gyration  Ic  is 
therefore  1/»J3. 

The  moment  about  an  axis  through  the  mid  point  of  the  rod  and 
perpendicular  to  it  is  J/72/12  as  may  be  proved  directly  or  by  using 
theorem  (ii.). 

Ex.  2.  A  uniform  rectangular  lamina  about  an  axis  through  ils 
centre  parallel  to  one  side. 

Let  a,  b  be  the  lengths  of  the  two  sides  and  let  the  axis  be  parallel 
to  the  side  a.  Divide  the  lamina  into  thin  strips  parallel  to  the  side  6 
and  let  8m  be  the  mass  of  a  strip,  M  being  the  mass  of  the  lamina. 
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By  ex.  1  the  moment  of  inertia  of  8m  about  the  axis  is  8m  62/12  and 
therefore  the  moment  of  inertia  of  the  whole  rectangle  is 

In  the  same  way  the  moment  about  an  axis  through  the  centre 
parallel  to  the  side  6  is  J/a2/12  and  therefore  by  Th.  (i.)  the  moment 
about  an  axis  through  the  centre  perpendicular  to  its  plane  is 

It  is  easy  to  deduce  the  moment  of  a  uniform  rectangular 
parallelepiped,  whose  edges  are  a,  6,  c,  about  an  axis  through  its 
centre  parallel  to  an  edge.  For,  let  the  axis  be  parallel  to  the  edge  c 
and  divide  the  solid  into  thin  slices  of  mass  8m  by  planes  perpendicular 
to  the  edge  c.  The  moment  of  one  slice  is,  by  the  result  just  found, 

and  therefore  the  moment  of  the  solid  is  M  (a2  +  62)/l  2,  M  being  the mass  of  the  solid. 

Ex.  3.     A  uniform  elliptic  lamina  about  the  major  axis. 
Divide  the  lamina  into  strips  of  mass  8m  by  lines  parallel  to  the 

minor  axis;  then  the  moment  of  the  strip  is  by  ex.  1  om.(2y)2/12  or 
8m  .  #2/3  where  y  is  the  ordinate  of  the  strip. 

If  p  is  the  density,  8m  is  2py  8x  ;  hence 

But 

by  the  substitution  .r=asin#.     The  total  mass  M  is  irpab.     Hence 

The  moment  about  the  minor  axis  is  J/a2/4  and  about  an  axis 
through  the  centre  perpendicular  to  its  plane  it  is  Jf(a2+&2)/4. 

For  a  circle  of  radius  a  we  get,  by  putting  b  equal  to  a,  for  the 
moment  about  a  diameter  J/a2/4  and  about  an  axis  through  the  centre 
perpendicular  to  its  plane  Ma2/2. 

The  last  value  may  be  found  most  simply  by  dividing  the  circle 
into  thin  concentric  strips  ;  then  Theorem  (i.)  shows  that  the  moment 
about  a  diameter,  since  all  such  moments  are  equal  by  symmetry,  is 
half  that  about  the  axis  perpendicular  to  the  lamina. 

Ex.  4.     A  uniform  ellipsoid  about  the  axis  0  A  . 
Divide  the  ellipsoid  into  thin  slices  by  planes  perpendicular  to  OA  ; 

the  mass  8m  of  a  slice  may  be  taken  as 

rrpbc  (  I  —  #2/a2)  6X 
and  by  the  last  example  the  moment  of  8m  about  OA  is 

where  2a15  26j  are  the  axes  of  the  section.     But 
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Substituting  and  integrating  from  —  a  to  a  we  get 
j        ̂  
dx=M 

where  Jf  =  4?rp«6c/3  =  mass  of  ellipsoid. 
The  moments  about  the  other  axes  may  be  found  by  symmetry. 

§  139.  Polar  Element  of  Volume.  The  expression  for  the 
element  of  volume  dV  in  terms  of  the  spherical  polar 
coordinates  r,  0,  0  (§  89a)  of  a  point  P  is  often  required  in 
physical  applications. 

Let  a  denote  the  plane  through  P  and  the  axis  OZ. 

First,  keeping  r  and  0  constant,  let  0  become  0  +  SO', 
P  thus  describes  an  arc,  PQ  say,  in  the  plane  a  and 
arc  PQ  =  rSO.  Next,  let  the  plane  a  turn  about  OZ  as  an 
axis  through  the  small  angle  S<j>,  the  coordinates  r,  0  being 
kept  constant;  P  will  describe  an  arc,  PR  say,  equal  to 
r  sin  OS(/>  and,  if  80  is  kept  constant,  the  arc  PQ  will  describe 
an  area,  SS  say,  equal  approximately  to  arc  PQ  X  arc  PR, 
that  is,  equal  to  r2sin  0  SO  S<j>.  Finally,  keeping  0,  0,  SO,  S<f> constant,  let  r  become  r  +  Sr;  the  area  SS  will  describe  an 
element  of  volume  S  V  equal  approximately  to  SS  X  Sr,  that 
is,  equal  to  r2  sin  0  Sr  SO  S<f>.  The  limit  of  SV  is  the  polar 
element  of  volume,  so  that 

dV=r2smOdrdOd<j>. 

The  element  of  the  surface  of  a  sphere  of  radius  r  is 

If  r  =f(0)  is  the  polar  equation  of  a  curve  lying  in  the 
plane  ZOX,  the  initial  line  being  OZ,  we  find  by  integrating 
dV  from  0  =  0  to  0  =  2?r  and  then  from  r  =  0  to  r=f(0) 
that  the  polar  element  of  volume  of  a  surface  of  revolution 
about  the  initial  line  is  f  irr^smOdO,  where  r  now  means  f(0). 

Let  P  be  the  point  (x,  y,  z)  on  a  surface  and  let  the 
rectangular  parallelepiped  standing  on  the  rectangle  SxSy 
as  base  cut  out  of  the  surface  the  element  of  area  So;  and 

out  of  the  tangent  plane  at  P  the  element  So-'.  If  the 
normal  to  the  tangent  plane  at  P  make  with  OZ  the  angle 
y  we  have 

So-'  cos  y  =  Sx  Sy,  So-'  =  Sx  Sy  sec  y. 
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If  we  assume  that  the  limit  of  So-'  /So-  is  unity  we  find 
da-  =  dx  dy  sec  y. 

The  direction  cosines  of  the  normal  can  be  found  (§91) 

when  the  equation  of  the  surface  is  known  and  thus  da- 

can  be  expressed  in  terms  of  x,  y,  'dz/'dx,  'dz/'dy. 

Definitions.  The  terms  Line  Integral,  Surface  Integral  occur  so 
often  that  it  may  be  worth  while  to  define  them,  though  we  cannot 
find  room  for  a  consideration  of  their  special  properties  and 
relations. 

Let  F  denote*  a  quantity  such  as  a  velocity  or  a  force  having direction  as  well  as  magnitude,  and  at  the  point  P  on  a  curve  APQ  let 
the  angle  between  the  direction  of  F  and  the  tangent  at  P  be  e.  If 
s  is  the  arc  measured  from  a  fixed  point  on  the  curve  up  to  P,  the 
integral  r 

....................................  (l) 

taken  from  the  value  of  s  at  a  point  A  up  to  the  value  of  s  at  another 
point  B  is  called  the  line  integral  of  F  along  the  curve  AB. 

For  example,  in  §  95,  the  work  W  is  the  line  integral  of  the  force  F 
along  the  curve  A  P. 

If  X,  Y,  Z  are  the  components  of  F  parallel  to  the  axes,  the  integral 
(1)  may  also  (§  95  (3)),  be  written 

Again,  let  8S  be  an  element  of  surface,  P  a  point  on  &S,  and  e  the 
angle  between  the  normal  to  the  surface  at  P  and  the  direction  of  F. 
The  integral (3) 

taken  over  any  portion  of  the  surface  is  called  the  surface  integral  of 
F  over  that  portion,. 

Thus  if  F  is  the  electric  intensity  at  P,  then  ̂ cose  is  the  normal 
component  N  of  the  intensity,  and  the  integral  (3)  is  the  surface 
integral  of  normal  electric  intensity  over  that  portion  of  the  surface. 

EXERCISES   XXX. 

1.  Find  the  mean  value  of  y2  over  the  range  from  0  to  IT  when 
(i)  y=al  sin#+a2sin  2#+  ...  +  ansm  nx. 
(ii)  y=bl  cos  #+  62  c°s  2.r  +  .  .  .  +  bn  cos  nx. 

2.  If  ?/  =  a1sin.#  +  &1cos#  +  a2sin2#+62cos2# 
and  z  =  Al  sin  x  +  Sl  cos  &  +  A2  sin  Zx  +  B2  cos  2#, 
find  the  mean  value  of  the  product  yz  over  the  range  from  0  to  2ir. 
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3.  A  particle  falls  freely  from  rest  ;  show  that  the  mean  velocity 
with  respect  to  the  time  is  half  the  final  but  that  the  mean  velocity 
with  respect  to  the  distance  is  two-thirds  of  the  final  velocity. 

4.  A  particle  of  mass  m  describes  a  simple  harmonic  motion  of 
amplitude  a  and  period  T  ;  show  that  the  mean  kinetic  energy  is  half 
the  maximum  kinetic  energy. 

5.  Show  that  in  a  homogeneous  liquid  under  gravity  the  mean 
pressure-intensity  over  a  plane  area  immersed  in  the  liquid  is  equal  to 
the  pressure-intensity  at  the  centroid  of  the  area. 

6.  If  the  density  at  a  distance  r  from  the  centre  of  the  earth  is 
given  by  p  =  (p0smkr)/kr  where   Jc  is  a  constant,  show  that  the  mean 
density  is 

3/>0(sin  kR  -  JcR  cos  M)/P#3 

where  R  is  the  earth's  radius.  (Lamb's  Calculus.) 
Take  as  element  of  volume,  6V,  the  shell  between  two  spherical 

surfaces  of  radii  r  and  r+8r-,  then  8v  =  l7rr28r  and  8m=pw.  The 
total  mass  is  found  by  integrating  pdv  from  r=Q  to  r  =  R. 

7.  Find  the  centroid  in  the  following  cases  : 
(i)  The  area  between  the  arc  of  a  parabola,  the  axis,  and  the 

ordinate  at  the  point  (A,  Tc). 
(ii)  The  segment  cut  off  from  a  parabola  by  the  straight  line  joining 

the  vertex  and  the  point  (A,  ft). 
(iii)  The  segment  BA  C  (Fig.  80). 
(iv)  The  spherical  sector  formed  by  the  revolution  of  the  circular 

sector  OAB  (Fig.  80)  about  OA. 
(v)  The  cardioid  r=a(l  +cos 

8.  If  the  density  of  a  hemisphere  vary  as  the  distance  from  the 
bounding  plane,  show  that  the  distance  from  that  plane  of  the  centre 
of  inertia  is  8R/15  where  R  is  the  radius. 

9.  Prove  the  Theorems  of  Pappus,  namely, 
(i)  If  an  arc  of  a  plane  curve  revolve  about  an  axis  in  its  plane 

which  does  not  intersect  it,  the  surface  generated  is  equal  to  the 
length  of  the  arc  multiplied  by  the  length  of  the  path  of  the  centroid 
of  the  arc. 

(ii)  If  a  plane  area  revolve  about  an  axis  in  its  plane  which  does 
not  intersect  it  the  volume  generated  is  equal  to  the  area  multiplied  - 
by  the  length  of  the  path  of  the  centroid  of  the  area. 

Taking  the  #-axis  as  the  axis  of  revolution,  the  theorems  follow  at 
once  from  the  equations 

-  Jyefc  ; 
by  multiplying  by  27r.     v1}  y2  are  the  ordinates  of  the  points  in  which 
a  line  perpendicular  to  the  #-axis  cuts  the  curve. 

Deduce  from  (ii)  the  formula  for  the  polar  element  of  volume  of  a 
surface  of  revolution  (§  139.) 
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10.  Find  the  moments  of  inertia  in  the  following  cases,  the  density 
being  uniform  : 

(i)  A  circular  lamina  of  mass  M  and  radius  a  about  a  tangent. 
(ii)  A  sphere  of  mass  M  and  radius  a  about  a  tangent  line. 

(iii)  A  triangular  lamina  of  mass  M  and  height  h  about  its  base. 
(iv)  A  right  cone  of  mass  J/,  height  h,  and  radius  of  base  a,  (a)  about 

its  axis,  (/?)  about  an  axis  through  its  vertex  parallel  to  the  base. 

11.  A  rectangle  ABCD  revolves  about  an  axis  in  its  plane  parallel 
to  AB,  and  not  intersecting  the  rectangle  ;   if  a,  b  are  the  distances 
of  AB,  CD  from  the  axis,  show  that  the  radius  of  gyration  of  the 
solid  generated  is  given  by 

12.  The  moment  of  inertia  of  the  anchor-ring  (Exer.  XXVIII., 
ex.  5)  about  its  axis  is  M(c2  +  fa2),  the  density  of  the  solid  being 
supposed  uniform. 

13.  If  r2=;r2+3/2  +  22,  show  that  the  mean  value  of  r2  throughout  the 
volume  of  the  ellipsoid  #2/a2  +#2/&2  +  z2/c2  =  I  is  (a2  +  62  +  c2)/5. 

14.  The  volume  of  the  wedge  intercepted  between  the  cylinder 

and  the  planes  z  =  x  tan  a,     z  =  x  tan 

is  TT  (  tan  (3  —  tan  a)  a3. 
15.  If  n  >  0,  the  integral 

/•« 

/    e~xxn~ldx 
Jo has  a  definite  value  ;  the  integral  is  a  function  of  n,  usually  called 

the  Gamma-function,  and  denoted  by  T(n).  Show,  by  integrating 
by  parts,  that 

T(n)=(n-l)T(n-l),  ..............................  (i) 

and  that  when  n  is  an  integer,  T(n)  —  (n-  1)!,  F(l)  =  l. 
If  n  is  not  an  integer,  let  p  be  the  integer  next  below  n  so  that 

(n  -p)  is  a  proper  fraction,  then  (i)  shows  that 

r(*)»(ft-l)(ft-2)...(»-j>)F(»-j9)  .....................  (ii) 
16.  Prove 

(ii)  r(ro  +  i)  =    ̂     -  .  ...  KX/T)  ...  (*,  integral). 

Equation  (i)  follows  from  §  136,  ex.  3,  by  putting  x—^z  for 

^  =  f  "e-*dx  =  i  I  V^  -  »<fe  =  JIXJ). 
ij        Jo  Jo 

Then  (ii)  follows  from  ex.  15  (ii). 

17.  Prove  I    e-a*xn-ldx=—^-  (a  positive). »  o  a 
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18.  By  the  given  substitutions,  prove  other  formulae  for  T(n)  : (i) 

........................  (ii) 

19.  When  m  and  n  are  both  positive,  the  integral 

/  jf*-\l  -  x)n~ldx 

Jo 

has  a  definite  value  ;  it  is  a  function  of  m  and  n  usually  called  the 
Seta-function,  and  denoted  by  B(m,  n).     Show  that 

B(m,  ft)  =  B(w,  m). 

20.  By  the  given  substitutions,  prove  other  formulae  for  B(w,  n)  : 

,  n)  =  2  f  "cos^-^sin^-Wtf  ................  (i) 

Jo 

(ii) 

21.  Using  form  (i)  of  ex.  18,  write 

r(wi)=2j    e-ifa*n-1dxt    r(n)  =  2j    e-yYn-ldy; 

and  then  show,  as  in  §  136,  ex.  3,  that 

F(m)  x  I»=4  re-^m+ni~ldr  F  eMP*-ie*w* Jo  Jo 

and  therefore,  by  exs.  18  (i)  and  20  (i), 

Thus  the  Beta-function  can  be  expressed  in  tern^s  of  the  Gamma- 
function. 

22.  Let  2m  -  1  =jo,  2n  —  l=q;  then,  from  exs.  20  (i)  and  21, 

/ 
J 

,  n)         \    2 —+ 
2 

p  + 

\~ 

where,  since  m  >  0,  w  >  0,  we  have  %(p  +  1)  and  %(q  +  1)  >  0,  or  p  and  <? 
each  greater  than  -  1. 

The  student  may  test  that  this  result  includes  the  rule  given  in  §  119. 
Tables  of  log  F  (ft)  for  1=%  =  2  have  been  calculated  (no  wider 
range  for  n  is  necessary  by  ex.  15,  (ii)),  and  many  integrals  can  be 

expressed  in  terms  of  Gramma-functions. 
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23.  Find  the  potential  V  at  a  point  Q  of  a  mass  M  distributed 
uniformly  (density  o-)  over  the  surface  of  a  sphere  of  radius  a. 

Take  0,  the  centre  of  the  sphere,  as  origin  and  OQ  as  z-axis  ;  let  dS 
be  the  surface  element  at  P,  and  denote  PQ  by  R  and  0$  by  c.  Then 

Fl    U  \A/U  7  Cf  o      •         /I    7 /I    7  J  y>9  9    *        9         /-»  /I 

-;     ao  =  a^sm  vdud<b  ;     ̂   =  aj  +  cj  — 2accos  0. 

The  limits  for  <£  are  0  and  2?r,  for  0  they  are  0  and  TT  ;  in  integrating 
as  to  <£,  the  other  variable  #,  and  therefore  in  this  case  also  PQ  or  R 
(which  is  a  function  of  6  and  not  of  <£)  is  to  be  kept  constant.  Hence 

o 

Now  change  the  variable  from  6  to  R  ;  we  have  RdR  =  acsin  Qd6. 
When  0=0,  R=  ±(a-c);  72  is  a  positive  number,  so  that  if  Q  is  out- 

side the  sphere  R=c  —  a,  and  if  Q  is  inside  R  =  a-c,  When  O  =  TT, 
R  =  a  +  c  in  both  cases.  Hence 

(£  outside)  .....................  (i) 

=  47T(ra    ($  inside)  ......................  (ii) 

Thus  V=M/c  when  Q  is  outside,  but  V=M/a  =  constant  when  Q  is 
inside  the  sphere. 

24.  Same  problem  as  in  Ex.  23  for  a  solid  sphere  (density 
p  -—  constant). 

Take  as  element  of  mass  the  shell  bounded  by  radii  r  and  r+dr, 
and  use  the  results  of  Ex.  23,  putting  p  dr  for  tr,  and  r  for  a. 

If  Q  is  outside,  the  result  (i)  gives 

a4Trpr2dr     47TP  a3 

If  Q  is  inside,  V  consists  of  two  parts,  F1}  F2.      Fx  is  the  potential 
due  to  the  sphere  gf  radius  c,  and  by  the  result  just  found 

3 
c  _ 
—  * 

F2  is  that  due  to  the  shell  of  radii  c  and  a  :  by  the  result  (ii)  of 
ex.  23  - 

F2  =  /  4-n-prdr  =  2irp  (a2  -  c2). 

Jc 
Hence  F=  Fj+  F2  =  27r/o(a2-ic2)  ..............................  (iv) 

When  c=a  the  values  given  by  (iii)  and  (iv)  coincide, 
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CURVATURE.     ENVELOPES. 

§  140.  Curvature.  Let  P  and  Q  be  two  points  on  a  plane 
curve,  <£  and  (j>  +  <S0  the  angles  which  the  tangents  at  P  and 
Q  make  with  the  cc-axis,  s  the  arc  measured  from  some  fixed 
point  on  the  curve  up  to  P  and  8s  the  arc  PQ.  S(j>  will  be 
the  angle  between  the  tangents  at  P  and  Q  (Fig.  82,  p.  354). 

Definitions,  (i)  The  angle  S<f>  is  called  the  total  curvature 
of  the  arc  PQ  ;  (ii)  the  quotient  S</>/Ss  is  called  the  average 
curvature  of  the  arc  PQ;  (iii)  the  limit  of  S</>/Ss  when  Q 
approaches  P  as  its  limiting  position,  that  is,  d<j>/ds,  is  called 
the  curvature  of  the  curve  at  P. 

For  a  circle  of  radius  R,  Ss  =  RS<j)  and  therefore 

Ss  ~R'    ds"R 
that  is,  the  average  curvature  of  any  arc  of  a  circle  is  equal 
to  the  curvature  at  any  point  of  that  circle.  In  other 
words,  a  circle  is  a  curve  of  constant  curvature  and  its 
curvature  is  equal  to  the  reciprocal  of  its  radius. 

Curvature  is  thus  a  magnitude  of  dimension  —  1  in  length. 
The  curvature  may  be  expressed  in  terms  of  the  first  and 

second  derivatives  of  the  ordinate  at  the  point.  For,  since 

dy  dx 
tan  0  =  -F->    cos        -- 

we  get,  by  differentiating  the  first  equation  with  respect  to  s, 

d  .  tan  0  d(j>  _   d  (dy\  dx 
d(f)       ds     dx  \dx/  ds 

r 
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a  ,  dd> 
that  is,  seer  0  -f  =  -rt  -r-  sec 

and  therefore,  -    =  ~r4  -5-  sec30.  .  ..(2) 
as     ax2 

Hence,  since  sec20  =  1  +  (dy/dx)2  we  find 

^=£LJl  +  f^\'\!  .................  (A) ds     dx2     {       \dx/  } 
Formula  (A)  may  be  considered  fundamental. 
COR.  When  the  gradient  dyjdx  is  so  small  that  for  all  values  of  x 

within  the  range  considered  its  square  may  be  neglected,  the  curvature 

is  approximately  d2yfdx2.  This  approximate  value  is  often  used  in 
Mechanics  ;  for  example,  in  the  theory  of  the  bending  of  beams. 

Ex.  1.     The  parabola    y'2  = 

dy  _2a        d2y  _   -lady  _  -4a2t 
dx     y         dx2       y2    dx       y3 

-4a2  4a2f         -4a2 .  J       4a2\f  = 

'  I  J    ~ 
If  the  normal  at  P(x,  y)  meet  the  axis  at  (7, 

and          — 

The  meaning  of  the  negative  sign  will  be  referred  to  in  §  141. 

Ex.  2.     The  ellipse    x2/a2-\-y2/b2  =  l. 

dy        b2x .      d2y         b2      b2x  (     b2x\      —  64 dx 

since  b2x2  +  a2y2  =  a?b2  by  the  equation  of  the  ellipse.     Hence 

If  p  is  the  perpendicular  from  the  centre  on  the  tangent  at  (x,  y\ 
a2b2  ,     d<t> 

'o^=  _      and      _  —  —  •  — 

_  — 

ds 

If  PG  is  the  normal  at  P  (#,  y), 

p        bW  +  aY     ̂      <*<!>_         b* ~  -  - 

A  similar  result  holds  for  the  hyperbola.     Thus  the  curvature  of  a 
conic  section  varies  inversely  as  the  cube  of  the  normal. 
G.C.  z 
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§  141.  Circle,  Radius,  and  Centre  of  Curvature.  Let  the 

normals  at  P  and  Q  (Fig.  82)  intersect  at  C";  when  Q  tends 
to  P  as  its  limiting  position,  C'  will  tend  to  a  point  C  on 
the  normal  at  P  as  its  limiting  position  such  that  PC  is 
equal  to  ds/d^. 

For  LPC'    =  S(>  and 
PCT        chord  PQ    chord  PQ    Ss_      S<j> ~  '  '       ' 

sin  PQC'  ~'  smPC'Q  '     arc  PQ 

FIG.  82. 

The  limit  of  PQC'  is  90°  and  the  limits  of  the  three 
fractions  last  written  are  1,  ds/dcf>,  1  respectively;  hence 

the  limit  of  PC'  is  ds/d(j>,  as  was  to  be  proved. The  circle  with  centre  C  and  radius  PC  has  therefore  the 
same  tangent  and  the  same  curvature  as  the  curve  has 
at  P.  This  circle  is  called  the  circle  of  curvature,  its 
radius  PC  or  dsjdty  the  radius  of  curvature,  and  its  centre 
C  the  centre  of  curvature  at  P.  If  any  line  through  P 
meet  the  circle  again  at  R,  PR  is  called  a  chord  of 
curvature. 

If  (x,  y)  are  the  coordinates  of  P,  (£  tj)  those  of  C  and  /> 
the  radius  of  curvature  PC  or  ds/d(f>  it  is  easy  to  prove 

=x  —  /Q  sin  <£,  »7  =  #  +  p  cos  0   (1) 
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We  will  generally  use  p  for  the  radius  of  curvature  ;  the 
curvature  will  then  be  denoted  by  1  /p. 

If  d2y/dx2  is  zero  at  P  then  1/p  is  zero  by  (A)  and  p  or 
PG  is  infinite.  Thus  at  a  point  of  inflexion  on  a  curve 
p  is  infinite. 

We  take  Fig.  82  as  the  standard  diagram.  If  we  adhere 
to  the  convention  that  0  is  always  acute  (§21)  then  dx/ds 
and  sec  </>  will  be  always  positive  and  the  root  in  (A)  will 
have  the  positive  sign,  p  and  l//o  will  therefore  be  positive 
or  negative  according  as  d2y/dx2  is  positive  or  negative, 
that  is  according  as  the  curve  is  concave  upwards  or  convex 
upwards  near  P.  Of  course  other  conventions  may  be 
used  but  a  little  care,  especially  if  a  figure  is  drawn,  will 
usually  settle  the  question  of  sign.  In  many  cases  it  is  the 
numerical  value  alone  that  is  important. 

The  limiting  position  C  of  the  point  C'  is  sometimes  called  the  point of  intersection  of  two  consecutive  normals.  Of  course  there  is  no  one 
normal  that  is  the  consecutive  of  another,  but  the  phraseology  is 
briefer  than  that  used  in  the  statement  at  the  beginning  of  this  article 
and  is  therefore  sometimes  useful. 

It  should  be  noticed  that  when  the  arc  PQ  is  an  infinitesimal  of  the 

first  order  the  difference  between  PC'  and  QC'  is  of  a  higher  order 
since  the  limit  of  (QC'  —  PC')/8s  is  zero  ;  for 

QC'  -  PC'  =  QC'(1  -  cos  S<£)  -  PQ  cos  QPC'. 

§  142.  Other  Formulae  for  the  Curvature.  Formula  (A)  is 
not  very  convenient  unless  the  equation  of  a  curve  is  in  the 
form  y  =f(x)  or  unless,  as  in  the  examples  worked  in  §  140, 
the  values  of  the  derivatives  can  be  easily  calculated.  We 
will  therefore  give  one  or  two  other  formulae  ;  the  question 
of  the  sign  of  p  usually  needs  special  consideration. 

(i)  Equation  of  form  x  =/(£)»  2/  =  -^(O-  The  variable  t 
need  not,  of  course,  represent  time  but  we  will  for  brevity 
use  the  fluxional  notation. 

Substitute  in  (A)  the  values  of  Dy,  D2y  in  terms  of 
#>  ̂ j  2/>  y>  as  given  in  §  98  ;  we  find 

.....................  (B) 

Since  Dx2y  =  (xij  —  yx)/a?,  we  can  determine  the  sign  of  p 
when  necessary  in  accordance  with  the  convention  of  §  141. 
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(ii)  Polar  Equations.     In  (A)  substitute  the  values  of 

Dy,  Dzy  in  terms  of  D0T,  De2r  and  we  get 

-jn  JA dO/        dO2)      (        \dO 

Formula  (c)  is  cumbrous.  It  is  often  simpler  to  find 
what  is  called  the  p,  r  equation,  that  is  the  relation  between 
the  perpendicular  OZ  from  the  origin  0  on  the  tangent  at 
P  (Fig.  82)  and  the  radius  OP  (see  ex.  2),  and  then  to  apply 
a  formula  we  will  now  deduce. 

In  Fig.  82  we  have,  OZ=p,  OP  =  r, 

00'*  =  OP2  +  PC'*  -  20P  .  PC'  cos  OPC' 

since  p=OPcosOPC'=rsm\/s  where  \js  is,  as  usual,  the 
angle  between  the  tangent  and  the  radius  vector. 

If  OQ  =  r  +  Sr  and  if  p  +  Sp  =  perpendicular  from   0  on 
tangent  at  Q  we  find  in  the  same  way 

Equating  the  two  values  of  0(72  we  get 

But  (QC'  —  PC')  and  (<Sr)2  are  of  order  higher  than  the first,  and  therefore 

Formula  (D)  may  also  be  proved  thus  :  since  p  —  r  sin  \fs 
and  0  =  0  +  \fs  we  have  (see  §  88) 

dp      .  ,  d\!s       dO  ,     d\!s       dd> 
-r-  =  sm  V^  +  ̂ cosr/r  y-  =  r-7  —  \-r  ̂ -  =  r^-, dr  dr        ds        ds        ds 

and  therefore  ds/d(/>  =  rdr/dp. 

An  inspection  of  figures  will  show  that  when  the  curve 
is  concave  towards  the  origin  (as  in  an  ellipse  with  the 
centre  as  origin)  p  and  r  increase  or  decrease  together,  and 
therefore  dr/dp  and  p  are  positive  ;  when  the  curve  is 
convex  to  the  origin  p  is  negative. 
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We  can  now  deduce  (c)  from  (D)  ;  for  (§  88) 

tan  \/r  =  rdO/dr 

1  1  1      /  !  dr\* 
/ 

and  by  differentiating  with  respect  to  r  we  can  find  dp/dr. 
We  will  work  out  a  slightly  different  formula  that  is  of  use 
in  dynamics;  namely,  putting  r  =  l/u  we  will  find  p  in 
terms  of  u  and  6. 

dr     dr  du          1  du 
N  n  w  _  —  -  _  —  —  _ 

dO    dudO~      u2 
and  therefore  (i)  becomes 

1        n  i  fdu\2 —  =  <u?-{.{  } 

p2  \dO/ 
Hence,  differentiating  with  respect  to  u, 

p*du  \ded02  du 

But  .  _) 

du     dr      u*       p     r  dr  du 
and  now  by  substitution  in  (iii),  using  (ii),  we  get 

The  root  being  taken  positive,  p  will  be  positive  or 
negative  according  as  the  arc  is  concave  or  convex  to  the 
origin. 

(iii)  Intrinsic  Equation.  Let  s  denote  the  arc  of  a 
curve  measured  from  a  fixed  point  on  it  up  to  the  point  P, 
and  <j>  the  angle  which  the  tangent  at  P  makes  with  a  fixed 
tangent  ;  the  equation  which  expresses  the  relation  between 
s  and  0  is  called  the  intrinsic  equation  of  the  curve.  This 
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equation  does  not  depend  on  any  lines  of  reference  outside 
the  curve,  such  as  the  ordinary  rectangular  axes ;  hence  the 
name. 

When  the  intrinsic  equation  is  given  p  is  found  at  once 
by  differentiation.  In  elementary  work,  however,  the 
intrinsic  equation  is  of  comparatively  small  importance; 
it  has  usually  to  be  deduced  by  integration  from  the 
ordinary  equation,  one  of  the  coordinate  axes  being  taken 
as  the  fixed  tangent.  The  angle  0  must  not  in  this  case  be 
restricted  to  acute  angles. 

2  2  '2 

Ex.  1.     x~*+y'*  =  ds. 
Let  jy  =  acos3t,  y  =  asin3£,  and  use  formula  (Z?). 

x  =  —  3a  cos2 1  sin  t ;  x  —  3a  cos  t(2  sin2 1  —  cos2 1)  ; 

y
/
1
 

y  =  3a  sin2 1  cos  t ;  y  =  3a  sin  t(2  cos2 1  -  sin2 1)  ; 
w    i"  t/  *——  jet  sm  r  cos  o «     /x//u     Vw  — —  — "  y1 U  t/  V 

p=  -3a  sin  t  cos  t  —  — 

In  this  case  Dx2y  =  I/3asm  tcos*t  and  p,  if  determined  by  the  con- 
vention of  §  141,  will  be  +3asin£cos£. 

Ex.2.     rm  =  amcosm$. 
Form  the  jo,  r  equation  and  use  formula  (D). 

7T 

-7—     —  ---    . dr  \  2  / 

We  will  take  ̂   =  ra#  +  7r/2  ;  then 

p  =  r  sin  T/T  =  r  cos  m  0  =  rm  +  1/aw, 

rdr  am 
,    ,        , 

and  therefore -j-  =  -,  --  r\  --  1- 

dp     (m+l)rm By  giving  different  values  to  m  we  get  several  well-known  equations. 
See  Exercises  XXXI.  10. 

Ex.  3.     Find  the  centre  of  curvature  and  the  locus  of  the  centre  of 
curvature  of  an  ellipse. 

It  is  easy  to  show,  with  the  notation  of  §  140,  ex.  2,  that 

sin  <£  =  —p&ja2,     cos  <£  =py}b2,     p  =  —  a?b2/ps, 

£=#  —  p  sin  <£=#(!  -b2/p2)',     rj=y(l  —  a?/p*). 
Let  6  be  the  eccentric  angle  of  P(x,  y)  and  these  values  become 

brj=  -(a2-62)sin36> 
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To  find  the  locus  of  the  centre  of  curvature  eliminate  0  ;  thus 

(«£)l+(^)l=(«2-&2)f, or,  taking  now  x  and  y  as  current  coordinates, 

The  curve  is  shown  in  Fig.  83,  §  143. 

Ex.  4.  Show  that  the  normal  acceleration  at  a  point  P  on  a  curve 
is  v2/p  where  v  is  the  tangential  velocity  and  l/p  the  curvature  at  P. 

At  Q  (Fig.  82)  let  the  tangential  velocity  be  v  +  8v  ;  the  components 

in  the  direction  PC'  of  the  velocity  at  P  and  at  Q  are  0  and 
(v  +  6V)  sin  8<f>  respectively.  Hence  the  normal  acceleration  at  P  is 

(v  +  8v)  sin  8d>       dd>       d<k>  ds          1 
--  -  -  -3r  ̂        •  ~  - 

8t_Q  ot  at        ds  at          p 

as  was  to  be  proved. 

EXERCISES  XXXI. 

1.  The  equation  of  any  conic  may  be  put  in  the  form  y2  = 
where  the  #-axis  is  the  focal  axis  and  2A  is  the  latus  rectum.  If  the 
normal  at  P  meet  the  #-axis  in  G  and  if  a  is  the  angle  between  PG 
and  the  focal  distance  SP  prove  that 

p=  -PG3/A2=-PG/cos*a. 
Note  that  the  projection  of  PG  on  SP  is  equal  to  the  semi-latus 

rectum. 

2.  From  the  value  of  p  in  terms  of  a  (ex.  1)  prove  the  following 
construction  for  the  centre  of  curvature  K  of  any  conic  :  Draw  GH 
perpendicular  to  PG  to  meet  SP  at  H,  then  draw  HK  perpendicular 
to  HP  to  meet  PG  at  K  ;  K  will  be  the  centre  of  curvature. 

3.  For  the  rectangular  hyperbola  #y=c2  show  that 

4.  C  is  the  centre  of  an  ellipse,  CD  is  a  semi-diameter  parallel 
to  the  tangent  at  P  and  6  is  the  eccentric  angle  of  P  ;   show  that, 
numerically, 

p  =  (a2  sin2  0  +  b*  cos2  fffjab  =  C&lab. 
It  may  be  shown  that  the  eccentric  angle  of  D  is  6  4-  TJTT  or  0  —  ̂TT. 

CP,  CD  are  called  conjugate  semi-diameters  since,  as  may  be  readily 
proved,  each  diameter  bisects  all  chords  parallel  to  the  other. 

5.  If  r  is  the  central  radius  of  a  point  P  on  an  ellipse,  and  p  the 
perpendicular  from  the  centre  on  the  tangent  at  P,  prove 

For  a  hyperbola  prove,  with  similar  notation 
r2  -  a2  +  62  =  a262/jo2  ;     p  =  -  a 
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6.    For  the  curve  a2y=3?  show  that  p  =  (a4  +  9#4)^/6a4#  and  for  the 
curve  ay  =#,  p= 

7.   At  the  origin  on  the  curve 

where  un  is  of  the  nth  degree  and  homogeneous  in  x  and  y,  show  that 

%  =  0,  Z>2#  =  2&/a,  p=a/26. 

8.  At  the  origin  on  the  curve 

y  =  Zx  +  3#2  -  Qxy+y*) 

the  radius  of  curvature  is  5x/5/6. 

9.  Prove  that  the  radius  of  curvature  of  the  catenary 

a     * is  y2/a,  and  that  of  the  catenary  of  uniform  strength 

is  csec(#/c). 

10.  Verify  the  general  results  given  in  ex.  2  §  142  for  the  particular 
cases  : 

(i)  Lemniscate  ?<2  =  a2cos  20  ;  r3  =  a2p  ;  p  =  «2/3r. 

(ii)  Equilateral  hyperbola  r2  cos  20  =  a2  ;  pr  =  a2  ;  /o=r3/a2. 

(iii)  Parabola  r(l+  cos  ̂ )  = 
(iv)  Cardioid  r=a(l+cos 

For  the  parabola  ra=  —  1/2  ;  for  the  cardioid  m=l/2,  and  2a  takes 
the  place  of  a. 

11.  Show    that    the    chord    of   curvature    through    the    origin   is 

2pdr/dp  ;  for  the  curve  rm  =  amcosm6,  this  chord  is  2/-/(m  +  l). 

12.  Show  that  for  the  equiangular  spiral  r=aed(  )ta  the  radius  of 
curvature  is  r  cosec  a  ;  show  also  that  the  radius  of  curvature  subtends 
a  right  angle  at  the  origin. 

13.  If  "^  is  the  angle  between  the  focal  radius  of  a  conic  and  the 
tangent  at  P  and  a  the  angle  between  the  focal  radius  and  the  normal, 
show  by  formula  (E)  that 

p  = 

the  equation  of  the  conic  being  lu  =  1  +  e  cos  0. 
Show  also  that  if  r  and  r'  are  the  focal  distances 

and  that  p=- ab      a  cos  a 
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14.  If  accents  denote  differentiation  as  to  the  arc  s,  show  by 

differentiating  the  equations  cos  <£=#',  sin  </>=#'  that,  (£,  ??)  being  the centre  of  curvature, 

!//>=  -x"ly'=y"lx'  ; 
and 

15.    Show  from  formula  (B)  that  the   condition  for   a   point  of 
inflexion  is 

16.  The  circle  (x  —  af  +  (y  —  (3)2=R2  and  the  curve  y=f(x)  intersect 
at  the  point  P(a,  b).  If  at  P  the  values  of  Dy  and  D^y  are  the  same for  the  circle  and  the  curve  show  that  the  circle  is  the  circle  of 
curvature  at  P. 

The  circle  and  the  curve  have  the  same  tangent  at  P  because  P  lies 
on  both  circle  and  curve,  and  the  gradient  of  the  circle  at  P  is  equal 
to  that  of  the  curve  at  P.  Again,  differentiate  the  equation  of  the 

circle  twice  and  after  differentiation  put  «,  b  (or  /(«)),  /'(a)>  /"(a)>  for 
x^  y,  Z)y,  Z)2y  respectively  ;  we  get 

(a-a?  +  (b-p?  =  B?  ......  (i);         (a-a)  +  (6-0)/(a)  =  0  ......  (ii)  ; 

l+{/(«)P+(6-0)/»  =  0  ........................  (iii) 
From  (ii)  and  (iii)  we  find 

6-0=  -[l+</(a)n*/'(a);     «-a=/(a)[l  +  {/(a)fl*/'(a), 
and  therefore  by  substituting  these  values  in  (i) 

(a)Vf+f'(a)  ..........................  (iv) 
But  R  as  given  by  (iv)  is  the  radius  of  curvature  at  P  and  (a,  /?)  is 
the  centre  of  curvature  at  P. 

DEFINITION.     Two  curves  y=F(x\  y—f(x)  which  intersect  at  the 
point  P  (a,  6)  are  said  to  have  contact  of  the  nih  order  with  each  other 
at  P  if  F'(a)=f(a\  F"(a)=f"(a\  ......  FW(a)  =/n>(«)  but  ̂ <M+]>(a)  not 
equal  to  /(n+1)(a). 

The  circle  of  curvature  has  thus  in  general  contact  of  the  second 
order  with  the  curve. 

From  Taylor's  Theorem  (§  152)  it  will  be  seen  that  when  the  curves 
have  contact  of  the  nih  order  at  (a,  b)  the  difference  F(x)—f(x) 
between  corresponding  ordinates  near  (a,  6)  is  an  infinitesimal  of 
order  n  +  l  when  x  —  a  is  principal  infinitesimal  ;  for 

where  R  is  zero  when  x=  a. 

§  143.  Evolute.     Involute.     Parallel  Curves. 
DEFINITION.     The  locus  of  the  centre  of  curvature  of  a 

given  curve  is  called  the  evolute  of  that  curve. 
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The  coordinates  (£  rj)  of  the  centre  of  curvature  G  corre- 
sponding to  the  point  P  (x,  y)  are  given  by 

£=X  —  /OSU10,    rj  =  y  +  pCOS(j>  ..................  (1) 

The  four  quantities  x,  y,  0,  p  can  all  be  expressed  in  terms 
of  one  quantity,  for  example  x  or  s  or  t^  the  elimination  of 
that  quantity  between  the  equations  (1)  will  give  a  relation 
between  g  and  q  which  will  be  the  equation  of  the  e  volute. 

The  e  volute  of  the  ellipse  is  (§  142,  ex.  3)  given  by 

and  is  shown  in  Fig.  83. 

FIG.  83. 

E,  E',  F,  Ff  are  the  centres  of  curvature  corresponding  to 
the  vertices  A,  A',  B,  Bf ;  and 

EA  =  A'E  =  b*/a,     FB  =  BfF/  =  a*/b. 
It  is  obvious  how  the  radius  of  curvature  may  be  utilised 

for  graphing  the  curve. 
The  following  are  important  properties  of  the  evolute : 

'(i)  The  normal  at  P  to  the  given  curve  is  the  tangent  at G  to  the  evolute.     (ii)  The  length  of  an  arc  of  the  evolute 
is  equal  to  the  difference  between  the  radii  of  curvature  of 
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the  given  curve  at  the  points  corresponding  to  the  ends  of 
the  arc. 

(i)  In  equations  (1)  take  s,  an  arc  of  the  given  curve,  as 
independent  variable ;  then 

ds  ~~  ds     P 
cos 

—  sin 

snce 

Similarly 

ds 

=  d(f>/ds. 
dri  dp 
-j-  =  COS  <h  -f- 
ds  r  ds 

dp  .       dp 
-{-  =  —  sin  rf>  -V-- 
ds  ^  ds 

•(2) 

.(3) 

Therefore 
drj_drj/dg_ 

dg    ds/  ds  
J  ***' Now  the  centre  of  curvature  C  (£  rf)  lies  on  the  normal 

at  P,  and  the  gradient  of  the  evolute  at  C  is  dq/dg,  that  is, 
—  cot  <£,  which  is  the  gradient  of  the  normal  to  the  given 
curve  at  P.  Hence  the  normal  PC  coincides  with  the 

tangent  to  the  evolute. 
(ii)  Let  da-  be  the  differential  of  an  arc  of  the  evolute  ; 

by  (2)  and  (3) 
dg  =  —  sin  <j)  dp,  drj  =  cos  0  dp, 

so  that  d<r=  ±  J(dg*  +  dvf)=  ±dp  ....................  (4) 
The  sign  will  be  posi- 

tive or  negative  accord- 
ing as  <r  increases  or 

decreases  as  p  increases. 
For  the  positive  sign  we 
have 

cr  =  p  +  const  .......  (5) 
In  Fig.  84  let  <r  be 

measured  from  Cv  and 
let  P^,  P2<72,  P8C3  be 
Pi>  />2»  Ps  ;  ̂en  (5)  gives 

arc  (71(72  =  p2+  const. 
=  P2-Pl> 

arc  ClCs  =  p3  —  pv  FIG.  84. 
which  proves  the  required  result. 

If  a  thread  were  wrapped  round  the  curve  C^Cg  and  one 
end  fixed  at  (73,  the  length  of  the  thread  being  equal  to  p3, 
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it  is  clear  that  when  the  thread  is  unwound,  and  kept 
stretched  in  the  process,  the  free  end  will  describe  the 
curve  P1P2P3.  It  is  from  this  property  that  the  e volute 
is  named. 

The  curve  PiP$  is  said  to  be  an  involute  of  C-fJy  Ob- 
viously any  point  on  the  thread  will  describe  an  involute, 

so  that  a  given  curve  has  an  infinite  number  of  involutes 
while  it  has  but  one  evolute. 

The  two  involutes  P^P^  PI  PS  are  called  parallel  curves, 
since  the  distance  between  them  measured  along  their 
common  normals  is  constant. 

§  144.  Envelopes.     The  equation 

.  "       y  =  ax  +  a[a   (1) 
where  a,  a  are  constants,  represents  a  straight  line.  If  we 
give  a  different  constant  value  to  a,  say  av  the  equation 
will  become 

^  y  =  alx  +  a/al   ...(2) 
and  will  represent  a  different  straight  line.  The  coordinates 
of  the  point  of  intersection  of  (1)  and  (2)  are 

x  =  a/aav    y  =  a/ a  +  &/ai   (3) 
Suppose  now  that  ax  is  taken  closer  and  closer  to  a ;  the 

line  (2)  will  therefore  come  closer  and  closer  to  the  line  (1), 
but  the  values  (3)  show  that  the  point  of  intersection  tends 
to  a  definite  position  when  c^  tends  to  a  as  its  limit.  The 
coordinates  of  the  limiting  position  of  the  point  of  inter- 

section are 

x  =  a/a2,   y  =  2a/a   (4) 
If  we  eliminate  a  between  the  two  equations  (4)  we  get 

y2  =  4<ax   (5) 

so  that,  whatever  value  a  may  have,  the  limiting  point  lies 
on  the  parabola  (5).  It  may  be  readily  verified  that 
whatever  value  a  may  have  the  line  (1)  is  a  tangent  to  the 
parabola. 

In  general  the  equation  f(xy  y)  =  0  of  a  curve  contains 
constants  that  determine  the  shape,  size,  and  position  of 
the  curve.  By  assigning  a  series  of  different  values  to  the 
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constants  we  get  a  series  of  different  curves.  We  will 
consider  the  case  in  which,  as  in  the  example  just  given, 
the  series  is  determined  by  assigning  different  values  to  one 
constant,  ajid  we  will  speak  of  the  series  as  a  family  of 
curves.  The  constant  is  then  often  called  the  parameter  of 
the  family;  thus,  in  (1)  a  is  the  parameter  of  a  family  of 
straight  lines. 

Two  curves  of  the  family  will,  in  general,  intersect  ;  if  a 
and  a  +  6\*  are  the  values  of  the  parameter  for  two  curves 
Cl  and  (72  of  the  family,  the  point  or  points  of  intersection 
of  Gl  and  (72  will  tend  to  definite  limiting  positions  as  So. 
tends  to  zero,  and  the  locus  of  these  limiting  positions  is 
called  the  envelope  of  the  family  of  curves. 

Thus  the  parabola  (5)  is  the  envelope  of  the  family  (1)  ;  the  e  volute 
of  a  curve  is  the  envelope  of  the  family  of  straight  lines  composed  of 
the  normals  of  the  curve  (§§  141,  143). 

§  145.  Equation  of  Envelope.     Let  the  equation 

f(x,y,a)  =  0  ...........................  (1) 

represent  a  family  of  curves,  the  parameter  a  of  the  family 
being  indicated  in  the  functional  symbol  ;  a  is  constant  for 
any  one  curve  of  the  system.  Let  the  equation 

0  ........................  (2) 

represent  another  curve  of  the  system.     The  coordinates  of 
the  points  of  intersection  of  (1)  and  (2)  will  satisfy 

f(xt  y,  a  +  8a)-f(x,  y,  a)  =  0, 
and  therefore  also 

{/(»,  0,  a  +  Sa)-f(x,  y,  a)}/Sa  =  0  .............  (3) 

The  limit  of  (3)  for  8a  =  0  is 

and  therefore  the  coordinates  of  the  points  on  the  envelope 
satisfy  equations  (1),  (4).  The  equation  of  the  envelope  is 
therefore  got  by  eliminating  a  between  these  two  equations. 
In  forming  (4)  x  and  y  are  treated  as  constants,  as  is  evident 
from  the  proof. 
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Thus,  if  f(x,  y,  a)=  — 

a/fay,  a)_  a^ 
—  «</  n* a  a/ 

Eliminate  a  between  the  equations 

and  we  get  y2  =  4ax.     The  envelope  is  thus  a  parabola,  as  in  §  144. 

We  saw  in  §  144  that  the  parabola  (5)  has  each  member 
of  the  family  (1)  as  a  tangent.  We  will  now  prove  the 

THEOREM.  In  general,  the  envelope  of  a  family  of  curves 
touches  each  member  of  the  family. 

The  gradient  at  a  point  (x,  y)  on  (1)  is  given  by 

......     (5) 

Tty  dx where,  in  differentiating,  a  must  be  kept  constant. 
On  the  other  hand,  to  get  the  equation  of  the  envelope, 

we  have  to  eliminate  a  between  (1)  and  (4)  ;  we  may  there- 
fore take  (1)  for  the  equation  of  the  envelope  provided  we 

regard  a  as  a  function  of  x  and  y  determined  by  (4). 
The  gradient  at  a  point  (x,  y)  on  the  envelope  will  therefore 
be  found  by  taking  the  total  derivative  of  (1);  this  total 
derivative  is  given  by 

_ 
'dx     'dy  dx     'da  dx 

Suppose  now  that  the  coordinates  of  the  point  (x,  y) 
satisfy  both  (1)  and  (4)  ;  that  point  is  therefore  on  the  curve 
(1)  and  also  on  the  envelope  ;  and,  by  (4),  equation  (6) 
reduces  to  equation  (5).  Hence  at  the  point  (x,  y)  the 
gradient  dy/dx  is  the  same  for  the  curve  (1)  and  for  the 
envelope,  which  proves  the  theorem. 

It  is  assumed  that  'dffdx,  'dfl'ty  are  n°t  both  zero  ;  if  they  are,  the value  of  dy\dx  given  by  (5)  or  (6)  is  not  determinate  and  the  theorem 
may  not  be  true.  The  discussion  of  such  cases,  however,  is  beyond 
our  limits. 

Analytically,  the  problem  of  finding  the  envelope  of  the 
family  (1)  is  equivalent  to  that  of  finding  the  turning  values 
of  the  function  f(x,  y,  a)  of  the  variable  a,  when  x  and  y 
are  regarded  as  constants. 
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The  student  should  draw  a  few  lines  of  the  family 
y  =  ax  +  a/a  for  both  positive  and  negative  values  of  a,  and 
he  will  get  a  clear  idea  of  a  curve  as  the  envelope  of  its 
tangents  ;  the  lines  are  easily  drawn  since  the  intercepts  on 
the  axes  are  —a/  a2  and  a/a  respectively. 

Ex.  1.     The   evolute   of   the   parabola  yi  =  kax  considered  as  the 
envelope  of  its  normals. 

The  normal  at  (A,  k)  is  given  by 

or  8a2y  +  4a(#-2a)£-P=0,  ............................  (i) 
since  A=£2/4a  by  the  equation  of  the  parabola.     Take  k  as  the  para- 

meter of  the  family  of  straight  lines  (i),  and  find  the  envelope. 
Differentiate  (i)  as  to  Tc  ;  we  get 

4a(#-2a)-3F  =  0  .............................  ..(ii) 
Eliminate  k  between  (i)  and  (ii)  and  we  get 

which  is  therefore  the  equation  of  the  evolute. 

Ex.  2.     Find  the  envelope  of  the  circles  which  pass  through  the 
origin  and  have  their  centres  on  the  hyperbola 

y&  —  y2  =  c2. 

Let  (a,  (3)  be  the  centre  of  any  circle  of  the  family  ;  the  equation  of 
a  circle  is  therefore 

#2+y2-2a#-2/fy  =  0,  ..............................  (i) 
there  being  no  constant  term,  since  the  circle  goes  through  the  origin. 

Since  the  centre  lies  on  the  hyperbola,  we  have, 

c2  .....................................  (ii) 

We  might  suppose  (ii)  solved  for  p  in  terms  of  a  and  the  value 
inserted  in  (i)  ;  this  shows  that  there  is  really  but  one  parameter.  It 
is  simpler,  however,  to  differentiate  with  respect  to  a,  considering  J3  as 
a  function  of  a  determined  by  (ii).  and  then  to  eliminate  a.  o  and 
dftlda. 

Differentiating  (i)  and  (ii)  with  respect  to  a  we  get 

o  .........................  (iii) 

From  (iii)  a/#=  - 
and  therefore  by  (ii)  a/x=  -  (3/y  = 

Substitute  in  (i)  for  a  and  /3  and  reduce  ;  we  then  get 

which  is  the  equation  of  a  lemniscate. 
It  will  be  evident  that  the  procedure  is  the  same  as  that  of  finding 

maxima  and  minima. 
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§  146.  Cycloids.  As  the  cycloid  is  of  some  importance  in 
dynamics,  we  will  very  briefly  investigate  its  chief 
properties. 

DEFINITION.  The  cycloid  is  the  curve  traced  out  by  a 
point  in  the  circumference  of  a  circle  (the  generating  circle) 
which  rolls  without  slipping  along  a  fixed  straight  line 
(the  base). 

Let  OD  (Fig.  85)  be  the  base,  P  the  tracing  point  on  the 
generating  circle  LPI,  and  0  the  angle  between  the  radius 
SP  and  the  radius  SI,  I  being  the  point  of  contact  with 
the  base. 

N 

Suppose  P  to  be  at  0  when  the  circle  begins  to  roll ;  draw 
PM  perpendicular  to  OD,  and  let  OM=x,  MP  =  y.  Then 
if  a  is  the  radius,  we  have 

0/=arcP/=a0, 

......... 

I8L  being  the  diameter  through  /.    Equations  (1)  are  those 
of  the  cycloid. 
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When  $  =  7r,  x  =  7ra=OB  and  P  is  at  A,  the  greatest 
distance  it  can  be  from  the  base.  A  is  called  a  vertex. 
When  0  =  27r,  x  =  27ra  =  OD,  and  P  is  at  D.  The  arch 

OAD  is  symmetrical  about  .ZLi,  and  BA  is  called  an  axis. 
If  the  circle  were  to  continue  rolling,  P  would  trace  out 

a  series  of  arches  congruent  to  OAD;  when  the  cycloid  is 
spoken  of,  it  is  usual  to  confine  it  to  the  one  arch,  and  A, 
BA  are  then  the  vertex,  the  axis. 

Properties.     The  following  are  easily  established  : 

(i)     tan  0  =  Dxy  =  cot  J(9  =  tan  (  JTT  —  J$)  =  tan  PIL, 

and  therefore        0  =  JTT  —  JO  =  f-  PIL, 
so  that  PL  is  the  tangent  and  PI  the  normal  at  P. 

(ii)     s  =  arcOP  =  4a(l  —  cos  J0);     arc(M 

(iii)     p  =  PC  =  4a  sin  J$  =  2P7,  numerically. 

If  the  tangent  ̂ IT7  and  the  normal  .4.5  are  taken  as  axes,  and  PN 
drawn  perpendicular  to  AT,  we  put  &=L.LSP=Tr-  9  ;  then 

(ia)  <t>= 

(iia)   s  =  arc.4P=4asm|#/  ;      s2  =  8a  .  JVP=8ay. 

The  coordinates  of  (7,  the  centre  of  curvature,  are 

£=0^+4asin|0cos  J0  =  a(0+sin0), 

»;=  —7(7  sin  J0=  —  a(l  —  cos 

Hence,  by  equations  (lx),  the  e  volute  of  the  cycloid  OAD 
consists  of  the  halves  OCB',  B'D  of  an  equal  cycloid.  In 
(!')  the  positive  direction  of  y  is  downwards,  but  when  0 
is  origin  the  positive  direction  is  upwards,  so  that  v\  is 
negative. 

H  is  a  cusp  on  the  evolute  ;  0,  D  are  cusps  on  the  original 
cycloid  and  vertices  of  the  evolute. 

Epicycloids  and  Hypocycloids.  The  curve  traced  out  by  a  point  on 
the  circumference  of  a  circle  which  rolls  without  slipping  on  the 
circumference  of  a  fixed  circle  is  called  an  epicycloid  or  a  hypocycloid 
according  as  the  rolling  circle  is  outside  or  inside  the  fixed  circle. 
When  the  rolling  circle  surrounds  the  fixed  one  the  epicycloid  is 
sometimes  called  a  pericycloid. 
G,c,  2  A 
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Let  Figure  86  represent  the  generation  of  an  epicycloid,  P  being 
the  tracing  point  and  C  the  starting  point.  Let  a  and  b  be  the  radii 
of  the  fixed  and  of  the  rolling  circles,  9  and  &  the  angles  CAI  and 
IBP  ;  A  M=x,  MP=y.  Then 

arc  P/=arc  (77,   so  that,   b&  = 

(2) =  (a  +  b)  cos  6  -  b  cos  [(a  4-  b)  0/b] 

FIG.  86. 

When  the  circles  are  on  the  same  side  of  the  tangent  at  /,  that  is, 
for  the  hypocycloids  (b<a)  and  the  pericycloids  (&>«),  it  is  only 
necessary  to  change  the  sign  of  6.  Hence,  the  equations  of  the  hypo- 
cycloid  are  of  the  form 

#  =  («-&)  cos  @  +  b  cos  [(a  —  b)@/b] 
y=(a-  b)  sin  0-  b  sin  [(a-  b)  0/b]   (3) 

When  the  ratio  of  b  to  a  is  a  commensurable  number  the  tracing 
point  P  will  return  to  C  after  the  circle  B  has  rolled  once  or  oftener 
round  the  fixed  circle  ;  when  the  ratio  of  b  to  a  is  incommensurable 
P  will  not  return  to  C. 

Trochoids.  If  the  tracing  point  P  is  not  on  the  circumference  but 
on  a  radius  or  on  a  radius  produced,  the  curve  it  describes  is  a 
trochoid  or  an  epitrochoid  or  a  hypotrochoid, 

If  the  distance  of  P  from  the  centre  of  the  circle  is  to  the  radius  in 
the  ratio  of  A  to  1,  the  equations  of  the  trochoid  are  got  from  equations 
(1)  by  multiplying  sin  6  and  cos  9  by  A,  while  the  equations  of  the 
epitrochoid  and  the  hypotrochoid  are  got  from  equations  (2)  and  (3) 
respectively  by  multiplying  the  coefficient  b  of  the  second  term  by  A, 
as  the  student  will  easily  prove. 
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EXERCISES  XXXII. 

1.  Show  that  for  the  parabola  y2-  =  4o#, 

p=  -2acosec3<£,   £  =  2a  +  3a  cot2  <£,   ̂  =  -  2a  cot3</>, 
and  then  find  the  equation  of  the  evolute. 

2.  Show  that  for  the  hyperbola  x2/a2-y2/b2  =  l, 

a*£  =  (a2  +  b2)x?,   b^  =  -  (a2 
and  that  the  equation  of  the  evolute  is 

3.  Show  that  for  the  rectangular  hyperbola  xy  =  c2, 
3          3  3 

and  that  the  equation  of  the  evolute  is 

2  _2  2 

4.  Show  that  for  the  curve  .r7+3/3  ~  =  aT  (see  §  142,  ex.  1), 
=  a  cos3  £  +  3a  cos  £  sin2  1,    r"]  =  a  sin3  Z  +  3a  sin  ̂   cos2  ̂ , 

and  that  the  equation  of  the  evolute  is 

5.   Prove  that  the  envelope  of  the  family  of  straight  lines 

22 

(i)  when  a/3  =  a2,  is  the  hyperbola,  4.ry  =  a2  ; 

(ii)  when  a  +  /:?=«,  is  the  parabola 

(iii)  when  a2  +  /32=a2,  is  the  curve  y 
State  the  geometrical  meaning  of  the  conditions  to  which  the  para- 

meters a,  ft  are  subject. 

6.   Prove  that  the  envelope  of  the  family  of  ellipses 

(i)  when  a/3  =  a2  is  the  two  hyperbolas  2#j/=  ±«2. 
2  J2  2 

(ii)  when  a  +  /?  =  a  is  the  curve  x*  +ys  =  as. 
State   the   geometrical   meaning   of   the   conditions   to   which    the 

parameters  a,  /3  are  subject. 

7.  The  envelope  of  the  circles  described  on  the  double  ordinates  of 
a  parabola  as  diameters  is  an  equal  parabola. 

8.  If  P,  Q,  R  are  functions  of  the  coordinates  of  a  point,  and  a 
a  variable  parameter,  show  that  the  envelope  of 

s 
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and  that  the  envelope  of 

P  cos  a  +  Q  sin  a  =  R 

is  P2  +  Q2  =  R2. 
9.  Show  that  whatever  be  the  value  of  m,  the  straight  line 

y  =  mx  +  *J  {  (a  +  bm2)/ab  } 

touches  the  conic  ax*  +  by2  =  I  . 

10.  A  straight  line  moves  so  that  (i)  the  product,  (ii)  the  sum,  of  the 
squares   of   the   perpendiculars   drawn  to  it  from  two  fixed  points 
(c,  0),  (  —  c,  0)  is  constant  ;    show  that  in  each  case  the  envelope  is 
a  central  conic. 

11.  Show  that  the  envelope  of  the  circles  described  on  the  central 
radii  of  an  ellipse  as  diameters  is 

12.  The  envelope  of  the  ellipses  (x  -  a)2/a2  +  (y  —  j3)2/b2  =  I  when  the 
parameters  a,  ft  are  connected  by  the  equation 

is    the    ellipse    x2/a2+y2/b2  =  4.      State   the   problem   in   geometrical 
language. 

13.  Show  that  the  envelope  of  the  family  of  straight  lines 

ax  sec  a  —  by  cosec  a  =  a2  —  62 

is  the  curve-  ' 

14.    If  in  Fig.  82  OZ=p,  show  that  the  equations  of  the  tangent 
and  normal  at  P  are 

^>—  y  cos<j)=p  (i); 

and  show,  from  (ii),  that  ZP  =  dp/d(f>. 
Consider  the  curve  as  the  envelope  of  its  tangents. 

15.  With  the  same  notation  as  in  ex.  14,  show  that  the  coordinates 
°f  tne  centre  of  curvature  are  given  by 

- cos 

-TT, 

.    dp  d2p   .  dp "         7 
16.    With  the  same  notation  as  in  the  last  two  examples,  show  that 

the  projection  of  0(7,  where  C  is  the  centre  of  curvature,  on  P(7,  is 

-  £  sin  <p  -f-  ̂   cos  (f>, 
and  that 
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17.  Show  that  the  radius  of  curvature  of  the  evolute  of  a  curve  is 
pdp/ds,  where  p  is  the  radius  of  curvature  at  the  corresponding  point 
on  the  given  curve. 

Use  §  143,  (ii)  ;  d<fr  is  the  same  for  curve  and  evolute. 

18.  If  A  is  the  area  between  a  curve,  its  evolute  and  two  radii  of 
curvature,  show  that 

2          =          1     L _ 

dx     V    dx     2          \dx    }    '  dx* 
19.  ABC  is  an  arc  of  a  circle  whose  centre  is  0  and  radius  a  ;  CP  is 

the  tangent  at  C  and  AP  a  part  of  an  involute  of  the  circle.  Taking 
OA  as  the  #-axis  and  putting  <£  for  the  angle  AOC,  show  that  the 
coordinates  (x,  y)  of  P  are 

x=acos<f>  +  a<f>sm(f>J   y  =  a  sin  <£  —  a<£  cos  </>, 
and  that  the  intrinsic  equation  of  the  involute  is 

All  the  involutes  of  a  circle  are  identically  equal,  so  that  we  may 
speak  of  the  involute  of  a  circle. 

20.  Show  that  the  jt?,  r  equation  of  the  involute  of  a  circle  is 

r2  =p2  +  a2. 
21.  The  total  length  of  the  evolute  of  an  ellipse  is 

4(a3  - 
22.  The  intrinsic  equation  of  the  cycloid,  when  the  vertex  A  is 

the  origin  of  s  and  the  tangent  A  T  the  fixed  tangent  (Fig.  85)  is 

23.  Show  that  for  the  epicycloid  (Fig.  86)  PL  is  the  tangent  and 
PI  the  normal  at  P. 

Tji  ,     dy    cos  #- 
-fcor,  tan  <&  =  -/  =  -.- -        -.-    /n     m  —  =— 

dx    sin  (#4-  #)  -sin  0 

and  PL  makes  with  the  .r-axis  the  angle  0+^6'.     Similar  results  hold 
for  the  hypocyclo'id. 

24.  If  s  is  the  arc  CP  of  an  epicycloid,  Fig.  86,  show  that 
ds  .    aO  46a  +  6/_  ad 

and  that  the  length  of  CPD  is  8b(a  +  b)/a. 

25.  The  intrinsic  equation  of  an  epicycloid  is 

and  the  radius  of  curvature  is 

Similar  results  hold  for  the  hypocycloid,  the  sign  of  b  being  changed. 
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26.  If  6  =  a/4,  show  that  the  hypocycloid  has  four  cusps,  and  that 
its  equations  are  .= 

Eliminating  0,  we  get 
—    8 

27.  Show  that  if  b  =  a/2  the  hypocycloid  becomes  a  diameter  of  the 
fixed  circle. 

28.  Show  that  if  b  =  a  the  epicycloid  becomes  the  cardioid 
r  =  2a(l-cos0), 

the  origin  being  at  the  point  C  ;  that  is, 

29.  In  ex.  25  put 

that  is,  measure  the  arc  from  the  middle  point  V  of  CPD  (the  vertex), 
and  we  get 

, 

*'= 
Show  that  the  equation  s  =  I  sin  w<£  will  represent  an  epicycloid  if 

n  is  less  than  unity,  a  hypocycloid  if  n  is  greater  than  unity. 

30.  If  5,  cr  are  corresponding  arcs  of  a  curve  and  its  evolute 

CT  =  ±  -rr  +  const. 

d<p 

Show  from  the  result  of  ex.  29  that  the  evolute  of  an  epicycloid  is 
an  epicycloid,  and  that  of  a  hypocycloid  is  a  hypocycloid. 

31.  Parallel   rays   fall   on   the   circumference   of  a  circle  and  are 
reflected,  the  angle  of  reflection  being  equal  to  that  of  incidence. 
If  a  is  the  radius  of  the  circle,  (a  cos  (9,  a  sin  0)  the  point  of  incidence, 
the  centre   of  the  circle  the  origin  of   coordinates,  and   the  #-axis 
parallel  to  the  direction  of  the  incident  ray,  show  that  the  equation 
of  the  reflected  ray  is 

y  cos  2#  —  .r  sin  2$  +  <xsin  $=0, 
and  that  the  envelope  of  the  reflected  ray  is  an  epicycloid 

x  =  2\  3  cos  9  —  cos  3$  ),     #  =  T 

32.  If  v  is  the  velocity  of  a  particle  describing  a  central  orbit  under 
an  outward  radial  force  JF,  then  with  the  usual  notation  v2  =  h2jp2.  Prove 

This  equation  is  the  differential  equation  of  the  orbit.     If  F=  ± 
show  that  the  orbit  is  a  conic,  the  centre  of  force  being  at  a  focus. 
(See  §§  169,  170). 



CHAPTER    XVII. 

INFINITE  SERIES. 

§  147.  Infinite  Series.  For  a  thorough  treatment  of 

infinite  series  the  student  is  referred  to  Chrystal's  Algebra, 
vol.  II.  ;  an  exceedingly  good  elementary  account  will  be 

found  in  Osgood's  Introduction  to  Infinite  Series  (Cam- 
bridge, U.S.A.  ;  Harvard  University).  We  will  limit  our 

discussion  to  those  parts  of  the  theory  that  are  needed  in 
the  applications  we  make. 

DEFINITION  OF  AN  INFINITE  SERIES.  Let  uv  u2,u^  ...  , 
be  a  set  of  quantities  unlimited  in  number,  un  being  a 
single-valued  function  of  the  integer  n,  and  let  sn  denote 
the  sum  of  the  first  n  terms, 

When   n   increases   indefinitely  the   sum  (1)  becomes   an 
Infinite  Series. 

If  as  n  increases  indefinitely  the  sum  sn  tends  to  a  definite 
finite  limit  8,  the  infinite  series  is  said  to  be  convergent,  and 
to  converge  to  the  value  s,  or  to  have  the  value  s,  or  to  have 
the  sum  s. 

Ex.  1.     Let  ^i+i  +  1+...+J-j. 

Here  *w=2-l/2"-1;       Lsn  =  2=s. 

If  as  n  increases  indefinitely  sn  does  not  tend  to  a  definite 
finite  limit,  the  series  is  said  to  be  non-convergent.  In  this 
case  either  sn  increases  (numerically)  beyond  all  bound,  and 
then  the  series  is  said  to  be  divergent  or  to  diverge,  or  else  sn 
does  not  tend  to  a  definite  finite  limit,  and  then  the  series 
is  said  to  oscillate.* 

*  Some  writers  use  divergent  as  equivalent  to  non-convergent. 
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Ex.  2.     Let  sn  = 
Here  sn  increases  beyond  all  bound,  and  therefore  the  infinite  series 

is  divergent. 

Ex.  3.     Let        *„=!- 1 +  1 -!  +  ...+(- 1)*1-1 1. 
Here  sn  is  0  or  1  according  as  n  is  even  or  odd,  and  though  sn  does 

not  become  infinite,  it  does  not  tend  to  a  definite  finite  limit.  The 
series  therefore  oscillates. 

It  is  obvious  that  if  uv  u2,  ...  are  all  of  the  same  sign, 
the  series  cannot  oscillate. 

Notation.  We  will  represent  an  infinite  series  by  the 
notation  * 

u^     u2     .  .  .  ;   or        U  >   or i 

The  following  theorems  are  readily  proved  : 

THEOREM  I.     7/'u1  +  u2+...  converges  to  the  value  s,the 
series  cux  +  cu2  +  .  .  . 
where  c  is  any  finite  quantity,  converges  to  the  value  cs. 

The  proof  is  so  simple  that  it  may  be  left  to  the  reader. 

THEOREM  II.     If  u^  +  u2+  .  .  .  converges  to  the  value  s,  and 
v1  +  v2+...  to  the  value  t,  the,  series 

converges  to  the  value  (s  +  t). 

Let          «w  =  ̂ i  +  /^2+'"+^»' 

then         (ul  +  vl)  +  (u2  +  v2)+.. 
for  every  value  of  n,  and  the  result  follows  at  once. 

The  first  theorem  shows  that  the  product  of  c  and  *2u  is 2  (cu),  and  the  second  shows  that  the  sum  of  2u  and  2/y  is 
2  (it  +  v),  and  sum  may  obviously  be  considered  as  including 
difference. 

In  forming  sn  it  is  to  be  understood  that  the  terms  are 
added  on  in  the  order  in  which  they  stand  in  the  series, 
and  it  follows  at  once  that  when  the  series  is  convergent 
the  law  of  association  holds  good;  that  is,  we  may  group 
the  terms  as  we  please  (so  long  as  we  do  not  change  their 
order),  and  the  value  of  the  series  will  not  be  affected.  It 
does  not  follow,  however,  that  if  we  form  a  new  series  by 
writing  the  terms  in  a  different  order,  the  new  series  will 
converge  to  the  same  value  as  the  old  (see  §  1  50). 
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The  phrase  "  numerical  value  "  or  "  absolute  value  "  occurs  so  often 
that  we  will  use  the  notation  (now  generally  adopted) 

to  represent  the  numerical  value  of  a.    Thus, 

|2|  =  2;     |-2|=2;     |-10  +  6|=4. 
The  following  statements  are  easily  proved  : 

(i)  |a  +  6  +  c+...|^|a|  +  |6|  +  |c|  +  ...,. 

the  equality  holding  only  when  a,  &,  c  ...  have  all  the  same  sign. 

(ii)  If  c  is  positive,  the  inequality 

\a-b\  <c 

is  equivalent  to  either  of  the  inequalities 

b  —  c<a<b  +  c;     a  —  c<b<a+c. 

§  148.  Existence  of  a  Limit.  A  function  may  be  defined 
by  an  infinite  series  provided  the  series  is  convergent. 
Thus,  the  infinite  geometrical  progression 

converges  to  the  value  a/(l  —  x)  so  long  as  x  is  numerically 
less  than  1,  and  we  may  say  that  if  —  \<x<\  the  function 
a /(I—  x)  is  represented  by  the  series,  or  that  the  series 
defines  the  function.  But  if  x  is  greater  than  1  the  series 
is  divergent  and  does  not  represent  a/(l—  x)  at  all.  Con- 

vergent series  alone  are  of  use  in  practice  and,  subject  to 
certain  restrictions,  can  be  manipulated  like  expressions 
containing  only  a  finite  number  of  terms ;  non- convergent 
series  can  only  be  used  under  very  special  conditions. 

It  is  not  often,  however,  when  a  series  is  given,  that  we 
can,  as  in  the  case  of  the  geometrical  progression,  actually 
assign  the  number  which  is  the  limit  of  sn.  It  is  necessary, 
therefore,  to  have  a  criterion  for  the  existence  of  the  limit, 
and  we  will  now  state  three  general  theorems  that  will  be 
of  great  service  in  leading  to  simple  tests  for  the  convergency 
of  a  series.  The  variable  sn  is  assumed  to  be  a  single- valued 
function  of  n,  and  n  is  to  increase  indefinitely;  since  all 
the  limits  are  taken  for  n=<x>  we  may  omit  the  subscript 

THEOREM  I.  //  sn  is  a  function  of  n  that  (i)  always 
increases  as  n  increases,  but  (ii)  always  remains  less*  than 
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a  definite  quantity  a,  then  as  n  increases  indefinitely  sn  will 
tend  to  a  definite  limit  that  is  less  than  or  equal  to  a. 

THEOREM  II.  If  sn  is  a  function  of  n  that  (i)  always 
decreases  as  n  increases,  but  (ii)  always  remains  greater 
than  a  definite  quantity  b,  then  as  n  increases  indefinitely 
sn  will  tend  to  a  definite  limit  that  is  greater  than  or  equal 
fob. 

THEOREM  III.  The  necessary  and  sufficient  condition 
that  sn  should,  as  n  increases  indefinitely,  tend  to  a  definite 
limit  is  that  the  limit  for  n  infinite  o/(sn+p—  sn)  should  be 
zero  for  every  value  of  the  integer  p  ;  or,  in  other  words, 
given  an  arbitrarily  small  positive  quantity  e  it  must  be 
possible  to  choose  n,  say  n  =  m,  such  that  when  n>m  the 
difference  (sn+p—  sn)  shall  be  numerically  less  than  e,  what- 

ever value  the  integer  p  may  have. 
We  do  not  propose  to  prove  these  theorems  ;  the  first  and  second 

have  been  given  as  exercises  (Exer.  VII.,  14,  15),  and  the  geometrical 
illustration  there  given  affords  some  justification  for  assuming  them. 
As  to  the  third  theorem  it  is  easy  to  see  that  the  condition  stated  is 
necessary.  For,  if  sn  has  a  definite  limit  s,  then  since 

sn+p  ~  sn  =  \sn+p  ~  8)  ~T  \s  ~  sn)i we  have 

L  (sn+P  -  sn}  =  L  (sn+p  -  a)  +  L  (*  -  sn)  =  0. 

To  illustrate  the  sufficiency  of  the  condition,  take  on  the  ̂ 7-axis  the 
points  J.l5  A  2,  A3,  ...,  which  have  «t,  s2,  s3,  ...  as  abscissae.  In  this 
case  An+l  may  be  either  to  the  right  or  to  the  left  of  An,  since  sn  does 
not  necessarily  either  always  increase  or  always  decrease  as  n  increases. 
But,  by  hypothesis,  if  n^=.m, 

that  is,   sm  —  €  <C 

If  P  and  Q  are  the  points  whose  abscissae  are  sm  —  e  and  sm  +  e,  then 
the  length  of  the  segment  PQ  is  2e,  and  every  one  of  the  points  An 
for  which  n  is  greater  than  m  lies  within  this  segment.  By  assigning 
to  e  smaller  and  smaller  values  we  get  shorter  and  shorter  segments 

P'Q',  P"Q",  ...,  each  lying  within  the  one  that  precedes  it.  The  ends 
P,  P',  P",  ...  move  to  the  right,  Q,  Qf,  Q",  ...  to  the  left  ;  by  Theorem  I. 
P,  P',  P",  ...  tend  to  a  definite  limit,  and  by  Theorem  II.  Q,  Q',  Q",  ... 
also  tend  to  a  definite  limit,  and  since  e  may  be  as  small  as  we  please, 
these  two  limits  coincide,  say  at  S.  The  points  An  therefore  tend  to 
S,  and  8,  the  abscissa  of  S,  is  the  limit  of  sn. 

Examples  16,  17  of  Set  VII.  illustrate  Theorem  I.     To  illustrate 
Theorem  III.  take 
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Here  tn+»—9n—±[  ---  ~  +  .,.  ±  -  ) ---  ~     .,.     -   > 
n  +  l     »+2  n+pr 

11  11/11 
and  —  -  --  _.+...  ± 

n-\-p 

since  each  bracket  is  positive  ;  if  p  is  an  even  number  the  last  bracket 
will  contain  but  one  term,  l/(n-\-p). 

A  ain    —       —          4-  - 
'  n+\     n  +  2  n+p~\n  +  l     ft+2 

and  the  expression  on  the  right  is  positive  ;  therefore  |  sn+p  —  stl  \  lies 
between  0  and  l/(n  +  l). 

Hence  the  limit  of  sn+p  —  sn  is  zero,  and  sn  tends  to  a  definite  limit  ; 
the  limit  will  be  found  later  to  be  log  2  (p.  395),  so  that 

It  is  clear  that  the  Theorems  L,  II.,  III.  hold  even  when 
the  variable  sn  is  a  continuous  function,  f(x)  say.  If  x  tends 
to  a  finite  limit  x^  we  may  put  xl  ±l/n  for  x  ;  when  n  tends 
to  infinity  x  tends  to  xv  If  x  tends  to  —  oo  we  may  put 
—  n  for  x. 

§  149.  Tests  of  Convergence.  The  difference  s  —  sn  between 
the  sum  sn  of  the  first  n  terms  and  the  value  s  of  the  series 

*Eu  is  called  the  remainder  after  n  terms  ;  if  we  denote  this remainder  by  rn  we  have 
=  8n  -{-  Tn. 

Clearly  rn  is  itself  an  infinite  series  un+\  +  un+z  +  •  • 
the  limit  of  rn  is  zero.  If  the  series  is  such  that  rn  is 
small  when  n  is  small  the  series  is  said  to  be  rapidly  or 
highly  convergent,  because  the  calculation  of  a  few  terms 
will  yield  a  good  approximation  to  the  value  s.  For 
purposes  of  calculation  rapidity  of  convergence  is  valuable ; 
but  a  series  may  yet  be  convergent  though  it  require  the 
calculation  of  a  million  terms  to  get  a  fair  approximation. 

Fundamental  Test.     Let  prn  denote  sn+p  —  sn)  that  is, 
i  ii 

^y     * '  *  fj  i  - 1  •  ty  i  — ^—          »4»  v  / 

then  prn  is  called  a  partial  remainder  after  n  terms.  By 
§  148,  Th.  III.,  the  necessary  and  sufficient  condition  that 
the  series  ILU  should  be  convergent  is  that  the  limit  of  prn 
should  be  zero  for  every  value  of  p. 
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If  p  =  l  then  prn  =  un+i,  and  therefore  a  necessary  condi- 
tion of  convergence  is  that  un+i  or,  what  amounts  to  the 

same  thing,  that  un  should  converge  to  zero;  but  as  we 
shall  see  (ex.  1)  this  condition  is  not  sufficient. 

This  test  is  not  easy  of  application ;  we  therefore  deduce 
one  or  two  special  tests  that  can  be  more  readily  used. 

Comparison  Test.  Let  ̂ 1  +  u2+...  be  a  series  of  positive 
terms ;  if  each  term  is  less  than  or  equal  to  the  correspond- 

ing term  of  a  series  of  positive  terms  a1  +  c&2~l~  ••  that  is 
convergent,  the  series  u^  +  u2  +  •  •  •  is  also  convergent,  but  if 
each  term  is  greater  than  or  equal  to  the  corresponding 
term  of  a  series  of  positive  terms  \  -f  62  4-  •  •  •  that  is 
divergent,  the  series  u^  -f-  u2  + . . .  is  also  divergent. 

n  .  n 

-Let  Sn  =  ̂jUr,       tn  = 1 

then  sn^=tn',     tn<t, 

since  all  the  terms  of  a^  +  a2  + . . .  are  positive.  Hence  sn, 
which  increases  as  n  increases,  is  always  less  than  t ;  there- 

fore (§148,  Th.  I.)  sn  tends  to  a  limit  s  that  is  less  than  or 
equal  to  t. 

The  proof  for  the  case  of  divergence  may  be  left  to  the 
reader. 

Note.  We  may  note  here  that  in  testing  a  series  we  are 
at  liberty,  when  it  is  convenient,  to  disregard  any  finite 
number  of  terms ;  the  rejection  of  such  terms  would  affect 
the  value  but  not  the  existence  of  the  limit.  Thus  we 
need  only  suppose  the  terms  of  u^  +  u2  + . . .  to  be  ultimately 
positive. 

Ex.  1.     The  series  1+^  +  3+  ...  is  called  the  harmonic  series  ;  show 

that  it  is  divergent  even  though  ~Lun  =  0. 
Beginning  with  the  third  term  take  in  succession  2  terms,  then 

4  or  22,  then  8  or  23,  and  so  on.  Now 

1     1     1     1     r  1  .      ill    1>4         1 
3444  (      2'       5678     8  '      2' 

and  so  on.     Thus,  the  sum  of  2m  terms  is  greater  than 
nl1-        •         terms; ( 

that  is,  greater  than  1  +  m/2.     We  can  therefore  ta-ke  n  so  large  that 
sn  shall  exceed  any  assigned  number  ;  that  is,  the  series  is  divergent. 
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Ex.  2.     The  series 

-+25  +  35  +  4s+  ••* 
is  convergent  if  <x>l,  divergent  if  <x<l. 

(i)  a>l.     Group  as  in  ex.  1,  beginning  with  the  second  term. 

_!_     j_      1       !_  I 

-     —     —     —     —  or 

and  so  on.     Hence  the  series  is  less  than 

which  is  a  G.P.  with  common  ratio  less  than  1  and  therefore  convergent. 
The  given  series  is  therefore  also  convergent. 

(ii)  a^Sl.  The  case  a  =  l  is  that  of  ex.  1.  When  a<l  the  terms 
are  greater  than  the  corresponding  terms  of  the  harmonic  series  ;  the 
series  is  therefore  in  this  case  divergent. 

The  Test  Ratio.  Let  te^  +  u2  +  .  .  .  be  a  series  of  positive 

terms,  and  let  the  limit  for  71  =  00  of  un+i/un  be  p',  the 
series  will  be  convergent  if  /o<l,  but  divergent  if  p>l. 
The  test  fails  to  discriminate  if  /o  =  l. 

(i)  p<1.  By  the  definition  of  a  limit  we  can  take  n  so 
large,  say  n  =  m,  that  when  n^m  the  ratio  un+l/un  shall 
differ  from  p  by  as  little  as  we  please  and  therefore  shall  be 
less  than  a  proper  fraction  r.  If  m  be  so  chosen  we  have 

um+l  <  umr  ;     um+2  <  um+lr  <  umr'2  ;     um+3  <  umr* 
and  so  on.     Hence,  after  the  term  um,  each  term  of   the 
series  is  less  than  the  corresponding  term  of  the  G.P. 

+-'     i 
 '  *     i ^m^   "T  ̂ -mT   T  •  •  •  • 

Since  T  is  less  than  1  the  G.P.  and  therefore  also  the  given 
series  is  convergent. 

(ii)  p>l.  In  the  same  way  the  series  may  be  proved 
divergent  when  p  >  1. 

COR.  The  remainder  rm  of  the  given  series  is  less  than 

umr  +  ̂ m^"  +  .  .  .  ,     that  is,     umr/(I  —  r). 
fy*u  /v»O 

Ex.  3.  1+^  +  -^-  +  '-^  +  ...  (^positive). 
' 

xn     xn~l     n—l .  rt  - 

t        \J  —  * 

.  -,   —  *J 
un       n     n  —  l        n 

Hence  the  series  is  convergent  if  .r<l,  divergent  if  #>1  ;  if  #= 
the  series  is  the  harmonic  series  and  therefore  divergent, 
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#2    x* Ex.  4.  l+#+^-j +—+...  (#  positive). 

=  -;     p  =  0. 

The  series  (the  exponential  series,  §  49)  is  therefore  convergent  for 
every  finite  (positive)  value  of  x.  It  will  be  seen  immediately  that 
we  may  suppose  x  to  be  either  positive  or  negative. 

§  150.  Absolute  Convergence.     Power  Series. 
THEOREM  I.  If  a  series  which  contains  both  positive  and 

negative  terms  is  convergent  when  all  the  negative  terms 
have  their  signs  changed,  it  is  convergent  as  it  stands. 

For  the  effect  of  restoring  the  negative  signs  is  to 
diminish  both  sn  and  prn  . 

DEFINITION  1.  A  series  is  said  to  be  absolutely  or  uncon- 
ditionally convergent  when  the  series  formed  from  it  by 

making  all  its  terms  positive  is  convergent ;  that  is, 
ul+uz+...  is  absolutely  convergent  when  u±  +  u2|-f ...  is 
convergent.  Any  other  convergent  series  is  said  to  be 
conditionally  convergent  (sometimes  semi-convergent). 

The   converse   of   Theorem    I.    is   not   true ;    the   series 
ui  +  U2  +  •  •  •  may  be  convergent,  and  the  series  1 1^  |  +  ̂ 2 1  +  •  •  • 
divergent  (see  ex.  1). 

COR.  A  series  is  absolutely  convergent  if  the  limit  of 
un+i/un  is  numerically  equal  to  a  proper  fraction. 

Absolutely  convergent  series  are  of  special  importance ;  no  rearrange- 
ment of  the  terms  affects  the  sum.  It  is  possible,  however,  so  to 

rearrange  the  terms  of  a  conditionally  convergent  series  that  the 
series  thus  arising  shall  be  convergent,  but  shall  converge  to  a  different 

value  or  even  shall  be  divergent.  Hence  the  words  "  conditional "  and 
"unconditional."  (See  Chrystal's  Algebra,  vol.  2,  chap.  26,  §  13). 

THEOREM  II.  If  uv  u2,  u3,  ...  are  all  positive,  and  each 
less  than  (or  equal  to)  that  which  precedes  it ;  if,  further, 
the  limit  of  un  is  zero,  the  series 

is  convergent. 
This  series  is  called  the  Alternating  Series. 
We  may  write  the  sum  of  an  even  number  of  terms  in  the 

two  forms 
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n  =  (MI  —  M2)  4-  (UB  —  W4)  4  ... 

The  first  form  shows  that  s2n  is  positive  and  increases 
with  n,  while  the  second  form  shows  that  s2n  is  less  than 
ult  because  each  difference  is  positive.  Hence  s%n  converges 
to  a  limit,  s  say. 

Again,  ̂ u+^^w+^n+i,  and  therefore,  since  L  u2n+i  is 
zero,  s2n+i  and  s2n  have  the  same  limit  ;  the  series  is  there- 

fore convergent. 
COR.      rn  is  less  than  un+i. 
Ex.  1.  i 

The  series  satisfies  all  the  conditions,  and  is  therefore  convergent,  as 
was   shown   previously  (§   148);    but   the   series 
divergent. 

s 

THEOREM  III.      If  the  series  Uj ...   is   absolutely 
convergent,   and   if  each   of  the   quantities   vv  v2,  ...  is 
numerically    less    than    a   finite    quantity    c,   the    series 

•••  is  absolutely  convergent. 
For,  the  terms  of 

corresponding  terms  of 

Hence 

-f  U2v2\  +  ...  are  less  than  the 

or 

+  U2v2  +...    is   convergent,   and   therefore 
u2i>2-|-  ...  is  absolutely  convergent. 

Ex.  2, 

The  series 

sn 
sn sn 

32 

1     22     32     42 
is  absolutely  convergent,  and  no  sine  is  greater  than  1  ;   thus  the 
series  is  absolutely  convergent  for  every  value  of  x. 

DEFINITION  2.     A  series  of  ascending  integral  powers  of 
a  variable,  x  say,  of  the  form 

where  the  coefficients  are  constants,  is  called  a  Power  Series 
in  x. 

It  is  with  Power  Series  we  chiefly  have  to  deal ;   the 
following  theorems  are  important. 
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THEOREM  IV.  If  the  limit  of  an+i/an  is  numerically 
equal  to  1/R,  the  Power  Series  (P)  converges  absolutely 
when  x  is  numerically  less  than  R,  but  diverges  when  x  is 
numerically  greater  than  R  ;  it  may  or  may  not  converge 
when  x  is  equal  to  R. 

For,  disregarding  the  first  term  e&0,  we  have  numerically 

Un+i  _  an+i     t      T  un+l__^j  <*"n+I__  &  . 
—  X  .        J-J  —  ix>_Lj  —  —  —j-:  j 

Un  an  11  n  @jn         •" 

and  the  result  follows  from  Theorem  I.,  Cor. 
The  following  is  a  more  general  theorem  : 

THEOREM  V.  If  when  x  =  R  none  of  the  terms  of  the 
series  (P)  exceeds  numerically  a  finite  quantity  c,  the  series 
(p)  will  be  absolutely  convergent  so  long  as  x  is  numerically 
less  than  R. 

For,  if  we  write  (P)  in  the  form 

we  see  that  the  terms  of  (P)  are  numerically  not  greater 
than  the  corresponding  terms  of  the  geometrical  progression 

and  therefore  the  series  is  absolutely  convergent  so  long  as 
x/R  is  numerically  less  than  unity. 

The  series  (P)  may  or  may  not  converge  when  x  =  R',  if 
it  does  converge  each  term  must,  when  x  =  R,  be  finite,  and 
therefore  it  will  converge  absolutely  when  x  is  less  than  R 
numerically. 

Interval  of  Convergence.  When  a  series  whose  terms 
are  functions  of  x  is  convergent  when  a<x<b,  we  may  say 
the  series  converges  within  the  interval  (a,  b).  When  the 
series  converges  for  a<x<b,  and  diverges  for  x < a  and 
x>  b,  we  may  speak  of  (a,  6)  as  the  interval  of  convergence. 

30         3s          3f 

Ex.3.     The  series          x—  ^  +  ̂ —  T  +  ... a       o       4 

converges    (conditionally)   when    x=\\     therefore   absolutely   when 
—  1  <  x  <  1.     It  diverges  when  x=  —  1  and  when  |  x  \  >  1. 

wu  /y*&  /vA 

Ex.  4.     The  series         •^~~92  +  o2~~T2+'" 

converges  absolutely  when    -  1  ̂=  x  =  1,  diverges  when  |  x  \  >  1. 
For  both  series  (  - 1,  1)  is  the  interval  of  convergence, 
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§  151.  Uniform  Convergence.  When  the  terms  of  a  series 
are  functions  of  a  variable  x  and  the  series  converges  within 
a  certain  interval  it  will  be  possible,  for  a  given  value  of  x 
within  the  interval,  to  choose  n  so  that  the  remainder  rn 
will  be  less  than  a  given  quantity.  For  different  values 
of  x,  however,  different  values  of  n  will  usually  be  required 
to  make  the  remainder  less  than  the  given  quantity. 
Hence  the 

DEFINITION.  A  series,  whose  terms  are  functions  of  a 
variable  x,  is  said  to  converge  uniformly  within  an  interval 
if  it  is  possible  to  choose  n,  say  n  =  m,  so  that  for  every 
value  of  n  equal  to  or  greater  than  m  and  for  every  value 
of  x  within  the  interval  the  remainder  rn  shall  be  less  than 
any  given  positive  quantity  e. 

We  will  indicate  the  variable  by  the  notation  un(x),  sn(x), 

THEOREM  I.  If  the  series  u1(x)+u2(x)+  ...  is  uniformly 
convergent  when  a^x^b,  and  if  each  term  is  a  continuous 
function  of  x  for  the  same  range,  the  sum  s(x)  is  also  a 
continuous  function  for  that  range. 

Let  x  and  xl  be  two  values  of  the  variable  within  the 
range  ;  we  have  to  show  that,  given  e,  it  is  possible  to  take 
xl  so  near  to  x  that  the  difference  s(xl)  —  s(x)  \  shall  be  less 
than  e.  With  the  usual  notation  we  have 

s(x1)  -  s(x)  =  Snfa)  -  sn(x)  +  rn(x^)  -  rn(x), 
and  therefore 

|  s(xl)  -  s(x)  |  <  Snfa)  -  sn(x)  |  +  1  rn(Xj)  \  +  1  rn(x)  \. 

First,  since  the  series  is  uniformly  convergent,  we  can 
choose  m  so  that  if  n^m  both  j  rn(a^)|  and  \rn(x)\  shall  be 
less  than  e/3.  Suppose  m  so  chosen. 

Next,  sm(x)  is  the  sum  of  a  finite  number  of  con- 
tinuous functions  and  therefore  we  can  take  x1  so  near  x 

that  |  8m(x^—8m(x)\  shall  be  less  than  e/3. 
Combining  the  two  results,  we  can  take  xl  so  near  x 

that  s(x1)  —  s(x)\  shall  be  less  than  three  times  e/3,  that 
is  less  than  e. 
G.C.  2  B 
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The  theorem  is  thus  established  when  x  is  within  the 

interval  ;  the  slight  modifications  required  when  x  —  a  or  b 
may  be  left  to  the  reader. 

THEOEEM  II.  A  Power  Series  a0+a1x  +  a2x2+  ...  repre- 
sents a  continuous  function  within  its  interval  of  con- 

vergence (  —  R,  R)  ;  the  function  may,  however,  become 
discontinuous  at  an  end  of  the  interval. 
We  will  show  that  if  —R<a^=x^b<R  the  series  is 

uniformly  convergent  ;  the  result  then  follows  from 
Theorem  I. 

Take  p  less  than  R  but  greater  than  b  or  |  a  ;  then  by 
§  150,  Theorem  V.,  the  series  is  absolutely  convergent  when 

;   \anxn  <  anpn 
and  therefore     |  rn(x)  \  <  \  anpn  +  1  an+ipn+l  |  +  .  .  . 

But,  the  series  aQ-i-a^  +  a^p2  ...  being  absolutely  con- 
vergent, we  can  choose  m  so  that  when  n^m  the  remainder 

|  anpn  +  an+ipn+l  I  +  •  •  •  shall  be  less  than  e,  and  therefore 
for  this  m  we  shall  have  rn(x)  \  less  than  e.  But  this  is 
the  condition  for  uniform  convergency. 

The  proof  requires  x  to  be  within  the  interval.  We  refer  to 

Chrystal's  Algebra,  vol.  2,  chap.  26,  §  20,  for  the  proof  of  the  theorem 
(Abel's  Theorem)  that  if  the  series  is  convergent  when  x—R  (or  —  R\ 
the  function  represented  by  the  series  is  continuous  up  to  and  including 
the  value  R  (or  -  R)  ;  in  other  words,  the  value  of  the  function  when 
x=R  is  the  same  as  that  of  the  series  when  x—R. 

The  method  by  which  the  uniform  convergency  of  the 
power  series  was  established  is  easily  extended  to  prove 

THEOREM  III.  If  the  terms  of  a  series  are  continuous 
functions  of  x  when  a^x^b,  and  if  they  are  numerically 
less  than  the  corresponding  terms  of  an  absolutely  con- 

vergent series,  whose  terms  do  not  contain  x,  the  series  will 
be  uniformly  convergent  for  the  same  range. 

The  student  must  not  mix  up  uniform  and  absolute  convergence  ; 
a  series  may  be  uniformly  and  yet  not  absolutely  convergent,  though 
such  series  are  rather  beyond  our  limits. 
The  theorems  contained  in  Examples  9,  10,  11  of  the  following 

Exercises  should  be  specially  noted. 
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EXERCISES    XXXIII. 

1.  Show  that  the  following  series  are  convergent  : 

(i)  l+2-2  +  3~3  +  4-4+...  ;     (ii) 

(iii)  l/(a  +  l)«+l/(a  +  2)a  +  l/( 
2.  Show  that  the  following  series  are  divergent  : 

(i)  J+l+H--;    (ii)  l+*+J+-J    (iii) 

(iv)  2  (72,  +  1  )/(n*  +  1)  ;    (  v)  2  (an  +  6)/(cw2  +  d)  [a  4=0]. 

o     Tf  111 
3-  p  +  22  +  32+  —  =c» 

prove          (i)  _+_+_  +  .  ..=4c;   (ii)  _+_+_+.  ..=|c. 

The  value  of  c  is  7r2/6  (Exercises  XXXIV.,  22). 
4.    Show  that  the  series  (the  Binomial  Series) 

.  ,    0    0 
L  .  Zi  i  .  25  .  O 

is  absolutely  convergent   for   every  value   of  m   when   |#|<1,  but 
divergent  when  |  x  \  >  1. 

\ 

/ 
V   * 

5.    Show  that  if  f(ri)  is  a  rational  integral  function  of  n,  the  series 
#M  is  absolutely  convergent  when  |#|<1,  but  divergent  when 

...,  the  degree  of  /(n)  being  r  ;  then 

. 
-...  Un 

6.  If  the  series  2a,  26  are  absolutely  convergent,  show  that  the  series 

(i)  a0+a1cos^  +  a2cos2^  +  a3cos 

(ii)          61  sin  x+ 62  sin  2^7  +  63 sin 

are  absolutely  convergent  for  every  value  of  x,  and  represent  continuous 
functions.  It  follows  that  if  (i)  [or  (ii)]  represents  a  discontinuous 
function,  2a  (or  26)  cannot  be  absolutely  convergent. 

7.  Show  that  if  x     0,  the  series 

e~*cos  (x  -  04)  +  e-^cos  (2#  -  a2)  +  e~3*cos  ($x  -  a3)  + . . . 
represents  a  continuous  function. 

8.  Show  that  if  #^0,  and  if  2a  is  absolutely  convergent,  the  series 

c&j^cos  (x  —  04)  +  a2e-2*cos  (2^7  -  ct2)  +  «3e~3a:cos  (3^7  -  a3)  + . . . 
represents  a  continuous  function. 
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9.  If  the  power  series  a0+  a^  +  a%x2  +  ...  is  zero  for  every  value  of 
x  in  the  interval  (  —  /£,  R),  show  that  every  coefficient  is  zero. 

When  #  =  0,  the  series  reduces  to  the  term  a0  ;  therefore  «0  =  0.    We 
now  have 

0=  %#+  a^r2  +  ...=x(al  +  «2#  +  .  ..)=xfl(x)  say. 
Hence,  either  x=Q  or  /1(^)  =  0.  Suppose  #=|=0  ;  therefore  fl(x)=0. 
But  /i(«)  is  a  continuous  function,  and  therefore  the  limit  offfac)  for 
#=0  is  equal  to  the  value  of  f^x)  for  #=0.  Hence  ̂   =  0.  Similarly 
«2=0,  «3=0,  and  so  on. 

10.  Theorem  of  Identical  Equality.     If  the  two  power  series 
a()  +  a1x+a2x!2  +  ...,  b0  +  b1x  +  b2x2  +  ...  are  equal  for  every  value  of  # 
in  the  interval  (-R,  R\  show  that  a0  =  &0»  #i  =  &ii  — 

For  we  have      0  =  («0  -  60)  +  (a^  -b^)x-\-  (a2  -  62)#2  +  .  .  .  , 
and  the  results  follow  from  ex.  9. 

11.  Multiplication  of  Series.    Suppose  the  two  series 

to  contain  only  positive  terms,  and  to  be  convergent  when  x^R  ;  let 

wn  = 

where  the  terms  of  wn  are  formed  by  multiplying  sn  and  ̂ ,,  no  term  of 
degree  higher  than  n  —  1  being  placed  in  wn.     Show  that  the  limit  of 
wn  is  s£,  the  product  of  the  two  given  series. 

A  little  consideration  shows  that 

The  inequalities  show  that  w2n  or,  what  amounts  to  the  same  thing, 
that  wn  converges  to  st. 

Next,  let  s  and  t  contain  both  positive  and  negative  terms,  and  let 

them  be  absolutely  convergent  when  x\^R.  Let  o-'2w  be  the  value  of 
<T<2n  when  all  the  terms  are  made  positive  ;  then  by  the  first  part, 

which  holds  when  all  the  terms  are  made  positive,  the  limit  of  a-'2n  is 
zero.  But  <r2n  is  not  greater  than  <r'2w,  and  therefore  the  limit  of  o-2w 
is  zero.  Hence  the  limit  of  w2n  is  s£.  The  rule  may  fail  if  the  series 
are  only  conditionally  convergent. 

12.    Determine  a0,  alt  az,  ...  so  that 
cos  6+x 

Assuming  convergency,  multiply  up  by  l+2.rcos  0+x*,  and  equate coefficients.     We  have 

cos    +.r=  «()  +  «!  +  «0  cos 

Hence       cos#=a0;     l=«1  +  2«0cos  0  ;    0=a2  +  2a1cos 
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Solving  these  equations  we  find 

a0=cos0,   a1=-cos20,   a2  =  cos30,    ...,   an  =  (-l)M  cos  (ft+  1)  0, 
and  the  series  becomes 

cos  0  -  x  cos  20  +  x?  cos  30  -  afl  cos  40  +  .  .  .  . 

The  series  is  convergent  when   x  <1,  and  therefore  the  assumption 
that  there  was  a  convergent  power  series  is  justified. 

13.   Deduce  from  ex.  12,  or  prove  independently,  that  when 
1""* 

i  .  0         n  ,    2  =  1-  2#  cos  0+  2#2  cos  20  -  2^  cos  30+  .... l  +  2#  cos  6  +  x1 

14.    Show  that  if  0  is  neither  zero  nor  a  multiple  of  2;r,  the  series 

cos  0  +  £  cos  20  +  £  cos  30+... 
is  convergent. 

Multiply  sn  by  2  sin  ̂ 0,  ex-press  the  product  of  cosine  and  sine  as  a 
difference  of  sines,  and  rearrange  ;  we  thus  find 

.    30  ,    1     .    50  ,  1  -, 
=   -  am  $0+$sm-g-  +  g-g  smy  +  ...+  sm-—  0 

and  therefore 
rt      •    i/)          •    i/i  ,  1    •    2ft  +  l,j 
2sn  sin  f  0  =  -  sin  £0  +  -  sin  — - — 0 ^^  ^ 

1        30. fl  .30 

-{58m-5- (.2  2 
sin 

But  the  expression  in  the  bracket  has  a  definite  limit  for  ft  =  00, 

since    the    infinite    series   s  +  o~o  +  o~7~l~--<   ̂ s    convergent.      Hence, 2i      2i .  o      o.l 

2sw  sin^0  has  a  definite  limit,  and  therefore  also  sn  unless  sin  ̂ 0  is  zero. 

15.    Show,  with  similar  restrictions  to  those  in  ex.  14,  that  the  series 
whose  ftth  terms  are 

-smnB.  (-n^-cosft^  (-I)w-1-sinft0 ft  ft  ft 

are  convergent. 



CHAPTER  XVIII. 

TAYLOR'S  THEOREM. 

§  152.  Taylor's  Theorem.    In  §  72  we  obtained  the  equation 

/(*)  =/(o)  +  (x  -  a)f(a)  +  i  (B  -  a)2/"(^), 
and  although  all  we  know  of  xl  is  that  it  lies  between  a 
and  x,  yet  when  x  —  a  is  small,  the  function  f(x)  will  be 
approximately  represented  by  the  quadratic  function 

f(a)  +  (aj  _  a)/(a)  +  L(X  _  a)2/"(a), 
whose  coefficients  depend  only  on  the  values  of  /(a?),  /'(#)> 
/"(#)  when  x  =  a.  We  will  now  discuss  the  general  theorem 
of  which  this  is  a  particular  case  ;  we  will  first  obtain  a 
closed  expression  involving  an  undetermined  number  like  xlt 
and  then,  instead  of  a  quadratic  function,  we  shall  get  a 
Power  Series.  We  will  slightly  modify  the  method  used  in 

§  72  so  as  to  require  only  one  application  of  Rolle's  Theorem. 
Let  f(x)  and  its  first  n  derivatives  be  continuous  from 

x  =  a  to  x  =  b,  and  consider  the  quantity  Q  defined  by  the 
equation 

(1) 

By  Rolle's  Theorem  we  can  find  another  expression  for 
Q  which,  when  substituted  in  (1),  gives  the  general  theorem 
sought. 

Let  F(x)  be  a  function  of  x  defined  by  the  equation 

F(x)  =/(&)  -f(x)  -(b-  x)f(x)  - 
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By  equation  (1)  F(a)  =  0;  also  F(b)  =  0  identically. 
Further  F(x)  and  F'(x)  are  continuous  from  x  =  a  to  x  =  b, 
since  f(x)  and  its  first  n  derivatives  are  so,  by  hypothesis. 

Hence  F'(x)  is  zero  for  a  value  of  x,  say  xv  between  a  and 
b.  But  if  we  differentiate  (2)  and  reduce,  we  find 

(n-l)  ! 

and  therefore,  since  (b  —  x^  is  not  zero, 

(4) 

where  0<0<1,  because  any  number  between  a  and  6  may 
be  represented  by  a  +0(6  —  a). 

Substitute  in  (1)  the  value  of  Q  given  by  (4),  and  trans- 

pose the  terms  f(a),  (b  —  a)f'(a)...  to  the  other  side  of  the 
equation  ;  we  then  get 

We  may  now  write  x  instead  of  6,  the  only  reason  for 
using  the  symbol  b  instead  of  x  in  (1)  being  to  prevent 
confusion  when  applying  the  Mean  Value  Theorem;  thus, 
finally, 

/(as)  =/(«)  +  (x  -  a)f(a)  +  MX  -  off  "(a)  +  ... 
-«)}  .....  (6) 

The  theorem  expressed  by  equation  (6)  is  called  Taylor's 
Theorem.  The  particular  case  of  it  for  which  a  =  0,  namely, 

is  called  Maclaurin's  Theorem. 

The  conditions  under  which  Taylor's  Theorem  has  been 
proved  are  that  f(x)  and  its  first  n  derivatives  are  con- 

tinuous (and  therefore  finite)  over  the  range  from  x  =  a  to 
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the  particular  value  of  x  for  which  f(x)  is  taken.  In  regard 
to  the  number  0,  all  that  can  be  said  is  that  it  is  a  positive 
proper  fraction;  it  will  usually  be  different  for  different 
values  of  n  and  of  x. 

Eemainder  in  Taylor's  Theorem.  In  equation  (6)  denote  the 
sum  of  the  first  n  terms  by  Sn(x)  and  the  last  term  by 
Rn(x),  so  that 

If  we  suppose  n  to  increase  indefinitely  the  sum  on  the 
right  of  (6)  becomes  an  infinite  series,  and  if  the  limit  of 
Rn(x)  is  zero  the  series  is  convergent.  Since  f(x)  and  its 
first  n  derivatives  are  by  hypothesis  continuous,  every 
derivative  must  remain  continuous  in  order  that  it  may  be 
possible  to  suppose  n  to  become  infinite.  We  therefore 
have  the 
THEOREM.  If  f  (x)  and  all  its  derivatives  are  continuous 

for  the  range  considered  and  if  the  limit  of  Rn(x)  is  zero, 
the  infinite  series 

(9) 

derived  from  (6)  by  maldng  n  infinite,  is  convergent  and 
represents  the  function  f  (x),  that  is}  converges  to  the  value 

The  series  (9)  is  called  Taylor's  Series  for  f(x) ;  when  it 
is  necessary  to  draw  a  distinction  between  (6)  and  (9)  the 

former  may  be  called  Taylor's  Formula.  Of  course  all  that 
has  been  said  about  Taylor's  series  applies  to  the  particular 
case  of  it,  Maclaurin's  series 2 

  (10) 

The  value  of  Rn(x)  given  by  (8)  is  called  Lagranges 

form  of  the  remainder  in  Taylor's  series.  Another  useful 
form  of  the  remainder  is  obtained  by  writing  (b  —  a)Q 

*  Cases  may  be  constructed  in  wtiich  the  series  (9)  is  convergent  and 
yet  does  not  converge  to  the  value  f(x) ;  such  cases,  however,  may  be 
safely  assumed  not  to  occur  in  ordinary  work. 
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instead   of   (b  —  a)nQ  in  equation  (1).      The   last  term  of 
equation  (3)  becomes  simply  Q  and  (b  —  a)Q  becomes 

-,M/  ,,^, 
-f(\xi)  or  —  i\,       -/(n)(a+  0(6  -  a)  } 

(71—1)!  (71—1)! 
Hence 

--n~l-a,)}  .......  (11) 

This  form  is  called  Cauchy's  form  of  the  remainder. 
If  we  put  (6-a)pQ  instead  of  (b-a)nQ  in  (1)  we  get 

-«)},  ......  (12) 

called  the  Schlomilch-  Roche  form  of  the  remainder  ;  p  =  n 

gives  Lagrange's  form  and  p  —  1  gives  Cauchy's. 
In  (5)  put  x  for  a  and  cc-f^-  for  6  ;  we  get 

f(x  +  h)=/(x)+hf(x)  +  fj"(x)+  ...  +^fW(x  +  eh),  ...(13) ^.i  i  76  i 

a  value  of  f(x  +  h)  that  is  often  useful. 
We  will  now  apply  these  theorems  to  the  expansion  of 

functions,  and  will  usually  employ  Maclaurin's  Theorem  ; the  two  forms  of  remainder  to  be  used  are 

the  first  being  Lagrange's  and  the  second  Cauchy's. 
§  153.  Examples. 
1.  sinx. 

f(x)  —  sin  x  ;   f(x)  =  cos  x  ;   /"  (x)  =  -  sin  x  ;   /"'  (#)  =  -  cos  x  ; 

Hence 

=  -1;   /iv>(0)  =  0; 

— 

Since  sin  (nir/2)  is  0  or  ±1  according  as  n  is  even  or  odd,  the  coefficients 
of  the  even  powers  of  x  will  be  zefo,  and  only  odd  powers  of  x  will 
occur,  the  terms  being  alternately  positive  and  negative.  Thus 

a?     x5     x1  xn 
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Again, 

and  therefore  is  not  greater  numerically  than  afjn  !,  which  has  zero  for 
limit.     We  thus  get  the  series 

a?     x£     x1 
sm^=^--  +  ̂ --  +  ..., 

which  is  absolutely  convergent  for  every  finite  value  of  x. 
2.  cosx. 

In  the  same  way      eos^  =  l  -  —  +  —  -  —  +  ..., 

the  series  being  absolutely  convergent  for  every  finite  value  of  x. 

3.  ex. 
/(#)  =  <?*;   /»)(#)  =  «*;   /(0)  =  1  ;   /M>(0)  =  1    for  every  n. sv*a  '7" 

e*=\+x  +  —  +  —l  +  ..., 

the  series  being  absolutely  convergent  for  every  finite  value  of  x. 

Hence 

/i       \m     i  ^m(m~^}^^        ,  m(ra-l)...(m- 
(1+  x)m  =  I  +  mx  +  V  +  .  .  .  +  —  ̂  -  -      ̂ ^ 

If  m  is  a  positive  integer  the  series  stops  with  the  (m  +  l)th  term, 
since  /<n>(^)  =  0  when  n>m  ;  if  m  is  not  a  positive  integer  we  have  to 
consider  Rn(x).  We  take  Cauchy's  form, 

The  infinite  series 
.  m(m-l)   9 

l+mx-\  —  ̂   —  5—  '4r-f... 1  •  j! 

converges  absolutely  if    ̂ |  <  1  and  diverges  if  |#|>1  (Exer.  xxxiii., 
4)  ;  we  therefore  need  only  consider  values  of  x  such  that  |#|^1. 

(A)    x\<\.      Rn(&)  niay  be  written  as  the  product  of  the  three 

, 

(n-l)l 
The  first  factor  is  finite  for  every  n  since  (1  +  0x)m~l  lies  between  1 

and  (l+^)m~1.  The  second  factor  cannot  exceed  unity.  The  third 
factor  has  zero  for  limit,  since  it  is  the  nth  term  of  the  convergent series 
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Hence  the  limit  of  Rn(%)  is  zero,  and  the  infinite  series  converges  to 
(1  +x)m  for  every  value  of  m  so  long  as  -  1<#<1. 

(B)  #=±1.  These  cases  are  of  less  importance,  and  the  investiga- 
tion of  Rn(x)  is  tedious.  We  will  therefore  merely  state  the  results, 

referring  for  proof  to  Chrystal's  Alg.,  vol.  2,  chap.  26,  §  6. 
#=+1  ;  series  absolutely  convergent  if  ra>0,  but  conditionally  if 

0>m>  -  1  ;  oscillating  if  m=  -  1  ;  divergent  if  m<  -  1. 

x=  —  1  ;  series  absolutely  convergent  if  m>0  ;  divergent  if  w<0. 
If  a=\=b  the  binomial  (a  +  b)m  may  be  written  am(l  +  b/a)m  or 

bm(l  +  a/b)m  and  then  x  put  for  b/a  or  for  a/b  according  as  b  is  less  or 
greater  than  a  numerically. 

5.  log(l+x).  ^-^^ 
It  is  not  possible  to  expand  log  x  by  Maclaurin's  Theorem  since 

log  x  is  infinite  when  x  =  0.  We  may  expand  log  x  in  powers  of  (x  —  a\ 
if  a  is  positive,  using  Taylor's  Theorem,  but  it  is  simpler  to  take 

=  0; 

The  infinite  series  diverges  if  |#|>1  and  if  x=  -1  ;  we  therefore 

consider  the  remainder  for  —1  <x~i^\. 
For  x  positive,  Lagrange's  form  x.j       n  f  ̂ * 

shows  that  the  limit  is  zero,  since  {#/(!  +  Qx)}n  is  never  greater  than 
unity  and  the  limit  of  1  jn  is  zero.  .>->     r> 

For  ̂ 7  negative,  Cauchy's  form  -^  (/) 

shows  that  when  |  x  \  <  1  the  limit  is  zero  ;  for  the  limit  of  xn  is  zero 
and  the  other  factors  are  finite  for  every  value  of  n. 

y&  y&  y& 

Hence  log(I+x)=x-  —  +  —  --r-+... 

where    -K^^l  ;  the  series  is  conditionally  convergent  when  #=1. 
We  may  note  that,  putting  #=1,  we  get 

O         Q         A 

6.  Calculation  of  Logarithms. 
The  series  just  found  is  too  slowly  convergent  for  purposes  of 

calculation ;  a  more  rapidly  convergent  series  is  got  as  follows. 
We  have  a*  a?  at  /n  x _  -y.  _          _J   1-  (1) 

B«*  .-,     T^     n  A         t     «*•>       \       / 
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and  by  writing  —  x  in  place  of  x 

By  subtraction  we  find,  since  log  (!+#)-  log  (1  -#)  =  log  {(1 

Suppose  x  positive  and  let 

(l+#)/(l-#)=(y  +  !)/#;   so  that  #= 
Equation  (3)  becomes. 

from  which  log(y  +  l)  is  found  when  logy  is  known.      It  may  be 
noticed  that  (4)  is  not  a  power  series  in  y. 

With   very   little   labour   the   logarithms   of   the   prime    numbers 
2,  3,  5,  7,...,  may  be  found;    thus 

Then  log  4  =  2  log  2  ;  log  5  is  obtained  by  putting  4  for  y  ; 
log  6  =  log  2  +  log  3  ;  and  so  on.  Series  (4)  converges  rapidly  even 
when  y  —  2. 
For  particular  numbers  special  artifices  may  be  used.  Thus,  if 

y  =  49  equation  (4)  would  give  log  7  when  log  2  and  log  5  are  known, 
the  series  being  very  rapidly  convergent. 

The  student  is  referred  to  Chrystal's  Algebra,  vol.  2,  chap.  28,  §  11, for  further  information  and  references. 

7.  Huyghens'  Rule  for  the  Length  of  a  Circular  Arc. 
If  a  is  the  chord  of  the  whole  arc  and  b  the  chord  of  half  the  arc, 

then  the  length  (1)  of  the  arc  is,  approximately,  (8b  -  a)/3. 
Let  the  arc  subtend  at  the  centre  of  the  circle  an  angle  of  B  radians, 

and  let  the  radius  of  the  circle  be  r  ;  then  l  =  rO  and 

Multiply  (ii)  by  8  and  then  subtract  (i)  ;   we  thus  eliminate  6s. Therefore 

Hence,  neglecting  the  fourth  and  higher  powers  of  0,  we  find 

l=(8b  —  a)/3.  It  may  be  shown  that  for  an  angle  of  30°  the  relative 
error  is  less  than  1  in  100,000,  for  an  angle  of  45°  less  than  1  in  20,000, 
and  for  an  angle  of  60°  less  than  1  in  6000. 
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§  154.  Calculation  of  the  nth  Derivative.  The  practical 
difficulty  in  finding  a  power  series  by  Maclaurin's  Theorem 
lies  in  the  calculation  of  f(n\x)  ;  indeed,  there  are  few  cases 
besides  those  already  treated  in  which  the  nth  derivative 
can  be  expressed  in  a  manageable  form.  The  discussion  of 

the  remainder,  Rn(x)>  is  impossible  unless  we  know  f^n\oc)  ; 
in  special  cases,  however,  we  can  find  f^n\0),  and  the 
infinite  series,  if  it  converges,  will  (in  general)  represent 
f(x)  within  its  range  of  convergence. 

In  this  connection  Leibniz's  Theorem  (§  68)  will  be  found 
very  serviceable. 

As  an  example  consider  /(#)  =  sin  (a  sin  ~1x).  It  would 
be  difficult  to  calculate  f^n\x)  directly  ;  we  will,  therefore, 
first  calculate  f(x)  and  f"(x),  and  will  then  form  a  differ- 

ential equation  to  which  Leibniz's  Theorem  may  be  applied 
and  which  will  lead  to  the  value  of  /(n)(0). 

f(x)  —  sin  (a  sin"1^)  ; 
)  =  acos(asin~lx)U(l—3?)  .........................................  (i) 3 

)  =  -  a2sin  (a  sin"1^)^!  -  a?)  +  a  cos  (a  sin"1^)  .xj(l-  #2)¥, 
=  -a*f(x)l(l-x*)  +  xf(x)l(\-x*)  .............................  (ii) and  therefore 

(\-x*)f"(x)-xf(x)  +  a?f(x)  =  Q  ................................  (iii) 
By  making  x  zero  in  f(x\  f(x\  f'(x\  we  find 

The  function  on  the  left  of  (iii)  is  always  zero  and  therefore  its 

nih  derivative  is  always  zero.  The  function,  being  a  sum  of  pro- 
ducts, may  be  differentiated  n  times  by  applying  Leibniz's  Theorem 

to  each  of  its  terms  and  then  adding  the  results.  For  the  first  term 

let  f"(x)  =  u,  (I—  x?)=v.  Every  derivative  of  v  above  the  second  is 
zero;  the  nth  derivative  of  f(x)  is  /(n+2)(#),  the  (?i-l)th  is  f(n+l)(x), 
and  so  on.  Thus, 

Dn{(\-  x*)f(x)  }  =  (1 

=(1  - In  the  same  way 

Dn{  xf(x)  }  =  a?/»+1>(o?)  + Also, 

Adding  we  find,  after  a  slight  reduction, 

(1  -  #2)/<«+2>(#)  -  (27i  +  l)xf^+l\x)  -  (n*  -  a?\f(n\x)  =  0  .........  (iv) 
and  therefore  when  .r  =  0 

(v) 
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From  (v)  we  find  in  succession  all  the  derivatives  above  the  second 
for  #  =  0,  since  we  know  the  first  two. 

/(6)(0)=(42-a2)/<4(0)=0, 
and  so  on  ;  thus  every  even  derivative  is  zero.     Again, 

/(5)(0)  =  (32  -  a2)/3>(0)  =  (32  -  a2)  (I2  -  a>, 
and  so  on,  the  general  value  being 

/(2*-J)(0)  =  a(l2-a2)(32-a2)  ...  {(2?i-3)2-a2}. Hence, 

.    ,     .     1X  a(!2-a2)   ,  ,  a(l2-«2)(32-a2) 
sm(asm~lx)=ax  +  -—^-.  —  -a?-\  ---  ey  —     - o  .  o  . 

The  series  (vi)  will  terminate  if  a  is  an  odd  integer  ;  in  all  other 
cases  it  will  not  terminate.  The  ratio  of  the  term  in  x*n+l  to  the  term 
before  it  is 

(2rc  -  1)2  -«2   o 2n(2n  +  I) 

and  since  the  limit  of  this  ratio  is  a?  the  series  (vi)  is  absolutely 
convergent  so  long  as  -  1<#<1. 

For  many  purposes  only  a  few  terms  of  the  development 
of  a  function  are  required,  and  the  calculation  of  a  small 
number  of  derivatives  may  always  be  effected  with  more 
or  less  labour.  Thus,  the  first  three  or  four  derivatives  of 
log  (1+  sin  a?)  are  easily  calculated  and  the  first  three  terms 
of  the  expansion  obtained,  x  —  #2/2  +  #3/6. 

It  is  usually  simpler,  however,  in  cases  like  this  to  proceed  as 
follows  :  suppose 

y  =  alx+a^c2+  ...  ;    f(y)  =  60  +  %  +  btff  +  ...  . 

Substitute  for  y  in  the  series  bQ  +  bly  +  b2iy'i+  ...  its  value  in  terms  of  x and  rearrange  in  powers  of  x  ;  the  series  obtained  will  be  convergent 
for  sufficiently  small  values  of  x. 

For  example, 

and  therefore 
2     If       a? 

s 

6*       -• 
The  proof  of  the  method  cannot  be  gone  into  here. 
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§  155.  Differentiation  and  Integration  of  Series.  The  pro- 
perties of  a  function  are  often  most  simply  investigated  by 

using  an  infinite  series  which  represents  the  function;  we 
must,  therefore,  see  under  what  conditions  a  series  may  be 
differentiated  or  integrated  term  by  term.  The  rules  for 
differentiating  and  integrating  a  sum  have  been  proved 
with  the  express  limitation  that  the  number  of  terms  is 
finite  ;  their  extension  to  infinite  series  requires  justification. 

We  begin  with  the  theorem  in  integration  ;  e  denotes  as 
usual  a  given  arbitrarily  small  positive  quantity. 
THEOREM  I.  If  the  series  u1(x)  +  u2(x)+  .  ..  is  uniformly 

convergent  from,  x  =  a  to  x  =  b  and  converges  to  f  (x),  then 
the  series          t«  fr 

u1(x)dx+\ 
Jc  Jc 

where  a^c<x^b  is  also  convergent  and  converges  to  the 
value  f* 

f(x)  dx. 

Jc 

Let  f(x)  =  sn(x)  +  rn(x)  and  let 

Jx
  

fx 
sn(x)  dx  ;      pn(x)  =  I  rn(x)  dx  ; 

Jx  C
x  Cx 

u^x)  dx  -f  I  u2(x)  dx  +  .  .  .  +  I  un(x)  dx, 

J
x
 

f(
x)
  

dx
  

= 
 

cr
n(
x)
  

+ 
 

pn
(x
).
 

c 

Now,  since  the  series  is  uniformly  convergent,  we  can 
choose  m  so  that,  if  n^m,  the  remainder  rn(x)  will,  for 
every  value  of  x  from  x  =  a  to  x  =  b,  be  less  than  e;  there- 

fore, m  being  so  chosen,  if  n^m  the  quantity  pn(x)  is 
numerically  less  than 

J
x
 

ed
x,
  
  

th
at
  

is
, 
  
 

e(
x 
 

— 
 

c)
. 

c 

Hence,  if  n^m.  the  difference 

c 

is  numerically  less  than  e(x  —  c);    that   is,  the   limit   for 
n  =  oo  of  the  difference  is  zero,  and  therefore 

Jx 
 Cx  Cx 

f(x)  dx  =  L  <Tn(x>)  =  \  UI(M)  dx  +  1  u2(x)  dx+  .... C  M  =  00  J  C  J  C 
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THEOREM  II.  If  the  series  u-^x)  +  u2(x)  +  .  .  .  is  convergent 
and  converges  to  f(x)  when  a^x^b,  then  the  derivative 
of  f(x)  is  obtained  by  differentiating  the  series  term  by 
term,  that  is  f(x}  =  ̂ (x)  +  u,(x)  +  ̂ 

provided  ike  series  u/(x)  +  u2'(x)  +  ...is  uniformly  convergent 
from  x  =  a  to  x  =  b. 
Let  F(x)  —  ̂ (x)  +  u%(x)  +  .  .  .  ; 

then  by  Theorem  I.,  since  ul/(x)+u2/(x)-\-  ...  is  uniformly 
convergent, 
x  fx  fx 

F(x)  dx  =  I  Ui(x)  dx  +  I  u2'(x)  d c  Jc  Jc 

x-}-  .  .  .  , 

=f(x)  —  constant. Therefore 

<j-%F(x)dx=f(x);  that  is,   F(x)=f(x). 
By  §  151  Theorem  II.  we  see  that  a  power  series  may 

be  integrated  term  by  term  if  x  is  within  the  interval  of 
convergence. 
We  will  now  show  that  the  series  obtained  by  differ- 

entiating the  power  series  is  uniformly  convergent  when  x 
is  within  the  interval  of  convergence,  and  that  the  derivative 
of  the  series  is  therefore  got  by  differentiating  it  term  by 

term.  For,  in  the  notation  of  §  151,  the  series  ̂ anpn  is 
absolutely  convergent,  and  therefore  anpn\  is  finite,  less 
than  c  say,  for  every  n. 

The  series  obtained  by  differentiation  is 

a1  +  2a2cc  +  3a3cc2+  ...  +nanxn-l+  ____ 
Numerical  values  alone  being  considered,  we  have 

,/x\n-1        c/x\n~l nanxn-l  =  nanpn-1(~)      <n~(-        , \p/  p\p/ 
and  therefore  the  terms  of  the  series  of  derivatives  are 

numerically  less  than  the  corresponding  terms  of  the  series 
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But  this  series  is  absolutely  convergent  since  the  test  ratio 
is  x/p  and  x/p  is  numerically  less  than  unity.  Hence,  the 
series  of  derivatives  is  uniformly  convergent  when  x  is 
within  the  interval  of  convergence  of  the  power  series 

^anxn.  (§  151,  Th.  II) 

Ex.  log(l+^)=^-- 
By  differentiation  we  find 

This  equation  is  true  if  —  !<#<  1,  but  not  if  #=1. 

§  156.  Examples.  We  will  give  two  examples  of  the 
development  of  a  function  as  a  power  series  by  the  integra- 

tion of  a  known  series. 

1.    tan^x. 
If  -  1<  x  <  1,  we  have 

^L-  =  l-x*+^-x?+..,  +  (-\)nx*n+...,  ...  .............  (1) 

and  therefore,  integrating  from  0  to  x, 

The  expansion  (A)  is  proved  for  -|  #)<!..  The  series  (1)  oscillates 
when  x=  ±  1,  but  (A)  is  convergent  for  #=±1  ;  we  may  therefore 
apply  Abel's  theorem  (p.  386),  and  deduce  that  (A)  remains  true  even 
when  x=  ±1. 

If  x—  1  we  find,  since  tan"1  1  =7r/4, 

The  series  (AX)  is  called  Gregory's  (sometimes  Leibniz's)  series  for  TT  ; 
it  is  too  slowly  convergent,  however,  to  be  suitable  for  calculation. 

A  better  series  is  got  by  using  Machines  formula,  namely " 
TT 

It  will  be  a  good  exercise  to  calculate  TT  from  this  formula  by  using 

the  expansion  (A);  the  series  for  tan~1(l/5)  and  tan~1(l/^®)  converge 
rapidly  and  give  TT  to  5  or  6  decimals  with  little  labour. 

2.    sin~1x. 
If    -  \<x<  1,  we  get  by  the  binomial  expansion 

£_i  .  1ra  .  1- *-*   i- 

and  therefore,  integrating  from  0  to  x, 

\x*     1.3^,1.3.5^, 
Sin     X  —  X  +  —  —  +  ̂ —  ]  V"  +  ~£T~~A     IR    <j  "••••• 2o      2.45      2.4.o7 

G.C.  2c 
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The  following  example  shows  how  we  may  obtain  an 
approximate  value  of  an  integral  by  means  of  a  series  : 

3.  The  time  of  a  complete  oscillation  of  a  simple  pendulum  of 
length  I,  oscillating  through  an  angle  a  on  each  side  of  the  vertical 
is  4Kl  where 

-  f 

'Jo 

cty  .      .   1 —        If  =r  cnn —  n  • 
7  *>       *        O      I\S       '*/  ̂ ^  OAAX  -.  IA     • 

o  v/u-^2sm20)'  2 
to  find  a  series  for  K. 

Expand  (1  -&2sin2<£)~*  by  the  binomial  theorem,  and  then  integrate 
term  by  term.     We  have 

The  integrals  of*sin2<£,  sin4<£,  ...  are  given  on  page  285  ;  therefore 

When  a  is  so  small  that  &2,  &4,  ...  may  be  neglected,  K=TTJ^  and  the 
period  is 

I  """  C*OQ  VY*  fl  If* 

4.  To  evaluate  I   -  —  —  -        •  -  ^  (r  a  positive  integer) 

If  |  a  |  <  1  we  have  by  ex.  13  Exer.  XXXIII. 

+  2a  cos  #  +2a2  cos  2^  +  2a3  cos  3#  +...}• 

I 
Jo 

Also  coanxcosrxdx=0  if 

7T    ./. =—  if  n=r. 
a 

Therefore,  when  the  series  is  multiplied  by  cosr#  and  integrated, 

every  term  will  vanish  except  that  arising  from  2arcosr^cosr^  ;  we 
thus  get 

[*      cos  rxdx  irar  ... 
Jo  1—  2acos#+«2     1—  a2* 

If  |  a  \  >  1  we  have 
1  1  1 

s a  at 

and  we  may  expand  in  powers  of  I/a ;  or,  we  may  write  I/a  for  a 

in    (i)    and    then    multiply    by    I/a2.     We    find    for    the    integral 
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1.    Prove    that    the    following    expansions    hold    for    every   finite 
value  of  x  : 

(i)  sin(#  +  a)  =  sina+#cosa--^  sina-^  cosa+..., 2t  o  I 

2#3     22#4  «.        mr  xn  , 
(n)  e*cos.r  =  l4-#--o-Y--^T-y--...+22  cos  —  --  f  +  ..«, 

3      2 

(m)  e 
... 

(iv)  excosacos  (#  sin  a)  =  1  +#  cos  0,  +  —.  cos  2a  +—  cos  3a  +  .  ... 2i  .  o  ! 

Show  that  Dn&  cos  a  cos  (^  sin  a)  =  &  cos  a  cos  (^  sin  a  +  no). 
2.  From    1     (ii),     (iii)     derive     the     expansions     of    cosh  x  cos  #, 

sinh  x  sin  #,  cosh  x  sin  #,  sinh  ̂   cos  x. 

3.  Prove  that  if   .r 

4.    Show  that,  as  far  as  the  terms  stated, 

(n) 

These  expansions  may  be  obtained  by  division,  replacing  cos#  and 

sin#  by  the  equivalent  series.  Can  cot  x  be  developed  by  Maclaurin's Theorem  1 

5.  If  x  is  so  small  that  squares  and  higher  powers  may  be  neglected, 
show  that 

6.  If  /(#)=#/(e*-l),  show  that  the  limits  of  f(x)  and  of  f(x)  for 
#=0  are  1  and  —  £  respectively.  Show  also  by  differentiating  n  times 
the  equation 

that          ̂ {/n)(^)  +  n<71/n-1>(^  +  ...  +nC1f(x)+f(x)\=fn)(x\ 
and  therefore  that  if  n>I, 

the  limits  of  the  functions  for  x  =  0  being  taken  as  the  values  for 
#=0, 
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7     Tf  X       -i 
~ 

2  1         4  1         6  I 

show  that  #i  =  l/6,   52  =  1/30,   53=l/42.... 

The  numbers  51?  B^  ...  are  called  Bernoulli's  numbers  (see  Chrystal's 
.,  vol.  2,  chap.  28,  §  6). 

8.    Show  that 

9.    If  /(.r)  =  (sin-1^)/x/(l  -#*),  show  that 

and  that  if 

2  3,2.4^.2.4.6  7 
o\  —  #  "I"  5;  #       "~o       tr  ̂  "T"  o       r       ̂   &       !"••• 

10.    Show  from  ex.  9  that 

(i)  0=sm6>cos6> \ 

z     f       2 "  tan  2= 

11.  Deduce  from  ex.  9  by  integration  that,  if 

-i        \o          JC  £t    3U  £  •  TC   vv 

12.  Show  that  cos^sin"1.^)  satisfies  equation  (in),  §  154,  and  prove the  expansion  (|#|<1), 

•t     .     i   v     ,     a2    2     «2(22-«2)    .     a2(22-«2)(42-a2) 
cos(asm-1#)  =  l-2-j-.r3  --  ̂ -jj  -  ̂ ^*  --  ̂ -          ̂   -  -x6-.... 

13.  Prove  from  the  series  for  sin  (a  sin  ~lx)  and  cos  (a  sin"1^)  that 

r.     .  .    /,    m(m2-!2)  .  w(m2-l2)(m2-32) 
(i)  smm^=msni^  --  ̂ -—  ---  ̂ sm3#H  —  i  -  -^-     -^-sm6^-...  . 

/..x  /i          m2  .  9/1     wi2(m2  —  22)  , 
(n.)  cos  mO  =  1  -  TTf  sm  ̂   +  —  ̂-rr   —  sm4^  -  .... 2  I  4  ! 

Series  for  cos  mO/cos  0  and  sin  mO/cos  0  may  be  obtained  by  differ- 

entiating sin(asin~%)  and  cos  (a  sin  ~lx). 
14.  Show  that  if  |.r  <1, 

1  ̂3     1  .  3  sfi     1  .  3  .  5  x1 



EXERCISES   XXXIV.  405 

15.  Prove  that  if   x\  <1, 

(i) 

22W... 

To  prove  convergency,  note  that  both  in  (i)  and  in  (ii)  the  series 
formed  of  the  odd  terms  and  the  series  formed  of  the  even  terms  are 
separately  convergent  or  divergent  according  as  \x\  is  less  than  or 
greater  than  unity. 

16.  Show  that,  with  the  usual  notation,  the  perimeter  of  an  ellipse  is 

2e2     /1.3NV 
3 

/1.3.5\2e6        \ 

-virfrlJ  5—  •/ 
17.  Prove  (i)  the  perimeter  of  an  ellipse  of  small  eccentricity  e 

exceeds  that  of  a  circle  of  the  same  area  in  the  ratio  l  +  3e4/64 
approximately  ;  (ii)  the  surface  of  an  ellipsoid  of  revolution  (either 
prolate  or  oblate)  of  small  eccentricity  e  exceeds  that  of  a  sphere  of 
equal  volume  by  the  fraction  2e4/25  of  itself. 

18.  Show  by  integrating  (cos  #+#)/(l+2.27COS  0+#2)  first  with 
respect  to  #t  and  next  with  respect  to  6  see  Exer,  XXXIII.,  12), 
that  if  |#|<1, 

—9  ~.3 

(i) 

(« •  \  i  I         tfj  Olll  I/          \  •/».*/         •/->/!,     *"         *r«/l 

11)         tan-1!  =-          -p,    =^sm^-7rsm2^+  — sm36/-... \l+^cos^/  3 

19.  Deduce   from    ex.    18,   by    taking    the    limit   for   x=l,    that 
if   -7r«9<7r, 

(i)  cos  0  -  -  J-  cos  W  +  1  cos  3(9  -  .  .  .  =  log  (2  cos 
(ii) 

Show  that  the  series  (ii)  does  not  represent  the  function  (9/2,  except 
when  -TT  <  0  <  TT,  and  that  the  value  of  the  series  when  Q=ir  is  zero, 
but  that  the  limit  of  the  series  for  O=TT  is  Tr/2.  Show  also  that  neither 
series  can  be  differentiated  term  by  term,  although  both  are  convergent 
(Exer.  XXXIIL,  15). 

20.    Deduce  from  19  by  putting  O=TT-X  that  if  0<#<27r, 

(i)  cos  x+%  cos  2#+  J  cos  3#+  .  .  .  =  -  log  (2  sin  £.r), 
7T         1C 

(ii)  sin  x+\  sin 
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21.  By  integrating  20  (ii)  show  that  if  O^^^STT, 

X*      TTX__(CQSX      COS  2^7      COS  Zx  \        ~ 

T"T==\^"    ~¥~     ~W~ 

where  C=±+±  +  ±  +  ... 

The  series  is  uniformly  convergent  for  every  value  of  x,  and  we  may 
therefore  give  to  x  the  values  0  and  2?r  after  integration.  The  series 
however,  is  periodic,  and  does  not  represent  the  function  #2/4 
outside  the  interval  (0,  2?r). 

22.  Deduce  from  21  that 
111  <j>  ill  2 

To  set  (i)  put  #=7r  in  21  ;   (ii),  (iii)  readily  follow.      (Exercises 
XXXIIL,  3.) 

23.    Show  that 

1         1         1  7T2 

••x    P1 
ll)  L  ̂ 

(iii) 

To  get  (iii)  put  tan  Q—x  ;  note  that  L  xn  log  #=0  (Exercises  VII.,  10). *=o 

24.  Prove 
/.x  cos  x    cos  2^r    cos  3^     cos  4#          _^!._^! 

~12~     ~22~      ~W~      ~~&~  12~"4J 

f^    COS^?       Cps3#       COS  5#  _7T2       7T^7 

IT"    "32"     ~W         =~8~  "T 
In  (i)  —  TT^X^TT  ;  in  (ii)  O^^-^TT. 
25.  Show  that  for  every  finite  value  of  x 

1   Cw 

i)  TT)O 

(ii)         cos(.rcos  B)^^ 

(r\  20H
1" 
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26.  If  y  denote  the  series  (or  integral)  in  25  (i)  show  that 

27.    If  u  denote  the  series  (or  integral)  in  25  (ii)  and  if  y=xru  show that 

y  is  called  a  Bessel  Function  of  order  r,  and  is  (but  for  a  numerical 
factor)  usually  denoted  by  Jr(x)  ;  the  function  in  26  is  JQ(x).  (See 
Gray  and  Mathews,  Bessel  Functions). 

28.    Show  that  if  n  is  a  positive  integer 

sin  x(\  +  2  cos  2^7  +  2  cos  4#  +  .  .  .  +  2  cos  Znx)  =  sin  (2n  +  1)#, 

and  then  prove 
sin(2n  +  I) 

/     -  ; Jo          sm  # 
?r 

—  • 

2 

29.    Prove  the  following  results,  a  being  positive  and  r  a  positive 
integer  : f»ir 

(i)    /  log  (1  -  2a  cos  #  +  a^)dx  —  0  if  a<  1 

Jo 

if 

..x    fir      ̂ sin^;^         TT  ,      ,-       x  .- 
11)    I    i-          -  r~  -5=-log(l+a)  if 1  -2acos^  +  a^     a 

if 
a  a 

(iii)    /  cos  rx  log  ( 1  -  2e&  cos  x  +  a2)  dx  =  —  7rar/r  if  a  <  1 
J°  r/      '* =  —  vorr\r  if 

/.  s    p  sin^smr^c^?   _TT  r_j  . 

J0  l-2acos^  +  a2"~2a 

_7T 

=  2" 30.    Prove 
^ , 

>t;~ 

To  obtain  (ii),  put  x*  in  the  form  ex}ogx  and  expand. 



CHAPTER  XIX. 

TAYLOR'S  THEOREM  FOR  FUNCTIONS  OF  TWO  OR 
MORE  VARIABLES.    APPLICATIONS. 

§  157.  Taylor's  Theorem  for  Functions  of  two  or  more 
Variables.  We  will  consider  very  briefly  the  expansions 

corresponding  to  Taylor's  Theorem  when  there  are  more 
variables  than  one.  The  expressions  for  the  remainder  are 
very  complicated  and  will  not  be  written  down  although 
the  form  they  would  take  can  easily  be  gathered  from  the 
proof  ;  any  adequate  discussion  of  the  remainder,  however, 
would  take  us  too  far  into  the  theory  of  algebraic  forms. 
It  is,  of  course,  assumed  that  the  functions  and  their 
derivatives  up  to  and  including  those  that  would  appear 
in  the  remainder  are  all  continuous. 

We  will  take  first  the  expansion  of  f(x  +  h,  y  +  k)  in 
powers  of  h  and  k;  this  expansion  corresponds  to  (13)  of 
§152. 
f(x+h,  y+k)  is  the  value  of  f(x  +ht,  y  +  kf)  when  £  =  1  ; 

the  latter  function,  considered  as  a  function  of  t,  can  be 

expanded  by  Maclaurin's  Theorem.  For  brevity  denote 
f(x+ht,  y+kt)  by  F(t)  and  let  accents  indicate  derivatives 
with  respect  to  t  ;  then 

...  +Rn(t)  ........  (1) 

We  will  now  show  how  to  express  the  ̂ -derivatives  of 
F(t)  in  terms  of  the  partial  derivatives  with  respect  to  x 
and  y  of  F(t). 
Let  x+ht  =  a;  y  +  kt  =  (3,  .....................  (2) 

-,,,..     -dFda  .  -dFd/3    .VF.  j then       F  w=      +-          +**    "  ..........  (  } 
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c)F    'dF'da     c)F     .         ,       .  .    'da = = smce> 

and,  similarly, 

Thus  (3)  becomes 

The  student  will  perhaps  see  the  meaning  of  (4)  more  clearly  by 

taking  a  particular  case,  say  F(t}  =  (x+ht)m(y  +  lct)n.  The  example  will 
also  illustrate  the  fact  that  ̂ '(0  ig  a  function  of  x+ht  and  #  +  &£,  and 
that  ̂ "'(0  may  therefore  be  found  in  the  way  we  now  state. 

Next  F"(t)  is  the  ̂ -derivative  of  F'(t)  and  will  be  obtained 
by  replacing  J^(0  in  (4)  by  F'(t) ;  thus 

'dx 

Similarly, 

dxdy2 The  law  of  formation  of  the  derivatives  is  now  clear  ;  we 

will  show  immediately  how  the  value  of  F(m\t)  can  be 
written  down  in  a  more  compact  form.  We  first  consider 

the  values  of  F'(V),  F'(0),  F'"(0). 

.F(p)=/(a,  y)  and  the  values  of  ̂ (0),  ̂ "(0),  F'"(Q)  are  got by  simply  replacing  the  function  F(t)  in  (4),  (5),  (6)  by 
f(x,  y).  To  get  the  Lagrangian  form  of  the  remainder,  we 
must  in  F<n\t)  replace  t  by  Qt\  if  w  =  3,  then  in  (6)  ̂ (0 
would  be  replaced  by  /(x+hOt,  y  +  k9t).  Thus  (1)  becomes 
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To  get  f(x-\~  h,  y  +  k)  put  1  for  t  in  (7)  ;  therefore, 

...  (8) 

Equation  (8)  gives  the  required  expansion  ;  the  expansion 
(7)  is  however  a  form  that  is  useful. 

The  values  of  F'(t),  F"(t),  in  (5),  (6)  may  be  written  more 
compactly  in  the  symbolical  forms 

-+k~F  ........  .  ......  (9) 

if  these  are  interpreted  as  follows: — Let  the  binomial  be 

expanded  as  if  h—  and  k—  were  single  quantities;  after 

i/ expansion  place  F  as  the  last  factor  of  each  term  and  then 
replace  a  term  like 

first  by  Wktts-,  then  by 2 

In  this  notation  the  (m+l)th  term  of  (7)  would  be 

m 

m 

The  form  (8)  may  be  easily  adapted  to  the  expansion  of 
+  h,  y  +  k)  in  powers  of  x  and  y;  we  have  merely  to 

interchange  x  with  h  and  T/  with  k.  Using  the  suffix 
notation,  we  get 

00) 
To  form  fh,  fhh...  we  may  differentiate  f(x,  y)  with  respect 

to  x  and  y,  and  then  replace  x  by  &  and  y  by  fe 



SYMBOLICAL  FORM  OF  DERIVATIVES. 

In  (10)  we  may  of  course  suppose,  if  we  please,  h  =  Q, 
k  =  0  ;  we  should  thus  get  the  expansion  of  f(x,  y)  cor- 

responding to  Maclaurin's  Theorem. 
When  there  are  three  or  more  variables  the  expansions 

are  similar.  Thus  for  three  variables 

,  y+k, 

(11) 

where  the  symbolical  expression  is  to  be  interpreted  in  the 
same  way  as  before. 

§  158.  Examples. 
1.  To  find  the  equation  of  the  tangent  plane  at  the  point  P(A,  k,  I) 

on  the  surf  ace  /(#,  y,  z)=Q. 
The  equations  of  the  straight  line  through  P,  with  the  direction 

cosines  X,  /A,  v,  are 

where  r  is  the  distance  from  (h,  k,  1)  to  (#,  y,  z).     Let  (#,  y,  z)  be  the 
point  Q  on  the  surface  ;  then 

r  ;        a?,  y,  z  =  . 
In  /(#,  ?/,  z)  put  for  X)  y,  z  the  values  just  written,  and  expand  by 

Taylor's  Theorem  ;  therefore 
0=/(A,  £, 

But  /(A,  /&,  l)  =  0,  since  the  point  P  is  on  the  surface  ;  therefore  one 
value  of  r  given  by  (ii)  is  zero.  The  other  roots  of  (ii)  are  the  distances 
from  P  to  the  several  points  in  which  the  line  (i)  meets  the  surface. 
Let  r^  =  PQ  ;  then  (ii)  becomes,  since  rx  is  not  zero, 

+  .............................  (iii) 

As  r\  tends  to  zero  the  line  (i)  tends  towards  the  position  of  a 
tangent  line  ;  but  (iii)  shows  that  as  rt  tends  to  zero,  so  does 

Hence  the  line  (i)  will  be  a  tangent  line  if  X,  /x,  v  satisfy  the 

equation  O  ..................................  «v) 
If  we  eliminate  X,  /z,  v  from  equations  (i)  and  (iv),  we  shall  obtain 

an  equation  which  is  true  for  the  coordinates  of  any  point  on  any 
tangent  line  through  P.  The  result  of  the  elimination  is 

the  same  equation,  except  for  the  notation,  as  was  found  in  §  91. 
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2.  Euler's  Theorems  of  Homogeneous  Functions. 
DEFINITION.  A  function  u  of  two  or  more  variables  is  said  to  be 

homogeneous  and  of  degree  n  if,  when  the  variables  #,  y,  ...  are 
replaced  by  \x,  \y,  . . .  respectively,  the  function  u  becomes  Xnu  what- 

ever the  quantity  X  may  be. 
Let  u—f(x^  y)  be  a  homogeneous  function  of  degree  n  in  two 

variables  x,  y.  Then 
xux+yuy=nu,   (i) 

T*^O/  I  .  V  'V*'3/<9/  J_  Q/£/)t         —  ffl  I  -vj   _     1  \  nt  111  I 
tAj     ̂ XOC  ̂ *     ~w  (/  v^X'U     1^  v     'W4/7*  ~~"  /(/  \  /t  if  cv»    ••••••••••••••••••••••••%  J--*-/ 

Eeplace  x  and  y  by  (1  +  #)^  and  (1  +  t)y,  that  is,  by  x+xt  and  y  +yt', 
then  ?£  becomes  (1  +  f)nu,  that  is, 

f(x+xt,  y+yt)  =  (l  +  t)nu. 
Expand  the  function  on  the  left  by  Taylor's  Theorem  and  that  on 

the  right  by  the  Binomial  Theorem  ;  therefore 

n(n  —  T) 

Equating  coefficients  of  the  same  powers  of  t,  we  get  equations 

It  is  easy  to  see  that 
3 

x 

and  that  the  theorems  may  be  extended  to  homogeneous  functions  of 
three  or  more  variables.     For  example, 

xux+yuy+zue  =  nu  ..............................  (iii) 

Ex.     Let  u=ta,n~l(y/x);  then  u  is  of  zero-degree. 
1  —y       —y  x 

ni      -  _  V  "    —  __  "  •  II      -  _ ~  ~  ~ 

—  xy        xy 

xux+yuy=        y-  —      - 

§  159.  Maxima  and  Minima  of  a  function  of  two  oj  more 
Variables. 

DEFINITION,  /(a,  b)  is  said  to  be  a  maximum  value  of 
f(x,  y)  if  /(«  +  &,  b  +  k)  is  less  than  /(a,  b)  for  all  values  of 
h  and  k,  positive  or  negative,  that  lie  between  zero  and 
certain  finite  values  however  small  ;  /(a,  b)  is  said  to  be  a 
minimum,  value  of  f(x,  y)  if/(a+&,  6  +  k)  is  greater  than 
/(a,  b)  for  all  such  values  of  h  and  k. 

Similar  definitions  hold  for  functions  of  more  than  two 
variables. 
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We  will  assume  the  continuity  of  the  functions  and  their 
derivatives  for  all  values  of  the  independent  variables 
considered. 

A  necessary  condition  that  /(a,  b)  should  be  a  maximum 
or  a  minimum  (a  turning  value)  is  that  both  fx  and  fy 
should  be  zero  when  x  =  a,  y  =  b.  For  f(a,  b)  cannot  be  a 
turning  value  of  f(x,  y)  unless  it  is  a  turning  value  of  the 
function  f(xt  b)  of  x  alone  when  x  =  a  and  also  a  turning 
value  of  the  function  f(a,  y)  of  y  alone  when  y  —  b\  there- 

fore/a.^, b)  vanishes  when  x  =  a  and/^a,  y)  when  y  =  b. 
To  investigate  sufficient  conditions  expand  f(a  -\-h,  6+  k); 

we  get 

f(a+h,  b  +  k)-f(a,  b)  = 

where  the  terms  hfa,  kfb  are  omitted  since  /a  =  0,/&  =  0  when 
/(a,  b)  is  a  turning  value. 

If  /(a,  6)  is  a  turning  value  the  expression  on  the  right 
of  (1)  must  retain  the  same  sign  for  all  small  values  of  h 
and  k,  the  negative  sign  for  a  maximum  value  and  the 
positive  sign  for  a  minimum  value.  Now  R  contains  h  and  k 
in  the  third  degree,  if  we  suppose  R  to  be  the  remainder  in 

Taylor's  Theorem  ;  it  seems  natural  therefore  to  assume 
that,  for  sufficiently  small  values  of  h  and  k,  the  sign  will 
be  that  of  the  quadratic  expression  in  h  and  k.  Yet  this 
assumption  is  not  sound  as  the  following  example,  given 
by  Peano,  will  show. 

Let    /(#,  y)  =  So?2  -  6^?/2  +/  ;     then     a  =  0,    6  =  0,  f(a,   b)  =  0,    and 
equation  (1)  becomes 

f(h,  £)  =  8A2+(-6AF  +  £4)  .........................  (2) 

Here  we  have  R  exactly,  R=  —  6M2  +  £4.  The  terms  of  second 
degree  reduce  to  8A2,  and  are  therefore  positive  so  long  as  h  is  not 
zero.  Yet  f(h,  k)  is  not  of  the  same  sign  for  all  small  values  of  h  and  Tf. 
For  let  k=tjf(\h),  and  we  find 

Hence  /(A,  k}  is  positive  or  negative  according  as  A  does  not  or  does 
lie  between  2  and  4.  In  other  words,  /(O,  0)  is  not  a  minimum  value 
of  /(#,  y),  even  though  the  terms  of  second  degree  are  positive  except 
when  A  =  0. 

The  difficulty  just  noticed  would  require  a  fuller  con- 
sideration of  the  remainder  in  Taylor's  Theorem  than  we 
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have  room  to  give.  We  therefore  simply  state  that  /(a,  6) 
will  be  a  turning  value  if 

faa  fbb  >(fab)2> 
and  the  value  will  be  a  maximum  if  faa  (or  fbb)  is  negative, 
a  minimum  if  faa  (or  fbb)  is  positive. 

It  may  be  seen  that  a  necessary  condition  that  /(a,  b,  c) 
should  be  a  turning  value  of  f(x,  y,  z)  is  that  fx,  fy,  fz,  should 
all  vanish  when  x  =  a,  y  =  b,  z  =  c. 

In  many  cases  it  is  known  that  a  turning  value  of  a 
function  must  exist  ;  it  is  usual  to  assume  without  further 
proof  that  the  values  of  the  variables  that  make  the  first 
derivatives  vanish  are  those  that  give  the  turning  value. 

§  160.  Examples.  The  most  important  cases  are  those  in 
which  the  function  whose  turning  values  are  required  is 
given  as  a  function  of  two  or  three  or  more  variables,  the 
variables  being  connected  by  one  or  more  equations  of 
condition.  The  best  method  of  proceeding  in  such  cases  is 
usually  the  following.  Let  the  function  be  u  and  let  there 
be,  say,  four  variables  with  two  equations  of  condition, 

,  y,  z,w)  =  0  (2)  ;    \f,(x,  y,  z,w)  =  0  (3). 
Suppose  for  the  moment  that  z  and  w  are  found  from  (2) 

and  (3)  in  terms  of  x,  y,  and  that  these  values  are  sub- 
stituted in  (1)  which  thus  becomes  a  function  of  two 

independent  variables  x,  y  ;  let  Dxu,  Dyu  denote  the  first 
derivatives  on  the  supposition  that  the  substitutions  have 
been  made.  For  a  turning  value  Dxu  and  Dyu  must  both 
be  zero.  Now 

and  30/3#,  'dw/'dx  are  found  by  differentiating  (2),  (3)  ;  thus 
'dz         'dw 

Instead  of  solving  (5),  (6)  for  'dz/'dx  and  'dw/'dx,  multiply 
(5)  by  X,  (6)  by  ̂  and  add  to  (4)  ;  therefore 
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(7) 

In  exactly  the  same  way  we  find 

Dyu  =fy  +  ̂</>y  +  V^y 

(8) 

It  will  be  noticed  that  the  coefficients  of  'dz/'dx  and  'dwj'dx 
in  (7)  are  respectively  equal  to  those  of  'dz/'dy  and  'dw/'dy  in 
(8);  therefore  choose  the  multipliers  X,  /UL  (and  this  is  in 
general  possible)  so  that  these  coefficients  are  zero,  and  the 
values  of  Dxu,  Dyu  will  reduce  to  the  first  three  terms  of 
(7),  (8)  respectively. 

For  the  turning  values  of  u  the  derivatives  Dxu,  Dyu  are 
zero  ;  therefore  for  the  turning  values  we  have  the  four 
equations, 

/s  +  X^  +  ̂ o—O,     /y+^0y+^Vrj/=°»  I  fQ\ 
A  A  

|      *••«•••••%  v     / 

fz  +  \<f>z  +  /u.\lsz  =  0,     jw  -f  X0W  +  /u.\[sw  =  0,  J 

and  these  four  equations  together  with  equations  (2),  (3) 
are  just  sufficient  to  determine  X,  /m  and  the  values  of  x,  y, 
z>  w  that  give  the  turning  values  of  u. 

The  equations  (9)  are  symmetrical  in  x,  y,  z,  w,  and  this 
method,  called  the  method  of  undetermined  multipliers,  is 

specially  simple  when  the  functions  /,  0,  i/r  are  homo- 
geneous. We  have  taken  four  variables  and  two  equations 

of  condition,  but  it  is  clear  that  the  reasoning  is  quite 
general.  We  may  state  the  rule  for  writing  down  the 
equations  (9)  thus  : 
Form 

and  equate  to  zero  the  coefficients  of  dx,  dy,  dz,  dw. 

Of  course  df  means  fxdx  +fydy  -\-fzdz  +fwdw  and  d(j>,  d\(s 
have  like  meanings. 

Ex.  1.         u  =  x2+y2  +  02(1);  <$>  =  ax+by  +  cz-k=Q(2) 
Clearly  u  has  a  minimum  value  ;    for,  by  (2),  #,  y,  z  cannot  be 

simultaneously  zero  and  u  is  always  positive.     Now 

du  +  Ae&£  =  (2#+  Xa)dv+(Z   +  \fyd  +  (20+  \ 
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and  therefore,  equating  to  zero  the  coefficients  of  dx,  dy,  dz,  we  find 
for  the  values  of  #,  y,  z  that  make  u  a  minimum 

xja  =  —  A/2  =y/b  —  z/c. 

By  (2)  each  of  these  fractions  is  equal  to  k/(a2  +  b2  +  c2),  and  then  by 
substitution  for  x,  y,  z  in  (1)  we  see  that  the  minimum  value  of  u  is 

The  student  may  also  solve  the  example  by  replacing  z  in  (1)  by  its 
value  (k-ax-  by)/c  deduced  from  (2)  ;  he  must  be  on  his  guard  against 
confounding  the  value  of  ux  in  this  method  with  the  value  of  ux  in  the 
first  method. 

Ex.  2.     Find  the  turning  values  of  u  when 
U=a2x2+b2y2  +  c2z2,  .................................  (1) 

and  3?+y2+z2=I-,.  ......................................  (2) 
lx+my  +  nz=Q  .....................................  (3) 

In  this  case  u  is  really  a  function  of  only  one  variable,  but  the 
method  of  undetermined  multipliers  is  equally  applicable. 

To  get  rid  of  the  factor  2  we  take  A,  2/x,  as  the  multipliers  ;  then 
we  readily  find 

a2x+Xx  +  fj,l  =  0,     b2y  +  Xy  +  fjim  =  Q,     c2z  +  \z  +  fjin=0  ........  (4) 
Multiply  the  first  of  equations  (4)  by  x,  the  second  by  y,  the  third 

by  z,  and  add  ;  then  taking  note  of  (2),  (3),  we  find 
a2x2  +  b2y2  +  c2z2  +  X  =  0,  that  is,  A  =  -u, 

where  u  is  now  a  turning  value,  since  the  values  of  x,  y,  z  that  satisfy 
(4)  are  those  that  determine  the  turning  values. 

Put  -  u  for  A  in  (4),  and  we  get 

x  =  fjll(u  -  a2),    y  =  fj.m/(u  -b2),    z  =  ̂ nj(u  -  c2). 
If  we  now  put  these  values  of  #,  y,  z  in  (3)  the  factor  /z  divides  out 

and  we  get  a  quadratic  equation  for  u, 

l2/(u-a2)  +  m2/(u-b2)  +  n2/(u-c2)  =  0  ...................  (5) 
One  root  of  (5)  will  be  the  maximum  value  of  u,  and  the  other  the 

minimum. 

EXERCISES   XXXV. 

1.  Verify  Euler's  theorem  on  Homogeneous  Functions  (taking  first derivatives  only)  in  the  following  cases. 

(i)  ax2  +  2bxy  +  cy2;       (ii)  ax*  +  by3  +  c£  ;   (iii) 
(iv)  (x+y)l(a?+f)  ;       (v)  (x+y  +*)/(*+?+*); 

(vi)  ta,n~l(r/z)  where  r  =  J(3t?+y2  +  z2);     (vii)  1/r. 
2.  If  u  is  homogeneous  of  degree  n,  prove 

(i)  xuxx+yuxy  =  (n-\)ux\  (ii) 

3.    Show  that  if  a  is  positive  Zaxy-x^—y*  is  a  maximum  when 
#  =a,  y  =  a,  but  neither  a  maximum  nor  a  minimum  when  v=0,  y  =  0. 
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4.  The  function  x*y2(§-,v-y)  is  a  maximum  when  .r—  3,  y  =  2,  but 
is  neither  a  maximum  nor  a  minimum  when  .#  =  0,  y  —  Q.- 

5.  Show  that  if  a,  ft,  c  are  positive,  and  if 

ajaf+b/y+ofg—lj 
the  sum  .#+y+2  is  a  minimum,  when 

Show  also  that  if  p,   g',   r  are   positive,  the   product   xpyqzr  is   a 
minimum,  when 

pxja  =  qyjb  =  rz/c  =p  +  q  +  r. 

6.  If  w=#2+#2,  and  if  a#2  +  2/m/  +  6?/2  =  l,  find  the  maximum  and 
the  minimum  value  of  ̂ ,  and  interpret  the  result  geometrically. 

7.  If  u  =  x*+y*  +  z\  and  if 
.r2/a2+#2/&2  +  ,22/c2  =  l,   and   lx  +  my  +  nz  =  Q, 

find  the  maximum  and  the  minimum  value  of  X  and  interpret  the 
result  geometrically. 

8.  If  u=xl2  +  x22+...+xnzt 
and  if                             alxl  +  a^  +  .  .  .  +  anxn  =  k, 

show  that  the  minimum  value  of  u  is  k^\(a^  +  a.22  +  .  .  .  +  «M2). 
9.  If  #,  y,  2  are  the  perpendiculars  from  any  point  P  on  the  sides 

a,  6,  c  of  a  triangle  of  area  A,  show  that  the  minimum  value  of 
xi-\-yl-\-zL  is 

10.  Show  that  the  minimum  value  of 

(«!#  +  &!#  +  c^2  +  (0337  +  b^y  +  c2)2  +  .  .  .  +  (a«^  +  bny  +  c,,)2 
is  given  by  the  values  of  x  and  y  which  satisfy  the  equations 

^)  =  0. 
11.  Show  that  the  centroid  of  n  given  points  is  the  point,  the  sum 

of  the  squares  of  whose  distances  from  the  n  points  is  a  minimum. 

12.  Apply  the   method   of   undetermined   multipliers   to   find  the 
evolute  of  an  ellipse  considered  as  the  envelope  of  the  normals. 

The  normal  is  cPxja  -  b2y//3  =  a2-b2 
where  a2/a2  +  f}2/b2  =  l. 

Hence  -^    +  AO a  a 

and  therefore        \  =  ̂(a2-b2),     a3=a%/(«2-62),     etc. 
13.  Show  that  the  envelope  of 

where  an 

#«•  w+y-w*= 
G.C.  2  D 
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§  161.  Indeterminate  Forms.  A  function  f(x),  that  is  in 
general  well  defined  for  a  certain  range  of  values  of  its 
argument,  may  for  a  particular  value,  a  say,  of  its  argument 
take  a  form  (such  as  0/0)  that  has  no  meaning.  It  is 
possible,  however,  that  f(x)  may  have  a  definite  limit  A 
when  x  converges  to  a.  Although  f(x)  is  really  undefined, 
has  no  value  that  can  be  calculated  by  the  ordinary  rules 
of  algebra,  when  x  =  a,  yet  it  has  become  the  established 
practice  to  call  f(a)  in  such  a  case  an  indeterminate  form, 
and  to  define  A  as  the  value  of  f(x)  when  x  =  a.  The  value 
thus  assigned  by  the  definition  is  usually  called  the  true 
value  of  f(x)  when  x  =  a. 

If  it  be  clearly  understood  that  this  "  true  value  "  is 
assigned  by  definition  and  is  therefore  arbitrary,  there  is  a 
certain  advantage  from  the  procedure,  namely,  f(x)  becomes 
continuous  up  to  and  including  the  value  a,  it  being  sup- 

posed that/(#)  is  in  general  continuous. 
The  typical  indeterminate  forms  are 

0/0;    oo  /x;    oo  -  oo  ;   Oxx;   0°;    00°;    1*. 
We  have  already  had  some  important  cases  of  such 

forms;  the  derivative  o£f(x)  is  a  case  of  0/0. 
0  x  oo  is  seen  in  x  log  x  when  x  =  0  ;  the  true  value  is  zero. 
xne~x  or  xn/ex  when  x=  +  oo  gives  0  x  x  or  x  /x  and  the 

limit  is  zero.  (See  Exercises  VII.,  8,  9.)  It  is  easy  to  see 
that  the  result  holds  whether  n  is  integral  or  fractional. 

I00  is  the  case  of  (\+x)x  when  ̂   =  0;  in  this  case  the 
limit  or  true  value  is  e  (§  48  COR.). 

In  many  cases  the  limits  are  found  most  simply  by 
algebraical  transformations  and  the  use  of  series.  We  will 
take  one  or  two  examples  before  indicating  the  general 
theorems. 

-          -         ,  0 
1.  —  ̂  —        when  x=\  ;    form  -. 

Divide  numerator  and  denominator  by  (x*  —  1)  ;  we  see  at  once  that 
the  limit  is  —3/2.  The  "true  value"  of  the  fraction  when  #=1  is 
therefore  -3/2. 

Ex.  2.  (sin"1^?  —  ̂ )/^3  when  ̂ 7  =  0  ;  form  0/0. 

Expand  sm~1#(  =  #+#3/6  +  ...)  ;  x  cancels  in  numerator,  and  after 
dividing  numerator  and  denominator  by  .r3  we  get  1/6  as  the  limit. 
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Ex.  3.  sec  .2?/sec  3#  when  .r  =  7r/2  ;  form  oo/oo. 

Let  X=\TT  —  u  ;  then 
T     sec  x       T    -sin  3u 
Ll        -  —   =        L(      -    —;-  -=-3. 

u=o   smu 

Ex.  4.  —  jj-cot2.^  when  #=0  ;  form  oo  —  oo  . 

1  /,        x  \(   x    \  /sin  x-x  cos  x\ 
—  5-cora?=(H  —  :  —  cos#)  (-  —  II-     -  o  --  )• 
ar  \       sin  x         J  Vsin  x]  \          .r3          / 

The  limit  of  the  first  factor  is  2  and  of  the  second  factor  1  ;  also 
/v>3  /  /v»2  \         /v»3 

sin  x-x  cos  #=#  --«-+  ...  —  a?t  1  --g-4-  ...  )  =  -~-  +  ..., 

so  that  the  limit  of  the  third  factor  is  1/3. 
Hence  the  limit  or  true  value  is  2/3. 

Ex.  5.  ^*when^=0;  form  0°. 

Let  u=x*  ;  then  logi*=^log^.  The  limit  of  #log#  or  logw  is  0, 
as  we  have  just  seen,  so  that  the  limit  of  u  or  x*  is  1. 

Ex.  6.  (llx)****  when#=0;  form  00°. 
The  logarithm  of  the  function  is 

-  tan  x  log  x=  -         -(x  log  x) 00 

and  has  therefore  0  for  limit  ;  the  limit  of  the  function  is  therefore  1. 

§  162.  Method  of  the  Calculus.  We  will  now  prove  the 
general  theorem  for  the  evaluation  of  indeterminate  forms, 
the  continuity  of  the  functions  near  the  critical  values 
being  assumed. 
THEOREM.  If  0(a)  and  VKa)  are  either  both  zero  or  both 

infinite,  and  if  0/(x)/Vr/(x)  converges  to  a  limit  when  x 
converges  to  a,  then  0(x)/i/r(x)  converges  to  the  same  limit. 

It  will  save  repetition  to  observe  at  once  that  if  $'(x)/\f/(x) 
is  indeterminate  when  x  =  a,  the  theorem  shows  that  if 

d>"(x)l\f/f(x)  converges  to  a  limit  then  j>(x)/\//(x)  and  there- 
fore also  (J)(x)/\[s(x)  converges  to  the  same  limit  ;  and  so  on. 

We  need  the  following  extension  of  the  Mean  Value 

Theorem  of  §  72  ;  if  <f>(x\  (h'(x),  \js(x),  ̂ \x)  are  continuous 
for  the  range  a^x^b  and  if  \lr'(x)  is  not  zero  so  long  as a<x<b,  then 

where  a  <xl<  b  (Generalised  Theorem  of  Mean  Value). 
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The  proof  is  obtained  at  once  by  considering  F(x)  where 

because  F(a)  =  0)  F(b)  =  0,  and  therefore  F\xl)  =  Q  and  we 

can  divide  by  ̂ '(^i)*  for  V/(^i)  is  not  zero  since  xl  lies between  a  and  6. 

I.  Form  0/0.     Let  </>(a)  =  0,  \^(a)  =  0,  and  in  (1)  put  x  for  6  ; 

,,        «  d>(x)      d)'(x-,)      ,  ^ therefore  ^-4  =  ,  //    x    (a  <  a?.  <  a?), 

L  -  L -L<       T          —     -^ 

If  a  =  oo  the  substitution  a;  =  1/0  reduces  the  problem  to 
the  evaluation  of  the  limit  for  0  =  0,  and  therefore  the 
theorem  holds  in  this  case  also. 

II.  Form  oo  /oo  .  JFirs£,  let  <£(#),  \^(«)  be  infinite  when  x 
is  infinite.  Let  c  be  a  large  but  finite  value  of  x\  then, 
by  (1),  putting  x  for  b  and  c  for  a 

d>(x)  —  d>(c}      (b'Cx, y\    /      y\  /  —  r  v    i 

We  may  also  write 

and  therefore  by  equating  values 

Now,  let  c  be  taken  so  large  that  0/(cci)/Vr/(cci)  differs  from 
its  limit  -4  by  less  than  e-^  and  let  c  be  then  kept  fixed  ; 
(/>(c),  \fs(c)  will,  though  large,  be  finite.  Then  let  x  be  taken 
so  large  (and  this  choice  is  possible  since  <j)(x),  ̂ /s(x)  tend  to 
infinity)  that  the  second  fraction  on  the  right  shall  differ 
from  1  by  less  than  e2.  The  fraction  <j)(x)/\lr(x)  is  now  the 
product  of  two  factors,  the  first  of  which  differs  from  A  by 
less  than  el  and  the  second  of  which  differs  from  1  by 
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less  than  e2  where  ev  e2  may  be  as  small  as  we  please. 
Hence  the  limit  of  <j>(x)/\[s(x)  is  A  ;  that  is 

Second,  let  0(a),  ̂ (a)  be  infinite,  a  being  finite.  The 
substitution  x  =  a+l/z  reduces  the  problem  to  the  evalua- 

tion of  the  limit  for  z  =  oo  ,  and  therefore  the  theorem  holds 
in  this  case  also. 

The  above  proof  is  that  given  in  the  Calculus  of  Gennochi- 
Peano  (German  Translation,  Leipzig  :  Teubner). 

III.  Other  Forms.     If  0(«)  =  0,  \^(a)=  GO  ,  we  may  write 

0(0?)  X  ̂ (x)  =  0(0)  -s-  {  1  AM>)}, 
and  the  case  reduces  to  case  I. 

The  forms  0°,  00°,  I00,  are  reduced  by  taking  logarithms as  illustrated  in  §  161,  ex.  5,  6. 
The  form  x  —  oo  may  be  treated  as  in  §  161,  ex.  4;  or 

expansion  in  series  may  be  used. 
Of  course  the  method  of  differentiation  may  be  combined 

with  that  of  expansion  in  series. 

Ex.  1.  If  n  is  positive,  (log#)/.rw  converges  to  zero  when  x  becomes 
infinite  ;  for 

1 

x         T     1 
=  L  —  5=1=  L  —  «-0. X'='&  IvQC  x^  00  *v*Xs 

Ex.  2.  Find  the  limit  for  #=0,  y=0  of  the  function  of  two  inde- 
pendent variables  (•£—#)/(#+#)•  , 

We  take  this  example  to  illustrate  the  arbitrariness  of  the  definition 
of  a  "  true  value,"  and  also  to  show  the  great  difference  between  limits for  a  function  of  one  variable  and  limits  for  a  function  of  two  variables. 

The  above  function  may  be  made  to  tend  to  any  value  whatever  ;  for 
let  y  —\x  and  we  get 

-rX  —  y_  -,  x—\xl  —  \ _  _ 

x+y        x+Xx    1-fA.' 
By  proper  choice  of  X  we  can  make  (1  —  A,)/(1  +  A)  equal  to  any 

number  whatever. 

Geometrically,  the  3-axis  lies  on  the  surface 

and  as  x  and  y  tend  to  zero  the  point  (#,  y,  z)  may  be  made  to  approach 
any  point  on  the  .s-axis. 
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EXERCISES  XXXVI. 

Find  the  limits  (the  "true  values")  of  the  functions  in  examples  1-15 
for  the  given  values  of  the  argument. 

2.  (a  -  >/(a2  -  x2)  }  /  x2  when  x=0. 

3.  x  —  V(#2  —  2a#)  when  x=<x>. 

4.  V{  (x  +  a^)(x  +  a2).  .  .(.#  +  an)  }-x  when  x=<x>. 
Put  x=\fz  and  expand  by  the  binomial  theorem. 

5.  (1  +  \\xY  and  C1  +  V^T  when  x=<x>  . 

6.  ̂    and   =  -        °        when  #  =  1. 

_  -.          ,  -  , 
7.  —  r4-      and  --  :  --  —     -  when  x=Q. 

x  —  sin  x  n  sin  x  —  sin  nx 

8.  (Q—*  I  tana?  and  3?  tan  #  -  -  sec  #  when  x=-> \'2i         /  2i  £i 

9.  log  (1  +  ax)  I  log  (1  -f  bx)  and  (eax  -  e~ax)  /  log  (1  +  bx)  when  x  =  0. 

10.  ---  2log(l+#)  when  #=0. x    x 

11.  (a'-b*)/(e'-g*)  when  «=0. 

12_   log  tana.  and  log  tan  «:-  log  tan  to  when 
log  tan  6^7  log  sin  ou?  —  log  sin 

n 

/ttl    +^2    +...+««    \x .  —  ) \  n  / 
10  l  2          ...«  ->  n 
13.  —  )    when  ̂ -=0. 

sinh  #  -  sin  #        ,    cosh  x  —  cos  x     , 
14.  —  ,  —        and  -  5  -  when  #=0. 
Xs  X* 

15.  (cos  ax)coaec*bx  and  (cos  a#)cosec36*  when  #=0. 
16.  If  the  equation  of  a  curve  is 

where  u2,  %,  w4,  ...,  are  homogeneous  of  degrees  2,  3,  4,  ...,  in  the 
coordinates,  show  that  when  the  factors  of  u2  are  real,  the  equation 
u2  =  0  gives  the  tangents  at  the  origin. 

Put  x  =  r  cos  0)  y  =  r  sin  $,  and  let  w2,  ̂ 3,  .  .  .  ,  become  r2v2,  r3^,  .  .  .  ; 
then  two  values  of  r  are  zero  since  r2  is  a  factor  of  u2  +  %  +  .  .  .  .  If,  then, 
9  be  chosen  so  that  v2  tends  to  zero,  another  value  of  r  will  tend  to 
zero.  The  equation  v2  =  0  is  a  quadratic  for  tan  #,  and  therefore  when 
its  roots  are  real  and  different  we  get  two  gradients  ;  when  they  are 
real  and  equal  we  get  one  gradient  ;  when  they  are  imaginary  the 
values  of  tan  Q  are  imaginary,  and  the  origin  is  then  an  isolated  point. 
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DEFINITION.  A  point  on  a  curve  at  which  there  are  two  distinct 
tangents  is  called  a  node. 

At  a  node  two  branches  of  the  curve  cross  each  other,  intersecting 
at  a  finite  angle.  In  Fig.  61,  p.  312,  and  in  Fig.  63,  p.  313,  the  origin 
is  a  node. 

17.  If  x7 +  2%Gy  +  5x3-\-a2x2  —  627/2=0,  find  the  value  of  dyjdx  when 
^=0,  y  =  0. 

18.  If,  when  x  becomes  infinite,  $(x)  converges  to  zero,  show  that 
when  x  becomes  infinite  <fi(x\  if  it  converges  to  a  finite  limit  at  all, 
will  converge  to  zero. 

Suppose  <fi(x)  has  the  limit  A  different  from  zero  ;  the  equation 

(f>(x)  =  <f> (c)  +  (x  -  c) <f>' (x^   (c<xl<  x) 

shows  that  <£(#)  must  tend  to  infinity,  because  the  term  (x  —  c)(p'(.vi) 
tends  to  (x-c)A,  that  is,  to  infinity.  But  this  is  contrary  to  the 
hypothesis  that  <£(.#)  tends  to  zero,  so  that  if  A  is  finite,  it  must  be 
zero. 

19.  Show  that  the  series 

(log  2)*     (Iog3)a     (log  4)* 
is  divergent  for  every  positive  value  of  a. 

Compare  with  1/2  +  1/3  +  1/4  +  ...  ;  the  limit  for  n  =  cc  of 

1          1  (  -I         \a — = — ,  that  is,  of  \na/lognj 

(log  ft)  a    n 
is  infinite  (§  162,  ex.  1).  Hence  the  given  series  is  divergent  since  the 
harmonic  series  is  divergent.  The  series  is  obviously  divergent  when 
a  is  negative. 



CHAPTEK  XX. 

DIFFERENTIAL  EQUATIONS. 

§  163.  Differential  Equations.  We  propose  in  this  chapter 
to  discuss  a  few  differential  equations  that  occur  in  elemen- 

tary work.  Nothing  beyond  the  merest  outline  can  be 

given  ;  the  student  will  find  ample  treatment  in  Forsyth's 
Differential  Equations  (Macmillan)  or  Murray's  Differential 
Equations  (Longmans). 

An  ordinary  differential  equation  is  an  equation  between 
one  independent  variable,  one  dependent  variable  and  one  or 
more  derivatives  of  the  dependent  variable. 

A  partial  differential  equation  is  an  equation  between  two 
or  more  independent  variables,  one  dependent  variable  and 
partial  derivatives  of  the  dependent  variable. 

We  deal  only  with  ordinary  differential  equations. 
The  order  of  a  differential  equation  is  that  of  the  highest 

derivative  contained  in  it  ;  the  degree  is  that  of  the  highest 
derivative  when  the  equation  is  cleared  of  fractions  and  the 
powers  of  the  derivatives  are  positive  integers. 

Thus  the  equation 

is  of  the  second  order  and  of  the  first  degree.     The  equation 

is  of  the  first  order  and  of  the  second  degree. 

By  the  theory  of  elimination  explained  in  algebra  we  can 
eliminate  one,  quantity  from  two  equations,  two  quantities 
from  three  equations,  n  quantities  from  (n+l}  equations. 
Hence  if  an  equation  containing  x,  y  and  constants  is 

differentiated  once  the  new  equation  will  contain  x,  y,y'  and 
constants,  and  from  the  two  equations  one  constant  may  be 
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eliminated;  the  resulting  equation  will  be  a  differential 
equation  of  the  first  order  and  will  contain  one  constant 
fewer  than  the  given  equation. 

Similarly,  if  the  given  equation  is  differentiated  twice,  we 
shall  have  three  equations  from  which  two  constants  may 
be  eliminated ;  the  resulting  equation  will  be  of  the  second 
order  and  will  contain  two  constants  fewer  than  the  given 
equation ;  and  so  on. 

The  given  equation  is  in  each  case  called  the  complete 
primitive  of  the  resulting  differential  equation  and  we  see 
that  the  complete  primitive  contains  one,  two  . . .  constants 
that  do  not  occur  in  the  differential  equation  when  that 
equation  is  of  the  first,  second  ...  order.  In  the  process  of 
elimination  no  account  is  taken  of  the  particular  value  of 
the  constants;  these  constants  may  therefore  be  called 
arbitrary. 

Ex.  1.     Let  the  given  equation  be 

y  =  Ax*+B,   (1) 
and  differentiate  twice  ;  we  find 

(2) 
(3) 

The  first  differentiation  eliminates  B ;  we  can  eliminate  A  from 

(2)  and  (3),  getting  x&y-Dy=o   (4) 
Whatever  be  the  value  of  J3,  equation  (1)  represents  a  parabola 

with  a  given  latus  rectum  I /A,  and  with  its  axis  lying  along  the 
?/-axis  ;  hence  (2)  is  the  differential  equation  of  all  such  parabolas. 
Equation  (4)  again  is  the  differential  equation  of  all  parabolas  whose 
axes  lie  along  the  y-axis. 

Ex.  2.     Let  the  given  equation  be 

(*-a)*  +  (y-&yW,   (1) 
and  differentiate  twice  ;  we  find 

i   (2) 
0   (3) 

If  we  eliminate  a  and  b  from  equations  (1),  (2),  (3),  we  find 

C2(D27/)2={l+(%)2}3   (4) 

Equation  (4)  is  the  differential  equation  of  all  circles  with  radius  c  ; 
equation  (2)  is  the  differential  equation  of  all  circles  whose  centre  is 
the  point  («,  6)  ;  equation  (3)  is  that  of  all  circles  whose  centres  are  on 
the  line  y  =  b. 
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§  164.  Complete  Integral.  If  in  example  1  of  last  article 
we  suppose  equation  (4)  to  be  given,  and  if  we  pass  from  the 
differential  equation  to  equation  (1)  we  are  said  to  integrate 
or  solve  the  differential  equation.  From  this  point  of  view 
(1)  is  called  the  complete  integral  of  (4),  and  A  and  B  are 
called  the  arbitrary  constants  of  integration. 

Equation  (4)  is  of  the  second  order  and  (1)  contains  two 
arbitrary  constants.  It  is  proved  in  works  on  Differential 
Equations  that  a  complete  integral  exists  for  every 
differential  equation  and  that  when  the  equation  is  of  the 
7ith  order  the  integral  contains  n  arbitrary  constants. 
A  particular  integral  is  one  obtained  by  assigning  a 

definite  value  to  one  or  more  of  the  arbitrary  constants  in 
the  complete  integral.  Thus  y  =  x2  —  1,  y  =  2x2,  y  =  x2  are 
particular  integrals  of  (4)  in  Ex.  1  of  last  article. 

Another  way  of  considering  the  integration  of  a  differential 
equation  may  be  illustrated  thus:  —  Find  a  function  y  (i) 
that  shall  satisfy  the  equation 

(ii)  that  shall  be  equal  to  b  when  x=a  and  (iii)  that  shall 
have  its  first  derivative  equal  to  c  when  x  —  a. 

Since  the  complete  integral  y  =  Ax2  +  B  contains  two 
arbitrary  constants  A,  B  we  can  determine  them  to  satisfy 
conditions  (ii),  (iii).  These  conditions  give 

so  that  A  =  c/2a,  B  =  b  —  ̂  

and  the  function         y  =  —  -&*-{---  — 

satisfies  conditions  (i),  (ii),  (iii). 

For  another  illustration  of  a  similar  kind  see  §  69,  exs.  1  ,  2. 

The  student  should  work  through  the  following  set  of  Exercises  ; 
several  of  the  differential  equations  occur  frequently  in  physical  appli- 

cations. The  primitive,  considered  as  the  integral  of  the  differential 
equation,  is  in  each  case  the  complete  integral.  It  will  be  noticed  (see 
examples  7,  8)  that  the  one  differential  equation  may  arise  from 
different  primitives  into  which  the  constants  enter  in  different  forms. 
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EXERCISES  XXXVII. 

1.    If  y=  Ax  +  B,  then  Z)2y  =  0.    What  is  the  geometrical  meaning  of 
the  equations  Dy  =  A,  D2y  = 

2.  If  y  =  Axn-1  +  Bxn-*+...+Kx  +  L,  a  rational  integral  function 
of  degree  (n-  1),  prove  Dny  =  Q. 

3.  If  y  =  Ax*  +  Bx+C,  then  Dzy  =  0.     Interpret  geometrically 

4.  If  y  =  Ay?  +  Ex*  +  Cx,  then 

5.    If  y=  Ajx  +  B,  then 

6.   If  y  =  A  log  x+B,  then 

7.  If  y  =  A  cos  nx  +  B  sin  w#  or  if  y  =  C  cos(n.x  -  E)  then 

D^y  +  n^y^Q. 

8.  If  y  =  Je"*  +  ̂e-"*  or  if  y  =  C  cosh  w^  +  ̂  sinh  rc#,  then 

9.  If  y  =  Ajx  +  .6  +  #2,  then 

10.  If  y=Acosnx  +  B&iiinx  +  EcQ&px+Fsmpx  where  A,  B  are 
arbitrary  and  w,  ̂ >  unequal,  prove 

D2y  +  n?v  =  (n2  —p2)Ecospx  +  (nz  -p2) 

11.  If  y  =  e~*kx(A  cos  nx  +  B  sin  nx),  then 

12.  If  y  =  e-i**(^eMr  +  5«-"*X  then 
D*y  +  kDy-  (n2  -  %W)y  =  0. 

13.  If  y  =  Ae™  +  Benx,  then 
D2y  —  (m  +  n)Dy  +  mny  =  0. 

14.  If  y  =  (A  +  Bx}  enx,  then 

(Compare  13  and  14.) 

15.  If  y  =  (A  -f  Bx)  cos  nx + (E  +  Fx)  sin  nx,  then 

16.  If  y  =  (4  cos  nx  +  B  sin  nx)]x,  then 
2 '  -     a? 
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17.    If  y  =  (Aenx  +  Be^jx,  then 

18.    If  y  =  mx+a/m,  m  being  arbitrary,  then 

19.  If  xz/(a?  +  k)  +y*l(W+k)  =  \,  k  being  arbitrary,  then 

xy(Dyf  +  (x*  -y2-a?  +  62)  Dy-xy  =  0. 
The  primitive  represents  a  family  of  central  conies  having  the  same 

foci  (confocal  conies). 

20.  Show  that  the  complete  integral  of  equation  (iii)  §  154  is 

f(x)  =  A  sin  (a  sin"1  x)+B  cos  (a  sin"1  x). 

§  165.  Equations  of  the  First  Order  and  of  the  First  Degree. 
We  will  now  state  one  or  two  types  of  equations  which  can 
be  readily  integrated  ;  at  any  rate  their  integration  can  be 
reduced  to  the  evaluation  of  an  ordinary  integral.  So  far 
as  the  theory  of  differential  equations  is  concerned,  the 
solution  may  be  considered  to  be  obtained  when  the  equa- 

tion is  reduced  to  either  of  the  forms 

for  these  equations  give  at  once 

and  the  rest  of  the  work  is  ordinary  integration. 
Type  I.  Variables  Separable.     The  variables  are  said  to  be 

separable  when  the  equation  may  be  written 

where  f(x)  is  a  function  of  x  alone  and  F(y)  a  function  of 
y  alone.     The  solution  is 

Ex.  1. 

-niT-    ,  ndy     mdx 
We  have  — 4  +  -     -=0; 

y+b    x+a 
therefore  n  log  (  y  +  6) + m  log  (x + a)  =  const. , 

or  log  {(  y  +  b)n(x  +  d)m\  =  const., 
or  (  y  +  V)n(x  +  a}m  =  C. 
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Any  one  of  the  last  three  equations  may  be  taken  as  the  solution, 
but  the  last  form  is  usually  the  most  convenient  since  the  integral  is 
algebraic. 

Type  II.  Homogeneous  Equations.  An  equation  is  called 
homogeneous  when  it  is  of  the  form 

where  f(x,  y),  F(x,  y)  are  homogeneous  and  of  the  same 
degree  in  x  and  y. 

To  solve,  change  the  dependent  variable  by  the  substitu- 
tion y  =  vx]  the  equation  becomes 

xDv  +  v=f(l)  v)/F(l,  v 
and  the  variables  are  now  separable. 

Ex.  2.  2#3/% 

We  find  2#*y  (xDv  +  v)  =  x*(\  +  v2), 

whence  dx_Mv=Q 

X       l-V2 
therefore,  log  {#(1  -  #2)  }  =  const.  =  log  (7, 
or  yp—t 

The  equation     (ax  +  by  +  c)  Dy  =  a'x  +  b'y  4-  c' 
may  be  made  homogeneous  by  the  substitutions 

provided  ab'-a'b  is  not  zero.     (See  Exer.  XXXVIII.,  6,  7.) 
Type  III.  Linear  Equations.  An  equation  is  said  to  be 

linear  if  the  dependent  variable  and  its  derivatives  occur 
in  it  only  in  the  first  degree.  The  linear  equation  of  the 
first  order  is  therefore  of  the  form 

where  P,  Q  are  functions  of  x  (or  constants). 

Jp 
Pdx  and  multiply  by  e  J  ; 

then  since 

we  find 

Hence, 

and  therefore  efty  =  I  e^Q  dx  +  C. 

COR.     The  equation  Dy  +  Py=Qyn  may  be  reduced  to  the  linear 
form  by  putting  v=y~n+l  ana  taking  v  as  the  dependent  variable. 
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Ex.  3.  l- 

TT  -r\  00 

and 

1  f   axdx  a 
o\y=/-         —  +€=-===  +  C, -x*      J    _  ,2*         /a 

r™       f Therefore 

and  y 

Ex.  4.  When  an  electric  current  of  strength  x  is  flowing  in  a  circuit 
of  inductance  L  and  resistance  R  subject  to  an  extraneous  electromotive 
force  Ey  the  equation  of  the  current  at  time  t  is 

Lx+Rx=E. 
First  suppose  E  constant,  equal  to  E^  L  and  R  being  constant.  We 
have  D  ra 

Rt          jji    r  Rt  ET    Bt 

and  therefore         e1.?^^   eLdt  +  C=^eL  +  C, Li  j  K, 

and  a-.S 
K, 

When  ̂   =  0  the  current  #=0,  and  therefore  C=  —EQJR  ;  hence 

_Rt 

The  part  EQe   L/R  is  the  extra  or  induced  current  and  dies  away  to 
zero  as  the  total  current  attains  its  steady  value  E^R. 

Next  suppose  E=E0cos(pt  —  a)  ;  then  since 

Rt r 
I 

--  n 

we  find  x—Ce    L  +  p2     °2  ,-2{  R  cos  (  pt  -  a)  +pL  sin(pt  -  a)  }. 

As  £  increases,  the  term  Ce~RtlL  becomes  of  less  and  leas  importance  ; 
the  other  term  gives  the  steady  oscillation.  The  steady  oscillation 
may  be  put  in  the  form 

where   tan  a,  =pL/R.     The   quantity  */(Rz+p2L2)    is   called   the  im- 
pedance of  the  circuit. 
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Type  IV.    Exact  Equations.     The  equation 

M+NDy  =  0,  or,  Mdx  +  Ndy  =  0, 
where  M,  N  are  functions  of  x  and  y,  is-  called  an  exact 
equation  if  Mdx  +  Ndy  is  a  complete  differential,  that  is,  if 
dMfdy  is  equal  to  dN/dx  (§  94).  In  this  case  there  exists  a 
function  11  such  that  du  =  Mdx  +  Ndy^ 
and,  obviously,  the  integral  is  u  =  constant. 

Ex.  5.  Zxy-y*  +  Zx  +  (x2 
Here  M=  %xy  -  y2  +  2,r, 
and  VMfdy  =  2x-Zy= 

so  that  the  equation  is  'exact.  Knowing  that  the  equation  is  exact, 
we  can  readily  arrange  Mdx+Ndy  as  a  sum  of  complete  differentials  ; 

(Zxydx  +  x2dy}  -  (y2dx  +  Zxydy)  +  Zxdx  +  fydy, 
that  is,  d(x2y)  -  d(xy2}  +  d(x2)  +  d(y2), 
so  that  u  —  x^y  —  xy1  +  xz  +  y2, 
and  the  integral  is  x*y  -  xy2  H-  xP+y2  =  C. 

Ex.  6.  l£3-2y2  +  2#yZty:=0. 
This  equation  is  not  exact,  but  it  becomes  exact  when  multiplied 

byl/*».     We  find          _i  > 

and  the  integral  is  (^3+y2)/^2=(7,  or, 
The  factor  1/^p3  which  makes  the  equation  exact  is  called  an  inte- 

grating factor  ;  when  an  equation  is  not  exact  it  may  be  possible  to 
guess  an  integrating  factor  and  thus  integrate  it. 

§  166.  Equations  of  First  Order  but  not  of  First  Degree. 

Let  Dy  be  denoted  by  p',  the  equation,  when  of  the 
vith  degree,  will  have  the  form 

Apn  +  Bpn-l+  ...  +Kp+L  =  0  ...............  (1) 
where  A  ,  B,  .  .  .  are  functions  of  x  and  y  (or  constants). 

If  possible,  solve  for  p  ;  there  will  be  in  general  n  values 

f 
and  each  of  these  equations  when  integrated  will  give  a 
relation  between  x  and  y  that  will  satisfy  (1). 

Ex.  1.  xyp2  —  (x*+ 
Therefore  P=y/%     or 

and  these  equations  have  as  integrals 
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Ex.  2.     Clairaufs  Equation, 
y=xp+f(p} 

This  equation  is  of  a  special  form  and  is  integrated  thus  : 
Differentiate  (i)  as  to  #,  and  we  find 

Hence  either  dpjdx  =  0,  that  is,  p  =  constant  =  C  ;  or 

*+/(*>)  =  0  .................  .  .................  (in) 
The  substitution  of  C  for  p  in  (i)  gives  the  complete  integral 

y  =  Cx+f(C}  .....................  '.  ............  (iv) On  the  other  hand,  if  p  is  eliminated  between  (i)  and  (iii),  we  shall 
get  a  relation  between  x  and.y  that  will  satisfy  (i).  This  relation  is 
not  obtained  by  assigning  a  particular  constant  value  to  C  in  (iv),  and 
is  called  a  Singular  Solution. 
The  singular  solution  is  in  fact  the  envelope  of  the  family  of 

lines  (iv)  ;  for  if  we  eliminate  C  between  (iv)  and  x  +  f(C)=Q,  we 
clearly  must  get  the  same  equation  as  that  called  the  Singular 
Solution  (we  have  simply  interchanged  C  and  p).  As  we  have  seen 
(§  145),  the  gradient  of  the  envelope  is  the  same  as  that  of  the  family 
(iv)  at  their  points  of  meeting. 

For  example,  the  complete  integral  of  y=xp  +  alp  is 
y  —  Cx  +  ajC, 

and  the  Singular  Solution  is  given  by 

§  167.  Equations  of  the  Second  Order. 

Type  I..    D2y  =f(x),  a  function  of  x  alone. 
Integrate  twice  with  respect  to  x  ;  two  constants  will  be 

introduced. 

Type  II.     D2y=f(y\  a  function  of  y  alone. 
Multiply  by  Dy  ;  then  since  Dy  D*y  = 

It  may  now  be  possible  to  integrate  this  equation  of  the 
first  order. 

Ex.  1.     The  equation  of  motion  of  a  simple  pendulum  of  length  I 

is  10=  —  #sin  0.     To  integrate,  multiply  by  0,  then 

When  t=0,  let  0=a,     =0  ;  then 
C—  —  (7  cos  a 
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and          0= 

the  negative  sign  being  taken  because  9  decreases  as  t  increases. 
If  we  put  sin^  =  sin5asin  <£,  we  get  after  reduction 

l  1 

The  integration  cannot  be  carried  further  by  means  of  the  elementary 
functions,  but  t  may  be  expressed  by  an  infinite  series.  The  value  of  t 
for  the  quarter  period  is  KJ(l/g)  [§  156,  ex.  3].  In  general, 

!-V(J)£*i 
Type  III.     D2y  =/(  Zty),  a  function  of  Dy  alone. 
Let  Dy  =  v  and  we  get  Dv  —f(v]  and  it  may  be  possible  to 

find  v,  and  then  y. 

Ex.  2.     The  equation  cD2y=  {l  +(%)2}t  gives  (p.  276) 

x  =  cvj(\  -j-  #2)^  +  a  (constant). 

Then  Dy  =  v  =  ±  (x  -  a)/J{c2  -(x-  a)2}, 

y=  T  /y/{  c2  —  (x  —  a)2}  +  b  (constant), 
or 

§  168.  Linear  Equations.  The  typical  equation  of  the 
second  order  is 

D*y+PDy  +  Qy  =  R  .....................  (1) 
where  P,  Q,  R  are  functions  of  x  alone  (or  constants). 

The  complete  integral  of  all  linear  equations  is  the  sum 
of  two  functions  :  — 

I.  The   Complementary   Function    (C.F.)   which    is    the 
complete  integral  of  the  equation  when  R  (or  in  general  the 
term  independent  of  y  and  its  derivatives)  is  zero.     This 
function  will  contain  two  (when  the   equation  is  of  the 

7ith  order,  n)  arbitrary  constants. 
II.  The  Particular  Integral  (P.I.)  which  is  any  solution 

whatever   of   the   equation   as   it   stands.      This   function 
contains  no  arbitrary  constant. 

We  prove  the  proposition  for  equations  of  the  second  order,  but  it 
is  easy  to  see  that  the  reasoning  is  general  ;  for  the  equation  of  the 
7ith  order  there  will  be  n  functions  like  w,  v,  and  n  constants. 

If  y^=u  and  y  =  v  satisfy 

7)2j/  +  JPZ).y  +  ̂   =  0,  ................................  (2) 
G.C.  2  K 
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so  does  y  =  Au  +  Bv  where  A,  B  are  constants.     For  if 

then  also 

and  therefore  Au  +  Bv  satisfies  (2),  and  since  it  contains  two  constants 
it  is  the  complete  integral  of  (2). 

Next,  if  y=w  is  the  particular  integral,  that  is,  if  w  verifies 
equation  (1)  and  if  Au  +  Bv  is  the  complementary  function,  then 
Au  +  Bv  +  w  will  satisfy  (1  ).  For  when  ij  —  Au  +  Bv  +  w^ 

D*y  +  PDy  +  Q.y  =  D\Au  +  Bv)  +  PD(A  u  +  Bv)  +  Q(Au  +  Bv) 

The  first  line  on  the  right  is  zero,  and,  since  w  satisfies  (1),  the 
second  line  is  equal  to  R.  This  value  of  y  therefore  satisfies  (1),  and 
since  it  contains  two  constants  it  is  the  complete  integral  of  (1). 

The  only  equations  we  consider  are  those  in  which  P,  Q 
are  constants. 

§  169.  Complementary  Function.  The  equatioif  to  be 

integrated  is  D*y+aDy  +  by  =  0  ......................  (3) 
I.  Let  y  =  exx  (X  constant)  ;  then 

(X2  +  aX  +  &)«**  =0. 
If  therefore  X  is  a  root  of  the  equation  (the  auxiliary 

equation)  X*+o\  +  6  =  0    .......................  (4) 
e*z  wjii  satisfy  (3).     The  two  roots  Xlf  X2  of  (4)  are 

and  e*lX,  e^  are  two  solutions  of  (3).     Hence  the  complete 
integral  of  (3)  is 

y  =  Ae^x  +  BeW=e-*ax(Aenx+Be-nx)  ............  (5) 
where  n  =  AJ(^a2  —  b). 

We  must  however  consider  special  cases. 

II.  If  a2  =  46  equation  (4)  has  two  equal  roots,  namely 
X1  =  X2=—  Ja.     In  this  case  (5)  becomes 

and   there   is  only  one  distinct  "constant,  for   we   might obviously  replace  A+B  by  C. 

When  a2  =  46  let  y  =  e~$axu  and  (3)  becomes,  after  reject- 
ing the  factor  e  ~  &*,  j)2u  =  0 

of  which  the  complete  integral  is  u  =  A  +  Ex. 
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Hence  the  complete  integral  of  (3)  when  the  auxiliary 
equation  has  two  equal  roots,  each  =  —  \  a,  is 

y  =  (A+Bx)e-*ax  ........................  (6) 

III.  If  a2  <  46  the  roots  of  (4)  are  imaginary.  Again,  let 
y  =  e-laxu  an(j  equation  (3)  becomes 

D2u+m2u  =  0  ...........................  (7) 
where  ̂ a2  —  6=  —  m2  and  m  is  real.     Now  (7)  is  satisfied 
by  u  =  cos  mx,  u  =  sin  mx  ;  its  complete  integral  is  thus 

u  =  A  cos  mx  +  E  sin  mx, 

and  therefore  the  complete  integral  of  (3)  when  a2  <  46  is 
y  =  e~*axu  =  e~%ax(A  cos  mx+B  siii  mx)  ............  (8) 

We  shall  now  show  how  to  write  down  (5)  and  (8)  when 
the  roots  of  (4)  are  known. 

Let  i  denote  as  usual  /v/(  —  1).  When  the  roots  of  (4)  are 
real  let  Ja2  —  b  —  n2  ;  the  roots  then  are 

- 

and  the  solution  is  y  =  e-*ax(Aenx+Be-nx). 
When  the  roots  of  (4)  are  imaginary  let  Ja2  —  6  =  —  n2  ; the  roots  then  are 

—  %a  +  ni,  —  \a-ni, 
and  the  solution  is 

y  —  e  -  lax(A  cos  nx  -f  B  sin  nx), 
so  that  instead  of  enix,  e~nix  we  have  cosnx,  sinwcc. 

It  should  be  noticed  that  the  auxiliary  equation  is  ob- 
tained by  replacing  D  by  X  and  rejecting  y. 

Ex.  1.  j92#  +  7%-8#=0. 
Aux.  Eq.  A2  +  7A-8  =  0;    X1  =  l,  A2=-a 

Solution  y  =  Ae*  +  Be'**. 

Ex.  2.  D*y  +  Wy  +  l(ty  =  0. 
Aux.  Eq.         A2  +  2A.+  10  =  0;    Ax=  -  1  +  3^,  A2=  -  1  -3£ 

Solution  y  =  e~x  (A  cos  3^  +  B  sin  3#). 

Ex.  3.  IPy  -  2IPy  +  5Z)2y  -  8%  +  4y  =  0. 
Aux.  Eq.  A* 

The  equal  roots  A1?  A2  give  (A+Bx)ex  ;  the  imaginary  roots  2i,  -2^ 
give  J5^cos  2#  +  /^sin  2.T.     Hence  the 
Solution 
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§  170.  Particular  Integral.  The  most  important  practical 
cases  are  those  in  which  R  is  a  sum  of  terms  of  the  form 

Le°*,  L  sin  ax,  L  cos  ax  ;  the  simplest  method  of  finding  a 
particular  solution  is  by  substitution.  Equation  (1)  is  now 

D*y  +  aDy  +  by  =  R  ........................  (9) 

I.  R  =  Le^.  Let  y  =  Ce^  and  try  to  find  C  so  that  equa- 
tion (9)  shall  be  verified.  We  find 

and  Ce**  will  satisfy  (9)  if  C  =  L/(a2+aa 
There  are  exceptional  cases,  however. 

I.  (a).  If  a  is  a  root  of  the  auxiliary  equation  (4)  then 

and  the  value  of  C  is  infinite.  In  this  case  try  Cxe"*  or 
Cx^e0*  according  as  a  is  a  single  or  a  double  root  of  the 
auxiliary  equation. 

Ex.1. 

Aux.  Eq.  A2-2A  +  1=0;    A  =  l  twice. 

To  find  P.I.  take  e*  and  ezx  separately  ;  that  is,  since  the  coefficient  of  x 
in  e*  is  1,  and  1  is  a  double  root  of  Aux.  Eq.,  try  Cx2e*t  for  P.I.  corre- 

sponding to  ex,  and  Ee2*  for  P.I.  corresponding  to  e'2x.  Hence  we  put 

and  the  equation  becomes 
2 

so  that  (7=|,  E=I,  and  therefore 

The  part  corresponding  to  e2*  may  be  obtained  at  once  by  direct 
application  of  I.     The  complete  integral  is  now 

=  (A  +  Ex)  e*  +  £tf  V  +  e**. 

II.  R  =  L  sin  ax  +  M  cos  ax. 
Take  as  trial  solution 

y  =  E  sin  ax  -f  ̂cos  ax. 
We  find 

(~a*E-aaF+l>E)  sin  ax  +  (-a2F+aaE+bF)  cos  ax 
=  Z  sin  ax  +  M  cos  ax, 
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and  the  equation  will  be  satisfied  if 

(b-a*)E-aaF=l',    aajE+(b-a*)  E 

= or  ̂  

If  a  =  0  we  get 
# 

but   this   solution  fails  if  a2  =  &,  that  is,  when  the  com- 
plementary function  is  A  cos  ax  +  B  sin  ax.     We  have  then 

II.  (a).  If  a  =  0  and  a2  =  b  it  will  be  found  on  trial  that 
L  ,  M     . 

P.I.  =  —  ~-  x  cos  ax  +  ̂ -x  sin 2a  2a 

when  .R  =  L  sin  a&  +  If  cos  ax. 
Ex.  2.     The  equation 

x  +  kx-\-^x  —  ac,o»(nt-a}  ...........................  (i) 
is  typical  in  dynamical  and  electrical  theory. 

C.F.  is  easily  found.     To  find  P.I.  try 

x=Ecoa(nt-a)  +  Fsin.(nt-a),  ......  .  ...............  (ii) 
and  we  find  by  substitution  in  (i) 

(  -  n2E+  1cnF+  pE}  cos(nt  -  a) 

+  (  -  n?F-  knE+  pF)  sin  (nt  -a)  =  acos(nt-  a). 
Hence  (ii)  will  satisfy  (i)  if 

(p  -  rc2)  E+  knF=  a  ;    -  lcnE+  (//,  -  n2)  F=  0. 

T,       f  „         (ii-nz)a          p_         kna 

~  0*  -  w2)2  +  kW  ;        "  0*  -  w2)2  +  Pn? 
„  _  a  {  (/x  —  w2)  cos  (nt  —  a)  +  kn  sin  (nt  —  a)  } 

=  a  cosrc*  -  a  - 

where  tan  04  =  ̂-w/(/x  -  ?i2). 
If  £=0  and  w2  =  ju,,  we  have  II.  (a).     In  this  case a  ,   .    /          v 

P.I.  =fZ-t  sm(nt  -  a). 

III.  If  ̂   is  a  rational  integral  function  of  x  we  may  put 
for  y  a  rational  integral  function  and  try  to  determine  the 
coefficients  so  as  to  satisfy  the  equation. 

§  171.  Simultaneous  Equations.  We  will  illustrate,  by 
solving  one  or  two  examples,  some  methods  of  integrating 
simultaneous  ordinary  differential  equations,  the  number  of 
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equations  being  equal  to  the  number  of  dependent  variables. 
We  take  t  as  the  independent  variable  and  restrict  our- 

selves to  two  dependent  variables,  x  and  y. 

Ex.  1.  x=  -toy  ;  .......................................  (i) 
y  =  (a.v  ...........................................  (ii) 

Differentiate  (i)  and  substitute  for  y  its  value  ux  given  by  (ii)  ;  we 
thus  get  an  ordinary  equation  with  one  dependent  variable,  namely, 

=0,  of  which  the  integral  is 

x—A  cos  d)t  +  B  sin  wt  or  ,r  =  (7cos(a>£-  E)  ..............  (iii) 
The  value  of  y  is  now  found  from  (i)  ;  we  get 

y  =  A  sin  (Dt  —  Bcoswt  or  y  =  Csin(u)t  —  E)  ...............  (iv) 

It  should  be  noticed  that  although  A  and  B  are  arbitrary,  yet  the 
constants  in  y  are  determinate  as  soon  as  those  in  x  are  chosen.  If, 
however,  (i)  contains  x  alone,  and  (ii)  y  alone,  the  constants  in  x  do 
not  condition  those  of  y.  Thus  the  equations 

give  x=  A  cos  <oif  +  -Z?  sin  o>£,  y  =  JiJ  cos  a)t  +  F  sin 
and  there  is  no  relation  between  A,  B  and  E,  F. 

Ex.2.  *  +  &e-3y  =  0  ............  (i);   #  +  15#-7y  =  0  .....................  (ii) 
Differentiate  (i);  #  +  5;c-3#  =  0  .................................  (iii) 
From  (i),  (ii),  (iii)  we  can  eliminate  y  and  y  ;  we  find 

#-2#+  10#=0,  ...............................  (iv) 
of  which  the  integral  is 

#=  e*(^l  cos  3^  +  5  sin  3£)  ...........................  (v) 

Equation  (i)  now  determines  ?/,  namely, 
,  ........  (vi) 

If  (i),  (ii)  had  each  contained  both  x  and  y,  we  should  have  differ- 
entiated both  (i)  and  (ii),  and  from  the  four  equations  we  should  have 

eliminated  the  three  quantities  y,  $,  y. 

Ex.  3.     As  the  last  example  we  take  the  equations 

P,  ...................................  (i) 

Q,  ..................................  (ii) 

which  connect  two  mutually  influencing  electric  circuits,  x  and  y 
denote  the  currents,  L  and  N  the  self-inductances,  M  the  mutual 
inductance,  R  and  S  the  resistances,  and  P  and  Q  the  extraneous 

electromotive  forces.  The  product  LN  is  greater  than  M2. 
We  may  proceed  as  in  example  2  by  differentiating  (i)  and  (ii)  and 

eliminating  y,  ?/,  y  ;  but  we  will  illustrate  another  method.  The  prin- 
ciple of  complementary  function  and  particular  integral  evidently 

holds  for  simultaneous  linear  equations  ;  P,  Q  are  either  constants  or 
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functions  of  t,  and  we  may  apply  the  principle  to  (i)  and  (ii).     The 
complementary  function  is  thus  obtained  from 

Lx  +  My  4-^=0;  .................................  (iii) 
Mx  +  Ny  +  Sy  =  0  ..................................  (iv) 

Let  x  =  Ae)d,  y  —  BeKi  where  J,  B  are  constants,  and  substitute  in 
(iii),(iv).     We  find          (L\  +  R)A  +  MKB=Q;  ...........................  (v) 

MXA-\-(NX  +  S)B=0  ............................  (vi) 
If  we  eliminate  the  ratio  A  :  B  from  (v)  and  (vi)  we  get  the  condition 

that  (v)  and  (vi)  should  be  simultaneously  satisfied,  namely 

or  (LN-M*)\*  +  (LS+NK)\  +  RS=Q  ...................  (vii) 
The  roots  of  (vii)  are  real  ;  for 

(LS  +  NX)2  -  4  (LN-  M2)  RS=(LS  -  NR)2  +  4M2RS, 
so  that  the  discriminant  of  (vii)  is  positive.     Also,  since  LN>M2,  the 
roots  of  (vii)  have  the  same  sign  ;  both  are  negative.     If  we  call  them 
-  AJ,  —  A2  and  take  the  constants  as  A^  A2  and  Blt  B2  we  g6^  f°r 
the  solutions  of  (iii),  (iv), 

x=Ale-W  +  A2e-^t,    y=Ele-**t  +  B&-W  .............  (viii) 
£l  is  connected  with  Alt  and  B2  with  A2  by  equation  (v)  or  (vi),  that  is, 

B^A^R-LXJ/MXv  B2=A2(R-LX2)/MX2. 
If  P,  Q  are  constants,  the  particular  integrals  are  clearly 

and  these  added  to  (viii)  give  the  complete  integrals  of  (i),  (ii). 
The  only  other  important  case  is  that  in  which  P  =E0cos(nt  -a) 

$=0,  and  the  particular  integral  is  found  by  assuming  as  a  trial 
solution, 

y  —  G  cos(nt  -  a)  +  -£Tsin(^  -  a), 
and  determining  the  constants  E>  F,  G,  II. 

The  equations       x  +  ky  +  c2x=Q,  y-kx  +  c2y  =  Q, 
are  the  equations  for  the  small  motions  of  the  bob  of  a  gyrostatic 
pendulum  (gyroscope  axis  along  suspension),  and  also  the  elementary 
equations  of  motion  of  an  electron  in  a  magnetic  field  in  the  theory  of  the 
Zeeman  effect.  (See  Gray,  Magnetism  and  Electricity,  Vol.  I.,  §  565. 
In  Chapter  X.  of  this  work  will  be  found  several  instructive  examples.) 

• 

EXERCISES  XXXVIII. 

Integrate  equations  1-16. 

1.    (1  +*")%  =  !  +y»;  2. 

3.   y-xDy=m(y*  +  Dy)\  4. 

5.    xDy-y^J^+f};  6. 

7.   (ax+by  +  c}Dy  =  m(ax  +  by)  +g  ;  Keplace  y  by  the 



440      AN  ELEMENTARY  TREATISE  ON  THE  CALCULUS. 

substitution  r\  =  ax  +  by. 

8.    (ax+by  +  c}Dy  =  fx-qy+g  ;       9. 
10.   xDy+y=x;  11. 
12.    (l+^2)Z)?/  +  2^=^2;  13.    Dy  +  ay  =  cos 

14.   #  Zty  +#  =  xPy6  ;  15.   #2./>y  4-y2  =  xy  ; 
16.  #(#2-y2-&2)Zty+^(.r2+#2-a2)=0. 
Find  the  complete  integral  and  the  singular  solutions  (where  they 

exist)  of  equations  17-19. 

17.  (y  -  pxj-  =  «2j02  +  62  ;        18.  y  =  px  +  p3  ;        19.   a?  (y  -  px)  =yp*. 

Solve  equations  20-27. 

20.  Z>2y-(a  +  6)%  +  <%  =  0;          21. 

22.  Z)2?/-6/ty  +  l(ty  =  sin2#;  23. 

24.  Z)2^  +  ̂ 2y  =  a  cos  ft.#  +  b  sin  n#  ;   25.   D2y  —  ri*y  =  ae™  +  be~nx 
26.  D23/-6%  +  13y=^2;  27. 

Integrate  the  simultaneous  equations  28-31. 

28.  £- 
29. 
30. 

31.  ̂ -3^7-.4   = 

32.   Integrate  the  equations  #=0,  y=  —  #,  determining  the  constants 
so  that  #  =  0,  y  =  0,  cc=  Fcosa,  y=  Fsina  when  ̂ =0. 

33.    Integrate  the  equations  #=-/z#,  y=  —  /xy,  choosing  the  con- 
stants so  that  x  —  a^  y=0,  x  =  Q,  y  =  bfjfj,  when  £=0. 

34.  Integrate  the  equation  #=  -/z/#2,  choosing  the  constants  so 
that  #=#,  x  =  0  when  ̂ =0. 

35.  The  equation  BD^y—w  occurs  in  the  theory  of  the  bending  of 
beams,  B  being  the  flexural  rigidity  and  w  the  weight  per  unit  length  ; 
integrate  the  equation  under  the  conditions  : 

(i)  y  =  0,  Z)2y  =  0  when  #=0  and  when  x=l  ; 
(ii)  y  =  0,  Zty  =  0  when  #=0  and  when  x  =  l  ; 

(iii)  y  =  0,  %  =  0  when  x=0  and  />2#  =  0,  Z)3y=0  when  #=Z. 

36.  The  plates  of  a  charged  condenser  of  capacity  C  are  connected 
by  a  wire  of  self-inductance  L  and  resistance  R  ;    if  at  time  2  the 
difference  of  potential  between  the  plates  is  F,  then  V  satisfies  the 
equation 

CLV+  RCV+V=0, 

and  the  current  y  is  -CV.     Show  that  the  discharge  will  be  oscil- 
latory if  C7S!2<4Z,  that  the  period  T  is  given  by 

and  that  the  logarithmic  decrement  of  the  potential  is  RT/4L. 
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37.  Integrate   the   equation  D1y  +  -Dy  +  ri2y  =  Q   by  changing   the OG 

dependent  variable  from  y  to  u  where  u=xy. 
Give  the  complete  integral,  and  also  the  integral  which  remains 

finite  as  oc  converges  to  zero. 

38.  Show  that  the  complete  integral  of 

x*D*y  +  ax  Dy  -\-by-0 

is  y  :  =  Ax*-1  +  Bate 
where  \ly  A2  are  the  roots  of  the  equation 

Take  as  trial  solution  y=xK  and  proceed  as  in  §  169. 
39.  Integrate 

(i)  xDzy  +  Wy  =  §x  ;     (ii)  x*D*y  -  Zx*D2y  +  SxDy  -6y=tf; 
(iii)  x^D^y  —  ̂ y  —  x. 

40.  Integrate  the  equation 

x^IPy  +  x  Dy  +  nzy  =  0 
by  changing  the  independent  variable  from  x  to  6  where  x=ee.  The 
equation  for  A,  corresponding  to  that  of  example  38,  has  in  this  case 
imaginary  roots. 
At  d  (  dw    nw\ 
41.  Integrate  (4.3       =0. dr\dr       r  J 

d*V    IdV 
42.  Integrate r  dr 

43.    Find  Dy  from  the  equation 

44.  If  y=uv,  where  u,  v,  are  functions  of  x,  show  that  the  linear 
equation 

D*y  +  PDy  +  Qy  =  R  ..............................  (i) 
becomes,  the  accents  denoting  ̂ -derivatives, 

vv"  +  (2v'  +  Pv)u'  +  (v"  +  Pv'  +  Qv)u  =  R  ..................  (ii) 
It  follows  that  if  v  is  any  solution  of  (i)  when  /2  =  0,  the  value  of  u 

(and  therefore  of  y)  can  be  found  ;  for  the  coefficient  of  u  is  zero,  and 

(ii)  is  linear,  and  of  the  first  order  when  u'  is  the  dependent  variable. 
45.  Integrate 

Put  y=xu. 



ANSWERS. 

CHAPTER  I. 

§  5,  p.  6.     1.  3*  ;  2  ;    -3  ;  4  -56.         3.  (i)  +  ;  (ii)   - 
§  6,  p.  9.  2.  The  locus  in  each  case  is  a  straight  line  :  in  cases  (i),  (ii), 

(iv)  the  line  is  perpendicular  to  the  axis  of  abscissae,  and  in  (iii)  the 
line  is  the  axis  of  ordiiiates.  When  the  ordinate  is  given  the  lines  are 
parallel  to  or  coincident  with  the  axis  of  abscissae. 

4.  (i)  +  ;  (ii)  -  . 

§  7,  p.  10.  2.  (i)  ̂ 5;  (ii)  VH;  (iii)  x/5;  (iv)  2^13;  (v)  37rx/2/2  or  (i)  2'24; 
(ii)  4-12  ;  (iii)  2'24  ;  (iv)  7'21  ;  (v)  6  '66 

Set  I.,  P.  19. 
1.  1,1,1.  2    (ax  +  b)*-(ax 
9.  a^-S^+l;  x*-5x?+I-,  sin2#-5sin#  +  l  ;  -2'04. 
9.  ay2  +  byx  +  c  ;  ax"  +  bx2  +  c  ;  ay2  +  6y2  +  c. 

CHAPTER  II. 

Set  II  ,  p.  29. 
1.  A,  C,  D  on  curve  ;  B,  E  not  on  curve. 

2.  Y'OY  is  an  axis  of  symmetry  for  (i),  (iii),  (vi),  (vii).    Point  (1,    -  1)  lies 
on  (i),  (ii).     a  =  0. 

3.  Turning  points,     (i)  (0,     -1);    (ii)  (0,     -1);    (iii)  (0,  1);    (iv)  (f,  f)  ; 

(v)  (~Y>   I);    (vi)  (f,   i).       Abscissae   (i)    -1,   1;     (ii)    --^,  ~; 

(iii)  -jg  ̂;   (iv)0,f;  (v)  £(  -  1±^5)  ;    (vi)  i  1. 
6.  (i),  (ii),  (iv).     In  (iii)  y  is  imaginary  when  x  is  negative. 

Set  III.,  P.  32. 
1.  (i)    -  1,  2  ;  (ii)  |,   -  1  ;  (iii)  -  f  ,    -  1.         3.  C  lies  on  line. 

6.  (i)x  +  y=3;  (ii)a;  +  y  =  l;  (iii)  x  +  y  =  Q;  (iv)  3#  -  2y  +  6  =  0. 
7.  y  =  2x-5.  8.  y-b  =  c(x-a).  1O.  (1,  1),  (  -3,  9). 

Set  IV.,  p.  41. 
8.  (i)  -2-84,  -44,  2-40;  (ii)  -3'14.  9.    -1-98,    -  '06,  2.06,  3'98. 
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CHAPTER  III. 

11.  (i),   (ii)Vl5.  14.    (i)          ;   (ii) 

16.  The  equation  is  equivalent  to  y  +  1  =  ±  \(x  -  3). 

Set  VI.,  P.  60.  - 
12.  (i)  an  ellipse,  (3,  -4),  2a  =  6,  26  =  4;  (ii)  a  hyperbola,  (-11,  5),  2a  =  4, 

2O.  (i)  a&/v/(a2sin20+'&2cos20)  which  may  be  written  b/Jll  -e2cos20)  when 

(ii)  (1  -ecos0)(a&/^(a2sin20  +  &2cos20)  =  &(l  -ecos0)/N/(l  -e2cos20); 
(iii)  &(l  +  ecos0)/x/(l  -e2cos20). 

CHAPTER  IV. 

§  32,  p.  67.     4.  The  values  of  fyj/So;,  are  in  order  331,   315  '25,  303  '01, 
300-3001,  300-030001. 

5.  The  values  of  Syj/So^  are 
(i)  -015038,  -015077,  '015100,  -015107  ; 
(ii)  -008594,  -008661,  -008701,  '008713. 

6.  The  values  of  8ylldxl  are 
(i)  -001332,  -001334,  -001335,  "001336  ; 
(ii)  -005950,  -005990,  '006028,  '00603. 

§  37,  p.  74.     1.  0,  |0,  g,  2g.  2.    -a/v^ 

CHAPTER  VI. 

§  53,  p.  106.      -  10,   -  4,  0,  2,  8. 

§  57,  p.  111.     2.  5£4,  -4/£3,  3/2^,  -2T*. 

4.  x5,  f**,  Va,  -  1/ic,   -  3/4a;4. 

Set  VIII.,  p.  115. 

1.  21a;2+  10^  +  4.  2.   112z-10.  3.  3#2-4a;-5. 

11  3    /  .         1  \2/a:+l\ 
4.  up-*,?.         ••g^-gjp-         *W«I-^j(—  }: 7.  n71-1-^-*1-1.        8. 

O.  fc 

11.  (acZ-6cc<!  +  d2.  12.    - 
13.  2^5 

-  2) 

-  m  r\277"  ">\2- (t+  I  )   (t  +  Z) 

17.  Abscissae  of  turning  points  (a)  -^,  (6)  ±1,  (c)  0,  ±1. 

18.  (i)z2-a:  +  C';  (ii)    ̂ +    +  C*;  (iii)    aa;3  +  ?bx2  +  ex  +  C. X 

19.  y  =  ̂x3-  ̂ x~  +  x.  21.    Vt-^gPieet. 
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Set  IX.,  p.  119. 

r        3- 4.  a2(a2-a?3r^         5.  a2(a2  +  ic2)~i  6.  (a*  +  i&)/v  (a*2  +  &#  +  c). 
-2x 

(a;  +  7)(a:+l)2  _       (ma;  -nx  +  mb-  no)  (x  +  a)m~l 

(a;-!)6 
—     *^  22  22 

15.    -(2#  +  2y-5)/(2a;  +  2i/  +  l),  grad.  =  1.    16.  a,  b-ct  ; 
c2      ..         my -  ---^- ...        -        ....  .....  .. 

17.  (i)  --  r;  (ii)  —  s  --  ;  (m)  --„;  (iv)  ---^-. 
y  -  b  2y  x2  nx 

18.  -  19-     ̂ n-  ao- 

Set  X.,  p.  125. 
3. 

CHAPTER  VII. 
Set  XI.,  p.  131. 9  OTT 

1.  3(cos3a;-sin3a;).  2.     -cos  —  (x  +  b). Cb  ds 

3.  m  cos  wa;  cos  nx  -  n  sin  mx  sin  wx.     4.  a:  cos  a;.    5.  arsina;.     6.  sin2o;. 

7.  cos2#.  8.  cossx.  9.  sin3a;. 

11.  -sin(ax  +  6).  12.  -tan(aa;  +  6).  13. a  ct 

14.     #  -     sin  2a\  15.    -  3^  cos  6#  -  ̂  cos  2x. 

16.  -2acos(aa;  +  6)8in(aa;  +  &).       17. 

18.  cos2xj,Jsin2x.  19.  sin  a;  (3  -  cos2a:)/cos4a;. 

2O.  sina;/(l+cosa;)2.  21.  2sin#/(l  +cosa:)2. 

22.  (cos  x  -  sin  x  tan2o;)/(l  +  tana;)2. 

25.  (i)  t  =  -{(N+^)ir  +  e},  s  =  0;   (ii)  t  =  -(tfir  +  e),  s=  ±a  where  N  is  any 

integer. 

26.    -  a  sin  £,  6  cos  ̂   ;  tan  0  =  -  (b/a)  cot  «. 

28.  &tan(z/&);  (a?/2b)  sin  (2a?/6). 

36.  For  cosa:  the  inequalities  are  not  changed  ;  for  sin#  put  >  in  place  of  <.. 
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Set  X7L,  p.  134. 

1 .        77i t\.  o% .  3 . -1 

4. 

•>•  "»-'• 

5. 

8 

x 

3. 

6. x 

l+x* 

tan"  I  -/s  ). 

'  x/3 

Set  XIII.,  p.  139. 

1.  l+log#.  2.  xn~1(l+nlogx).         3.  cota?. 

6.  2/cosx. 
1 

1 

18.  -eax. 
a 

(?       _E\  //  ? 

e«  +  e"«)/(e«_ 

5.   I/sin  x. 

8«    a/l\€L    —  v 

11. 

14. 

17. 

22. 

Set  XIV.,  p.  146. 

2. 

4. 

y  («)  =  (-l)n(n\)(x-l)~n'l 

6.  y(")=  - 

6.  y(w)  =  a;2 

7.  =si 

-a2)' 

12.    -2e-a;sina; 

1  ,      x-a 

4.    -  tan  x. 

7.  2/sin#. 

.  (x+l)e*. 
xe 

2     f 
21.  a;  • 

-  12  ;  168. 
3. 

similar  terms. 

where  d  =  x  +  mr/2. 

x'          xn 

10.  ex{y?  +  2nx  +  n(n-l )}. 

13.  y"  =  Q  when  x=  -  1IJ3  or  + 

9.  ex(x  +  n). 

12.  Ex.  1.  x  =  -?T-,  Ex.  2. 

23.    -i  24 
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CHAPTER  VIII. 

§  70,  p.  157.      -  67  x  10-6,  50  x  10-6. 

Set  XV.,  p.  159. 

1.  aF/OP2.  3.    -dpjdx^gp. 
4.  -  dNjdt  is  the  time-rate  of  decrease  of  the  number  of  lines  that  pass 

through  the  circuit  ;  or,  the  time-rate  at  which  lines  are  withdrawn 
from  the  circuit. 

5.  E=fiC+LdCjdt.  6.  X=-dEfdx. 

7.  (i)  £log(  Vi)  5   (ii)  k(  V-Y  -  <  -*)/(!  -  7)  or  (p1v1  -  p^)f(y  -  1). 

CHAPTER  IX. 

Set  XVI.  a.,  p.  176. 

1.  x=  -I,  max.;  x  =  2,  min.  2.  x=l,  max.;  x  =  3,  min. 

3.  x  =  Q,  min.;  #=  -4/7  max. 

4.  #=  -a,  max.;  #=  -^-a,  min.;  #  =  ̂a,  max. 
5.  x=  -  1,  min.;  #=1,  max.  6.  #=  -  1,  max.;  x  =  ̂,  min. 

7.  a;=  -  1,  min.;  x=l,  max.  if  a>0.  8.  ce=  -  1  min.;  x=l  max. 

9.  x  =  ̂a,  max.  1O.  x=  --g-,  miu.  ;  x  =  ̂,  max. 
11.  or  =  c,  min.  if  6>0.  12.  No  max.  or  min. 

13.  mmnn{k/(m  +  n)}m+n.  15.  (a  +  6)2/c  ;  4a&/c2. 
16.  (771^  +  ̂ 12^2+  •••)/(mi  +  w2  +•••)•  ie-  3a6c. 

2O.  aftc33;  3cP(a&c)^  2O.  2a6. 

Set  XVI.  b.,  p.  177. 

2.  |  (a  -|-  \/a2  +  862). 

3.  •$  (a  +  b  -  v  a2  -ab  +  62). 

11.   ~o-rf;  ̂ r^-       12.  Ttd;  ̂ d.          13 

14.  a/V'2.  16.  AP:PB=a:b. 

Set  XVI.  C.,  p.  179. 

10.          a.  12.  ̂ 4P2  :  P^-a3  :  68 

13.  (i)  tan^;  (ii)  ;  (iii)  17.  18.   - ao-  s? 
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Set  XVII.,  p.  182. 

1.  Origin  a  point  of  inflexion  on  (i),  (iii),  (iv).  2.  x=  ±—r« 

3.  x  for  points   of  inflexion  (i)    dba/^/3;    (ii)  0,    ±c\/3;    (iii)    ia/^/3; 
(iv)  0,  ±  aJ3. 

5.  The  origin.  7.   (i)  0,  IT  ;    (ii)  I,        ;   (iii)  0,  TT. 

9.  <i)*  =  2,<ii)*=±-  10.  *  = 

11.  &*  +  c-20=?i7r  (§  75,  Ex.  4). 

CHAPTER  X. 

Set  XVIII.,  p.  201. 

9.   (1 

IA.\  i«2+Q1    „(  ,,29-2  cot  a      ,20icota\      /e-%   1    . 
W  4a  wu»<^v«  —  e  ,/;  (o)  -go, 

10. 

CHAPTER  XI. 

§  91.  p.  218.     2.  axl 
3. 

4. 

Set  XIX.,  p.  239. 
=  ».  3. 

CHAPTER  XII. 
Set  XX.,  p.  253. 

1.  2-137812.  a.   -226074.  3.  2-188920. 

4.  2-588968.  6.   -057014;  1-46765.     6.  1-895494. 
7.   -739085.  8.   1-1656;  4-6042.         9.  91-9^1'. 

10.  (i)  4-730  04  ;    (ii)  1  -875  1.  11.  5'600  257,  or  in  deg.,  320°  52'  16". 
13.  x  =1-996,    y=-909. 

Set  XXL,  p.  260.     2.   1-57  in. 

CHAPTER  XIII. 

§111,  p.  266.     1.     a;     2V*;     f(3*-4);      V(3#-4);    sin-1- 

8.  2;     0;     1;     log(62/a2);      -log  3. 
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Set  XXII.,  p.  269. 

3. 

6. 

8. 

1O.  Y^-  sin  3#  +  f-  sin  a;. 

x-2)(x-3) ' 

2. 
5. log(2a:-l). 

9 

11 

12.  §«  -  -j-  sin  2a?  +  3*5-  sin 
sn 

14. 

16.   7T/4.  17.   7T/4. 

20.  l-log(f).         21.  7T/6. 

j-  sin  2(a#  4-  &)• 

13.  ̂   sin  x  - 15.  ya?+ 

18.  7T/8.  10.  |  log  3. 

22.  7T/2.  28.   (iii)  4?ra6c/3. 

1. 

4. 

7. 

Set  XXIII.,  p.  280. 
2 

;/23tan~  VV23 

\  .   _,/2x-a\  . 
)'       2-  sm     I  ---  )•  3-  log  (a;  - 

8  — 
2a?2  + 

9. 

1O.  logsinx.  11.  log(l  +sina7).  12.  log  (x  +  sin  x). 

13.  ̂   tan3  x  -  tan  #  +  x.  14.  —  -j-  cot4  x  +  ̂  cot2  x  +  log  sin  #. 

15.  -rtan'1!  -  tana;  }•  16.    -  cos  x  +  cos3  x  -  f  cos5  x  +  \  cos7  #. 

17.    -  ̂  cos5  a?  +  y  cos7  a;  -  •§•  cos9  #.       18.  tan  a;-  cot  a;. 

19.  Jsec4a;.  2O.  2J(a-x){j(a-x)*-^a(a-x). o  /o  Kx  — 
-1-     - 

21.   - 

23.   (i)  8/15; 

(v)  |  log  2; 

-x).         22. 

(ii)  8/315; 

1  \ 

T   —  J 

(iv)  Jlog.3; 

24. 

(iii)  ir/ab  ; 

(vii)  2^/3^3  ;       (viii)  Tr/2. 
1  /  2x  +  1  \ 

/gtan-1[  —  J?")'      25-   ̂ -2tan-1a;. 

26.  -|(#-l)3  +  21og(.c2  +  2a:  +  3).  27.  f  log  (x2  -  2)  +  J  log  (x2  +  2). 

28.   a?  +  41og(a;~l)-4/(a;-l).  29.  sin'1^-  v/(l  -a;2). 

log  (;« 30. 

32. 

31. 

88. 

ax). 
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34.   VA-1         M  35.    _N/IS  -1).  36- 

37.     -  88.    1  fog  (-*LY          39.  * -  '" 

4O.  ̂ a;  +  ̂log(sina;  +  cosa;).  41.  |a;  -  J  log  (sin  a?  +  2  cos  a?). 

42.  (i)  7T/4;    (ii)  w/2  ;    (iii)  7r/4  ;    (iv)  7r/(l-r2)  or  7r/(r2-l)  according  as 
r-2  <  1  or  r2  >  1  ;  (  v)  a/sin  a  ;  (  vi)  7r/2V(  1  -  #0  ;  (  vii)  J  log  3. 

43.  (i)  7T/2  ;  (ii)  -  7T/2.     45.  8a2/15.     46.   Each  =  2a2/3.     47.  |(2a2  +  62)7r. 

Set  XXIV.,  p.  288. 

1.   -(x+l)e-*.  2.   -(xs  +  3x'2  +  6a?  +  6)e-*.  8.  sin  a;  -  a;  cos  a;. 
4.  a;  sin  re  +  cos  x.  5.    -  J  x  cos  2ar  +  1  sin  2x. 

Xti+I  Xw+l 

6.    -#2cos#  +  2:csm;e  +  2cos#.  7.  '    —  r  log  x  -  p—  --r^- W  +  1  (71  +  1  ) 

8.  |  (log  #)2.  9.    -!e-*  +        - 

10.  e*/(l+a?).  11.    -±e-x\  12.  asin^ic  +  ̂ l  -a3). 

13.  «tan-1a7-|log(l+x2).  14.  ̂ sm^x-  ̂ am^x  +  ̂x^l  -a;2). 

15.      tl+a^Jtan-^-a?.  16. 
17. 

18.      (x-  a)v'(2aa;  -  x2)  +    a2  sin  '  1          - ft 

10.  I  (a;  +  a)v/(2ax  +  a;2)  -  -^a2  log  (a;  +  a  +  \/ 
*Y  m  TI  i*  ^  ~"  ̂  20 *Y  m  TI  i*  ^  ~"  ̂  

.   I  sin  -1  x  -?xj(l-  x2).      21.   !+-—  '       22.  -^g-  (4  sin  4z  -  3  cos 

23.  -%  (cosh  a;  sin  x  +  sinh  a;  cos  a;).          24.  -g-  (cosh  a;  sin  a?  -  sinh  a;  cos  a;). 
25.  357T/256,  57T/16,  37T/256,  4/35,  7ir/256,  13/15  -7r/4. 

26.  7ra4/16,  7ra3/2,  5ira4/8.  27.   (7r-2)a2/4, 
28.  m!  n\l(m  +  n  +  \)\.  33.  m!  n!/(m  +  n)!. 

34.  7ra6/32,  (2l7r/32-28/15)a6.  36.32^2/15.  37.   vra2. 

39.  4a(l-cos0/2).    4O.  ̂ ad^(\+d^  +  \a\og(d  +  i»J\+e^.    41.  (r-  a)  sec  a 

Set  XXV.,  p.  296. 

2.   15x2-51og(^-l)  +  801og(x2-4).         3.  Z(g  _          _  g)  log  (a:  -  a). 
1      1,1,      *-l  11  - 

-2aTTT  +  4loSa7Tr  6"  2^2  +  i 

JL  _L     1  _L     A/^_    J_,i    x~l\ 
6<16(ar+l)2     16(^-l)2+16\a:+l+a;-l"f    >gar+l/' 11  °  1  1  9ar  —  1 
"'  8'  2-  " 

Q.C.  2  F 
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11  ^  2x  -  1 - 9. - 

J'2         ,  x      1  ,      x-l  1/1,       i*l.       i 
11.  Vtau"1-75  +  ̂   log  -    T.  12.  -s  —  ro    rtan-1r--tan- 2    6      3  a;  +  1  o?-b2\b  b     a  a 

I  x*+b2  I      (  ,x    ,,        ,x 
13  '  " 

1  1  1  1  1  -  x 

15.   ̂ log(a;-l)-glog(a;2+l)-2tan-1a;  +  -  j—  3. 

JL<       i  3 7' 

16  2       a;2  +  2a;  +  5    8 

1          a        a2     a3 

1  ,  3  sin  a;  12  +  cos  x     I  .      1  -  cos  x 

19.        tan-1--  20.         log  +  g  log 
3  ^,        , 

O  1  __  .  -  _    ._  ̂     ,  ____  ^*  .  T.  T  TflTl  ~ 

64 J_  i 
2'  2a     S 

23. 

8  11 -  " 

75  •          150  •"     r* 
i      f/i  ,\»t»-* 

26.  2/a;-2tan-a;.  27. 

28. 

2 , 

29-  P'  30 
l 

33.         (a  +  bx^(a  +  bx-a(a  +  bx^).      34. 

85.   (2ic2-l)v/(l  +  *2)/3arJ.  36.    -  (a  -  xf 

I     ,      1  +  tan  x  -  v/2  tan  a;      1         _  i  /  /?n- 
Ti  log  -      /-         +-Fitan  !{v2tana?-l) 

:    \/2 
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CHAPTER  XIV. 

Set  XXVI.,  p.  306. 

1.  a/(a2  +  62).  2.  6/(a2  +  fe2).  3.   TT.        -  4.  37r/16a5. 

5.  57ra3/16.  6.  ira.  7.   TT.  8.   7r(6-a)2/8 

9.  7r/V(a2  -  &2).  10.   7r/2a&.  11.   TT  (a2  +  62)/4a363. 

12.  (e-tan^e)/*3.  13.  ̂ 2  \'(  1  +  e2)  -  ̂ 3  log  (e  +  \/l  +  e2).  14.  0. 

15.   -1.       16.   -1/9.       18.  w!       19.   7r2/4.       20. 

an~ 

Set  XXVII.,  p.  312. 

2.  7r^(M.  3.      a6 

4.  7r(6-a)2(6  +  a)/4c.  5.  7r(a2  +  62)/2.  7.  a&/30. 

9.  (4-7r)a2/2;  (4  +  7r)a2/2.  1O.  37ra2  ;  27r2a3.  11.   Tra2;  7r 

12.   (7r-2)a2/2.  13.  7ra3(10-37r)/6.  16.  2. 

18.  3?ra2,  4a(l-cosa/2),  57T2a3,  ir2a3.         19.  abc/6.  2O.   7rac2/2. 
a     1 

22.  - 

sna 

2(1 -e 

23.   7r«2/12.       24.  7ra2/4,  7ra2/2.        25.   (3-21og2)e?/4.    
   

26.   (4-?r)a2/2. 

Set  XXVIII.,  P.  322. 

TT   /  a2     62 3.    16a2/3.  6.    UTT.  9 

CHAPTER  XV. 

Set  XXX.,  p.  347. 

1.  (i)  K2  +  a22+  ...  +aw2)/2.         (ii)  (V  +  V 

2.  (ajJ^fti^+aa^s  +  ̂s)/2- 

7.     (i)  3A/5,  3^/8.  (ii)  2^/5,  */2.       (iii)  |a  sin3  a/(a  -  sin  a  cos  a),  0. 

(iv)  a  =  fa  ( 1  +  cos  a).     ( v)  5a/6,  0. 

10.     (i)  53/a2/4.  (ii)  7^/a2/5.  (iii) 

(iv)  3^fa'2/10, 
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CHAPTER  XIX. 

Set  XXXV.,  p.  416. 

6.  (1  -cm)(l  -  -bu)  -  h2u?  =  0  ;   w1}  w.2  are  the  squares  of  the  semi-axes  of 
the  conic  ax2  +  2hxy  +  byz  —  I  . 

7.  ̂ a2/(a2  -  u)  +  m262/(62  -  u)  +  W2c2/(c2  -  u)  =  0  ;   MJ,  w2  are  the  squares  of 
the  semi-axes  of  the  conic  in  which  the  plane  cuts  the  ellipsoid. 

Set  XXXVL,  p.  422. 

1.  -|w(n+l).  2.   l/2a.  3.  a.  4.   (al  +  a2+  ...an)[n. 

5.  oo  and  1.  6.  -  1  and  -  1.          7.  2  and  2. 

8.  1  and  -  1.  9.  a/6  and  2a/6.  1O.   1/2. 

11.   (loga-logft)/(logc-log<7).  12.   1  and  1.  13.  a^a,^...an. 

14.  ̂ andl.  15.  e-"2/2*2  and  0.  17.  ±(a/6). 

CHAPTER  XX. 

Set  XXXVIIL,  p.  439. 

1.  y-x=C(l+xy).  2.  sin 

3.  Cy=(l-my)(x  +  m).  4.  xy'2=C(2y 
5.     =  Cx*-  14:0.  6 

where  ft= .  x  =  C+  l^jf-dri, 

8.  by2  +  2axy-fx2-2gx  +  2cy  =  C.        9.  ̂   = 

10.  y=^x+C/x.       11.  y  =  (8^-^  +0/^(1  -a?2).     12. 

13.  y  =  C'e-aa!  +  {acos(&a;  +  c)  +  6sin(&a;  +  c)}/(a2  +  62. 

14.  l/y5  =  |a^  +  (7^.  15.  «/y 

1  6.  x4  +  2a;y  -  y4  -  2a2x2  -  262y2  =  C. 

17.  (i/-(7a;)2=a2C'2  +  62;  x2/a2  +  y2/62=l. 

18.  y  =  Cx+C3;  21yz  +  ±xs  =  0.  19.  y'2= 

20.  y  =  ̂ e«*+£e6a:.  21.  y  = 

22.  y  =  <?*  (A  cos  x  +  B  sin  a;)  +  (2  cos  2#  +  sin  2#)/30. 

23.  y=Aex  +  Be2x-xex. 

24.  y  =  A  cos  ?i#  +  B  sin  wx  +  x(a  sin  nx-b  cos  nx)/2n. 

25.  y= 

26.  y  = 

27.  =  (^  +£#)  cos  #  +  (#+/';£)  sin  #. 
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28.  x  =  e«t 

29.  x  =  A  cos  t  +  B  sin  t, 

y=^(B  -3A)cost-  \(A  +  3B)  sin  t. 
30.  x 

31.  x  = 

32.  x=  Vt  cos  a,  y=Vt  sin  a  -  -%gt2. 

33.  x  =  acosnt,  y  =  bsinnt  where  ?I  =  V//A. 

34.  -^=  -v/(2/t)A/(;       -J;     <A/(  -^  j=^  +  sin^cos^,   where  x= 

36.  (i)  By  =  ?- 

(ii)  By=- 
(iii) 

37.  y  =  (-4  cos  TIO;  +  5  sin 

39.  (i)  y:=^+5/a;  +  a;2;         (ii)  y  = 

(iii)  y='Axz  +  B/x-7fX. 

40.  y=^4  cos(?iloga:)  +  5sin(?iloga;).         41.  w=Ar  i-B/r2. 

42.  F= 

45. 
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Abdank-Abakanowicz,  192. 
Abel's  Theorem,  386. 
Abscissa,  4,  7. 
Acceleration,  150. 

angular,  153. 
normal,  359. 
radial,  239. 

Adiabatic  curves,  127. 
expansion,  230. 

Algebraic  functions,  43. 
Amsler's  planimeter,  321. 
Anchor-ring,  322,  349. 
Angle,  31,  219. 

between  two  lines,  42,  207. 

Appell,  322. 
Approximations,  196,  244-269. 

rule  for,  in  expansions,  249. 
to  areas  and  volumes,  328. 
to  integrals,  299,  308,  328. 
to  roots  of  equations,  244. 

Arc,  derivative  of,  124,  201. 

of  circle,  Huyghens'  approxima- tion, 396. 
Area,  approximations  to,  328. 

derivative  of,  185,  201. 
interpretation  of,  187. 
of  closed  curves,  316. 
of  surfaces,  193,  338. 
of  some  common  curves  and  sur- 

faces, 309. 
sign  of,  186. 
swept  out  by  moving  line,  319. 

Argument  of  function,  14. 
Asymptote,  38,  250. 
Auxiliary  circle,  54. 

equation,  434. 
Attraction,  151,  154,  241. 
Axes,  change  of,  52. 

rectangular,  6,  205. 

Bernoulli's  numbers,  404. 
Bessel  Function,  407. 
Beta  Function,  350. 
Binomial  Theorem,  394. 

Cardioid,  202,  360. 
Catenary,  139,  360. 
Cauchy,  121. 
Cauchy's  form  of  remainder,  393. 
Centre  of  curvature,  354. 

of  gravity,  or  inertia,  or  mass, 
341. 

Centroid,  341. 

Chrystal's  Algebra,  173,  250,  290, 
375,  382,  386,  395,  396,  404. 

Elementary  Algebra,  20. 
Circle,  Area  of,  85. 

of  curvature,  354. 
involute  of,  373. 
perimeter  of,  85. 

Cissoid,  314. 

Clairaut's  equation,  432. 
Commutative  property  of  deriva- 

tives, 221. 
Complementary  function,  433. 
Complete  differential,  213,  224. 

integral,  426. 
Compound  interest  law,  97. 
Concavity,  180. 
Cone,  surface  and  volume  of,  86, 

309. 
moments  of,  349. 

Confocal  conies,  428. 
Conic  section,  definition,  equation 

and  properties  of,  47,  54,  61. 
polar  equation  of,  63. 
tangent  properties  of,  124-128. confocal,  428. 

Conical  point,  218. 

The  numbers  refer  to  pages. 
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Conieoid,  218. 
Consecutive  normals,  355. 
Constant,  13. 

arbitrary,  262,  425. 
elimination  of,  424. 

Contact  of  curves,  361. 
Continuity,  12,  87. 

of  elementary  functions,  90. 
of  series,  385. 

Convergence  of  series,  375; 
absolute  or  unconditional,  382. 
conditional,  382. 
uniform,  385. 

Convexity,  180. 
Coordinate  geometry— 

of  two  dimensions,  27. 
of  three  dimensions,  205. 

Coordinates — 
cylindrical,  210. 
polar,  10. 
rectangular,  7. 
spherical  polar,  210. 

Corrections,  small,  258. 
Cos  x,  expansion  of,  394. 
Curvature,  352. 

centre  of,  354. 
chord  of,  354,  360. 
circle  of,  354. 
formulae  for,  353,  355. 
radius  of,  354. 

Curves — 
contact  of,  361. 
derived,  183. 
equation  of,  23,  209. 
family  of,  365. 
integral,  190. 
tracing  of,  311. 

Cusp,  46. 
of  second  kind,  261. 

Cycloid,  368. 
properties  of,  369,  373. 

Cylinder,  surface  and  volume  of, 
86,  309. 

Decreasing  function,  104. 

Definite  integral,  see  'Integral.' 
Definite  value,  15. 
Density,  341. 
Derivatives,  101. 

geometrical    interpretation    of, 
105. 

not  definite,  107. 

Derivatives  of  sum,  product  etc., 
112-114. 

of  a  function  of  a  function  and 
of  inverse  functions,  116. 
of  implicit  functions,  119,  214. 
of  arc,  124,  201. 
of  area,  185,  201. 
of  surface  and  volume,  193,  346. 
successive  or  higher,  142. 

Derivatives,  partial,  204. 
commutative  property  of,  221. 
geometrical  illustrations  of,  214. 
of  higher  orders,  220. 

Derivatives,  total,  212. 
Derived  curve,  183. 

function,  102. 
Differential,  120. 

complete  or  total,  213,  224. 
higher,  234. 

Differential    coefficient,    102     see 

'  Derivatives. ' 
Differential  Equations,  424. 

degree  of,  424. 
exact,  431. 
homogeneous,  429. 
linear,  429,  433. 
order  of,  424. 
ordinary,  424. 

partial,  424. simultaneous,  437. 
Differentiation,  101. 

logarithmic,  113. 
of  series,  400. 

see  ( Derivatives. ' 
Dimensions  of  magnitudes,  68. 
Direction  cosines,  207. 
Directrix  of  conic,  47. 
Discontinuity,  88,  154,  387. 
Divergent  series,  375. 
Durand,  193. 

Dynamics,  149-155,  225,  341-347. 

Eccentric  angle,  55. 
Eccentricity  of  a  conic,  47. 
Elasticity,  coefficient  of,  156,  230. 
Electric    current   equations,    159, 

430,  438. 
Elimination  of  constants,  424. 
Ellipse,     definition    andi     simpler 

properties  of,  49,  54,  61. 
area  of  281,  310. 
curvature  of,  353,  359. 

The  numbers  refer  to  pagex. 



456      AN  ELEMENTARY  TREATISE  ON  THE  CALCULUS. 

Ellipse,  evolute  of,  362. 
perimeter  of,  405. 
tangent  properties  of,  124-128. 

Ellipsoid,  moments  of  inertia  of, 
845. 

volume  of,  270,  310. 

of  revolution,  see  '  spheroid.' 
Elliptic  lamina. 

centroid  of  quadrant  of,  342. 
moments  of  inertia  of,  345. 

Energy,  kinetic,  150. 
Envelopes,  364. 

contact-property  of,  366. 
Epicycloid,  369. 

properties  of,  373. 
Epitrochoid,  370. 
Equations,  of  a  curve,  23,  209. 

of  a  surface,  209. 

theory  of,  242-254. 
differential,  424. 

Errors,  superposition  of  small,  258. 
Euler,  253. 

theorems    of,    on    homogeneous 
functions,  412. 

Everett,  70. 
Evolute,  361. 
Expansion,     coefficient    of,     156, 

230. 
Expansions  of  functions,  390,  408. 
Explicit  function,  16. 
Exponential  function,  96,  394. 

graph  of,  58. 
Extension,  152. 

Fluent,  fluxion,  109. 
Focus  of  a  conic,  47. 
Forms,  indeterminate,  418. 

Forsyth's  Differential   Equations, 424. 
Function,  algebraic,  43. 

definition  of,  14. 
explicit,  16. 
graphical  representation  of,  20. 
homogeneous,  412. 
implicit,  17. 
inverse,  18. 
multiple- valued,  17. 
notation  for,  16. 
of  a  function,  90. 
periodic,  56,  303. 
single -valued,  17. 
transcendental,  56. 

Gamma  Function,  349. 

Gennochi-Peano's  Calculus,  421. 
Geometry,  coordinate— cf  two  dimensions,  27. 

of  three  dimensions,  205. 
Gradient,  32,  102. 
Graphical  integration,  192. 
Graphs,  20,  311. 

general  observations  on,  59. 
of  inverse  functions,  44. 

Gray's,    Absolute    Measurements, 
70,  175. Magnetism,  and  Electricity,  439. 

Physics,  154,  160. 
Gray  and  Mathews,  Bessel  Func- 

tions, 407. 

Gregory's  series  for  TT,  401. 
Gyration,  radius,  of  344. 

Harmonic  motion,  152,  160. 
Heat,  conduction  of,  157. 

Henrici's  Report  on  Planimeters, 322. 

Hobson's  Trigonometry,  257. 
Holditch's  Theorem,  323. 
Homogeneous  functions, 

Euler's  theorems  on,  412. 
Huyghens'   rule  for  circular  arc, 396. 

Hyperbola,  definition  and  simpler 
properties  of,  50,  54,  61. 

area  of  sector  of,  289. 
curvature  of,  359. 
evolute  of,  371. 

rectangular,  referred  to  asymp- 
totes, 54. 

tangent  properties  of,  124-128. 
Hyperbolic  functions,  139-142. 
Hypocycloid,  369,  373. 
Hypotrochoid,  370. 

Identical    Equality,    theorem    of, 
388. 

Impedance,  430. 
Implicit  function,  17. 

differentiation  of,  119,  214. 
Increasing  function,  104. 
Increment,  65. 
Indeterminate  forms,  418. 
Inductance,  159,  430,  438. 
Inertia,  centre  of,  341. 
moment  of,  343. 

The  numbers  refer  to  pages. 
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Infinite,  60,  80,  195. 

series,  see  'Series.' 
Infinitesimals,  195-200. 
Inflexion,  point  of,  35,  180,  239. 
Inflexional  tangent,  35. 
Integral  curve,  190. 

function,  188. 
Integral,  complete,  426. 

definite,  263,  298-309. 
double,  334. 
general,  189,  262. 
geometrical    representation    of, 

188,  263. 
indefinite,  262. 
limit  of  a  sum,  324. 
line,  347. 
particular,  426,  433. 
related,  301. 
standard  forms,  265,  278. 
surface,  347. 
triple,  338. 

see  'Approximations.' 
Integrand,  262. 

infinite,  304. 
Integraph,  192. 
Integrating  factor,  431. 
Integration,  262,  295. 

by  algebraic  and  trigonometric 
transformations,  267. 

by  change  of  variable,  271,  340. 
by  partial  fractions,  268,  290. 
by  parts,  281. 
by  successive  reduction,  284. 
of  quadratic  functions,  274. 
of  trigonometric  functions,  278. 
of  irrational  functions,  294. 
of  rational  functions,  292. 
of  series,  399. 
along  a  curve,  318,  347. 
over  an  area,  337. 
through  a  volume,  338. 

Intercept,  31,  33. 
Intrinsic  equation,  357. 
Inverse  function,  17. 

differentiation  of,  116. 
graph  of,  44. 

Involute,  361. 
Isolated  point,  313. 

Lagrange's  remainder,  392,  409. 
Lamb's  Calculus,  348. 
Laplace's  Equation,  223,  235. 

Leibniz,  121. 
series  for  TT,  401. 
theorem   on   derivative  of  pro- 

duct, 144. 
Limits,  74-86. distinction    between   limit  and 

value,  81,  405. 
theorems  on  existence  of,   100, 

377. 
of  a  definite  integral,  263. 

Line  integral,  347. 
Linear  differential  equations,  429, 

433. 
function,  31. 

Lituus,  202. 

Lodge's  Mensuration,  331. 
Logarithmic  differentiation, 

113. 
function,  57. 
series,  395. 

Logarithms,  calculation  of,  395. 
derivative  of,  136. 

graph  of  58. Liiroth,  257. 

Maclaurin's  Theorem,  391,  411. 
Maclean's  Physical  Units,  70. 

Magnitudes — dimensions  of,  68. 
directed,  13. 
geometrical    representation    of, 13. 

Mass-centre,  341. 
Maxima  and  Minima,  166. 

elementary  methods,  171. 
of  functions  of  several  variables, 

412. 

Maxwell's  Heat,  232. 
Mean- Value  Theorems — 

Derivative,  162,  419. 
Integral,  300,  309. 

Mean   value    of   a   function,  332, 
339. 

Mechanics,  see  "Dynamics." 

Minima,  see  "Maxima." Moment  of  differential,  121. 
Moment  of  inertia,  343. 
Momentum,  150. 

Multipliers,  undetermined,  415. 
Multiple-valued  function,  17. 
Murray's   Differential    Equations, 

424. 

The  numbers  refer  to  pages. 
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Napier's  base,  59,  92. 
Newton,  109. 

his  method  of  approximating  to 
the  roots  of  equations,  244. 

Node,  423. 
Normal,  123,  201,  216. 
Number  e,  92. 

TT,  85,  401. 

Order  of  differential  equation,  424. 
of  infinitesimals,  195. 

Ordinate,  7. 
Origin  of  coordinates,  8. 

change  of,  52. 
Oscillating  series,  375. 
Osgood  on  Infinite  Series,  375. 

Pappus'  Theorems,  348. 
Parabola,   definition   and   simpler 

properties  of,  48,  54,  61. 
arc  of,  127,  314. 
curvature  of,  353. 
evolute  of,  367,  371. 
semi-cubical,  127. 
tangent  properties  of,  124-128. 

Parallel  curves,  361. 
Parameter,  365. 
Partial  Derivatives,  see  "Deriva- 

tives, partial." Peano,  413,  421. 
Pendulum,  period  of  oscillation  of, 

402,  432. 
Pericycloid,  369. 
Period  of  a  function,  56,  303. 
Perpendicular,  length  of,  63. 
Plane,  equation  of,  209. 

tangent,  215,  411. 
Planimeter,  321. 
Plotting  of  points,  9. 
Points,  conical,  218. 

distance  between  two,  9,  206. 
isolated,  313. 
turning,  24,  167. 

Polar  formulae,  200. 
tangent,  normal,  etc.,  201. 

Potential,  153,  223,  351. 
Power,  fundamental  limit,  91. 

derivative  of,  111. 
Power  series,  383. 

continuity  of,  386. 
differentiation    and    integration 

of,  400. 
Tlie  numbers 

Primitive  of  differential  equation, 
425. 

Prismoid,  332. 
Proportional  parts,  255.  * 

Radius  of  curvature,  354. 
of  gyration,  344. 

Rates,  65-73,  101. 
Rational  fractions,  integration  of, 290. 

Rational  function,  34. 
integration  of,  292. 

Reduction,  successive,  284. 

Remainder      in      Taylor's      and 
Maclaurin's    Theorems,    392, 409. 

Ring,  see  "Anchor-ring." 
Robin's  Tracts,  121. 
Rolle's  Theorem,  161. 

Roots,  see  '  Equations.' 

Schlomilch- Roche's    form    of    re- 
mainder, 393. 

Segments,  directed,  1. 
addition    and     subtraction    of. 

2,3. measure  of,  5,  12. 
symmetric,  3. 

Series,  infinite,  375. 
alternating,  382. 
differentiation  of,  400. 
integration  of,  399. 
multiplication  of,  388. 
semi-convergent,  382. 
See    '  Convergence     of    series 

'  Power-series. ' 
Sign  of  area,  186. 
Simpson's  Rules,  330,  332. 
Simultaneous     differential    equa 

tions,  437. 

sinx,   sm"1^,  expansion   of,   393 401. 

Slope,  102. 
Solution  of  a  differential  equatioi 426. 

singular,  432. 
Space-rate  of  change,  103,  150. 
Sphere,    surface   and  volume    c 

194,  309. 

Spheroid,  oblate  and  prolate,  31' surface  and  volume  of,  310. 
Spiral,  of  Archimedes,  201. 

refer  to  pages. 
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Spiral,  equiangular,  202,  360. 
reciprocal,  202. 

Stationary  value,  105. 

Step,  see  'Segments.' Subnormal,  123,  201. 
Subtangent,  123,  201. 
Surface,  equation  of,  209. 

of  revolution,  193. 
areas    and    volumes    of,    309, 

312-315. 
integral,  347. 

Symmetry,  9,  23. 
centre  of,  29. 

1^,  expansion  of,  401. 
Tangent,  definition  of,  78. 

length  of,  123,  201. 
inflexional,  35. 
plane,  216,  411. 

Taylor's  Theorem  and  Series — 
for    function    of    one   variable, 

390-398. 
for  function  of  several  variables, 

408-412. 
Thermodynamics,  228-233. 
Time-rate  of  change,  103. 
Tore,  322,  349. 
To  il  derivative,  211. 

o  .fferential,  213,  224. 

Trapezoidal  rule,  329. 
Trigonometric     functions,     direct 

and  inverse,  56. 
differentiation  of,  129,  133. 
integration  of,  265,  278,  284. 

Trochoid,  370. 
True  value,  418. 
Turning  value,  24,  166. 

Ultimately  equal,  199. 
Uniform  convergence,  385. 
Units,  26,  28. 

Value,  stationary,  105. 
true,  418. 
turning,  24,  166. 

Variable,  dependent  and  indepen- 
dent, 12. 

change  of,  233,  271. 
Variation,    near  a  turning  value, 

174. 
in  a  given  direction,  218. 

Velocity,  149. 
angular,  153. 
components  of,  110. 

Volumes,  193,  309,  331,  335. 
polar  element  of,  346. 

Wallis's  value  of  TT,  307. 
Work,  150,  225. 

The  numbers  refer  to  pages. 
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